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We construct a kind of infinite-dimensional Novikov algebras and give its realization by hyperbolic sine functions and hyperbolic
cosine functions.

1. Introduction

Novikov algebras were introduced in connectionwithHamil-
tonian operators in the formal variational calculus and the
Poisson brackets of hydrodynamic type. They were used to
construct the Virasoro-type Lie algebras. So the study of
Novikov algebras is interesting in both mathematics and
mathematical physics.

When Gel’fand and Diki [1, 2] and Gel’fand and Dorfman
[3] studied the following operator:

𝐻
𝑖𝑗
= ∑

𝑘

𝑐
𝑖𝑗𝑘
𝑢
(1)

𝑘
+ 𝑑
𝑖𝑗𝑘
𝑢
(0)

𝑘

d
d𝑥
, 𝑐
𝑖𝑗𝑘
∈ C, 𝑑

𝑖𝑗𝑘
= 𝑐
𝑖𝑗𝑘
+ 𝑐
𝑗𝑖𝑘
,

(1)

they gave the definition of Novikov algebras. Concretely, let
𝑐
𝑖𝑗𝑘

be the structural coefficients, and let a product of 𝐿 =
𝐿(𝑒
0
, 𝑒
1
, . . .) be ∘ such that

𝑒
𝑖
∘ 𝑒
𝑗
= ∑𝑐

𝑖𝑗𝑘
𝑒
𝑘
. (2)

For any 𝑎, 𝑏, 𝑐 ∈ 𝐿, the product is Hamilton operator if and
only if ∘ satisfies

(𝑎 ∘ 𝑏) ∘ 𝑐 = (𝑎 ∘ 𝑐) ∘ 𝑏,

(𝑎 ∘ 𝑏) ∘ 𝑐 + 𝑐 ∘ (𝑎 ∘ 𝑏) = (𝑐 ∘ 𝑏) ∘ 𝑎 + 𝑎 ∘ (𝑐 ∘ 𝑏) .

(3)

Ma presented many new soliton hierarchies of commut-
ing bi-Hamiltonian evolution equations from the so-called
Novikov algebras [4–6]. In 1987, Zel’manov [7] began to
study Novikov algebras and proved that the dimension of

finite-dimensional simple Novikov algebras over a field of
characteristic zero is one. In algebras, what are paid attention
to by mathematician are classifications and structures, but so
far we have not got the systematic theory for general Novikov
algebras. In 1992, Osborn [8–10] had finished the classifi-
cation of infinite simple Novikov algebras with nilpotent
elements over a field of characteristic zero and finite simple
Novikov algebras with nilpotent elements over a field of
characteristic 𝑝 > 0. In 1995, Xu [10–13] developed his theory
and got the classification of simple Novikov algebras over
an algebraically closed field of characteristic zero. Bai and
Meng [14–16] did a series of researches on low dimensional
Novikov algebras, such as the structure and classification.We
construct two kinds ofNovikov algebras [17]. Recently, people
obtained some properties in Novikov superalgebras [18, 19].
In this paper, we construct an infinite-dimensional Novikov
algebra and give its realization by hyperbolic sine functions
and hyperbolic cosine functions.

Definition 1 (see [17]). Let (A, ∘) be an algebra over F such
that

𝑎 ∘ (𝑏 ∘ 𝑐) − (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑏 ∘ (𝑎 ∘ 𝑐) − (𝑏 ∘ 𝑎) ∘ 𝑐, (4)

(𝑎 ∘ 𝑏) ∘ 𝑐 = (𝑎 ∘ 𝑐) ∘ 𝑏, ∀𝑎, 𝑏, 𝑐 ∈ A, (5)

and thenA is called a Novikov algebra over F.

Remark 2. An algebra A is called a left symmetric algebra
if it only satisfies (4). It is clear that left symmetric algebras
contain Novikov algebras.
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Remark 3. (1) If (A, ∘) is a left symmetric algebra satisfying

[𝑎, 𝑏] = 𝑎 ∘ 𝑏 − 𝑏 ∘ 𝑎, ∀𝑎, 𝑏 ∈ A, (6)

then (A, [, ]) is a Lie algebra. Usually, it is called an adjoining
Lie algebra.

(2) Let (A, ⋅) be a commutative algebra, and then (A,
𝑑
0
, ∘) is a Novikov algebra if 𝑑

0
is a derivation of A with a

bilinear operator ∘ such that
𝑎 ∘ 𝑏 = 𝑎 ⋅ 𝑑

0 (𝑏) , ∀𝑎, 𝑏 ∈ A. (7)

2. Main Results

Lemma 4. Let {𝑏
0
, 𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, . . . 𝑎

𝑛
, 𝑏
𝑛
, . . .} be a basis of the

linear spaceA over a field F of characteristic 𝑝 ̸= 2 satisfying

𝑎
𝑚
𝑎
𝑛
=
1

2
(𝑏
𝑚+𝑛
− 𝑏
𝑚−𝑛
) ,

𝑏
𝑚
𝑏
𝑛
=
1

2
(𝑏
𝑚+𝑛
+ 𝑏
𝑚−𝑛
) ,

𝑎
𝑚
𝑏
𝑛
= 𝑏
𝑛
𝑎
𝑚
=
1

2
(𝑎
𝑚+𝑛
+ 𝑎
𝑚−𝑛
) ,

(8)

where 𝑏
−𝑚
= 𝑏
𝑚
, 𝑎
−𝑚
= −𝑎
𝑚
. Then A is a commutative and

associative algebra.

Proof. It is clear thatA is a commutative algebra over F:

(𝑎
𝑘
, 𝑎
𝑛
, 𝑎
𝑚
)

= 𝑎
𝑘
(𝑎
𝑛
𝑎
𝑚
) − (𝑎

𝑘
𝑎
𝑛
) 𝑎
𝑚

=
1

2
𝑎
𝑘
(𝑏
𝑚+𝑛
− 𝑏
𝑛−𝑚
) −
1

2
(𝑏
𝑘+𝑛
− 𝑏
𝑘−𝑛
) 𝑎
𝑚

=
1

4
(𝑎
𝑘+𝑚+𝑛

+ 𝑎
𝑘−𝑚−𝑛

− 𝑎
𝑘+𝑛−𝑚

− 𝑎
𝑘−𝑛+𝑚

−𝑎
𝑚+𝑘+𝑛

− 𝑎
𝑚−𝑘−𝑛

+ 𝑎
𝑚+𝑘−𝑛

+ 𝑎
𝑚−𝑘+𝑛

)

= 0.

(9)

Similarly, we have that (𝑏
𝑘
, 𝑏
𝑛
, 𝑏
𝑚
) = (𝑎

𝑘
, 𝑎
𝑛
, 𝑏
𝑚
) = (𝑎

𝑘
, 𝑏
𝑛
,

𝑎
𝑚
) = (𝑏

𝑘
, 𝑎
𝑛
, 𝑎
𝑚
) = (𝑏

𝑘
, 𝑏
𝑛
, 𝑎
𝑚
) = (𝑏

𝑘
, 𝑎
𝑛
, 𝑏
𝑚
) = (𝑎

𝑘
, 𝑏
𝑛
, 𝑏
𝑚
) =

0. Then (𝑎, 𝑏, 𝑐) = 0, ∀𝑎, 𝑏, 𝑐 ∈ A. The result follows.

Corollary 5. 𝑏
0
of Lemma 4 is a unity ofA.

Lemma 6. Let A be a commutative and associative algebra
satisfying Lemma 4. Then the following statements hold:

(1) If𝐷
0
is a linear transformation ofA such that
𝐷
0
(𝑎
𝑛
) = 𝑛𝑏

𝑛
, 𝑛 = 1, 2, 3, . . . ,

𝐷
0
(𝑏
𝑛
) = 𝑛𝑎

𝑛
, 𝑛 = 0, 1, 2, . . . ,

(10)

then𝐷
0
is a derivation ofA.

(2) If 𝑎𝐷
0
is a linear transformation ofA such that

(𝑎𝐷
0
) (𝑏) = 𝑎𝐷0 (𝑏) , ∀𝑎, 𝑏 ∈ A, (11)

then 𝑎𝐷
0
is a derivation ofA.

(3) D
1
= {𝑎𝐷

0
| 𝑎 ∈ A} is a subalgebra of Lie algebra

DerA.

Proof. (1) We have

𝐷
0
(𝑎
𝑛
𝑎
𝑚
) = 𝐷

0
(
1

2
(𝑏
𝑛+𝑚
− 𝑏
𝑛−𝑚
))

=
1

2
((𝑚 + 𝑛) 𝑎𝑛+𝑚 − (𝑛 − 𝑚) 𝑎𝑛−𝑚) ,

𝐷
0
(𝑎
𝑛
) 𝑎
𝑚
+ 𝑎
𝑛
𝐷
0
(𝑎
𝑚
) = 𝑛𝑏

𝑛
𝑎
𝑚
+ 𝑚𝑎
𝑛
𝑏
𝑚

=
𝑛

2
(𝑎
𝑛+𝑚
− 𝑎
𝑛−𝑚
)

+
𝑚

2
(𝑎
𝑛+𝑚
− 𝑎
𝑚−𝑛
)

=
1

2
((𝑚 + 𝑛) 𝑎𝑚+𝑛 − (𝑛 − 𝑚) 𝑎𝑛−𝑚) .

(12)

So𝐷
0
is a derivation ofA.

(2) For ∀𝑎, 𝑏, 𝑐 ∈ A, we have

(𝑎𝐷
0
) (𝑏𝑐) = 𝑎𝐷0 (𝑏𝑐) = 𝑎𝐷0 (𝑏) 𝑐 + 𝑎𝑏𝐷0 (𝑐)

= (𝑎𝐷
0
) (𝑏) 𝑐 + 𝑏 (𝑎𝐷0) (𝑐) ,

(13)

so 𝑎𝐷
0
is a derivation ofA.

(3) For ∀𝑎, 𝑏, 𝑐 ∈ A, we have

[𝑎𝐷
0
, 𝑏𝐷
0
] (𝑐) = (𝑎𝐷0) (𝑏𝐷0) (𝑐) − (𝑏𝐷0) (𝑎𝐷0) (𝑐)

= 𝑎𝐷
0 (𝑏)𝐷0 (𝑐) − 𝑏𝐷0 (𝑎)𝐷0 (𝑐)

= (𝑎𝐷
0 (𝑏) − 𝑏𝐷0 (𝑎))𝐷0 (𝑐) .

(14)

Then [𝑎𝐷
0
, 𝑏𝐷
0
] = (𝑎𝐷

0
(𝑏) − 𝑏𝐷

0
(𝑎))𝐷

0
∈ D
1
, and so (3)

holds.

Theorem 7. Let A be a commutative and associative algebra
satisfying Lemma 4, and let 𝑎 be an element ofA. If𝐷

0
satisfies

Lemma 6 and ∘ satisfies

𝑏 ∘ 𝑐 = 𝑏𝑎𝐷
0 (𝑐) , ∀𝑏, 𝑐 ∈ A, (15)

then the following statements hold:
(1) (A, 𝑎𝐷

0
, ∘) is a Novikov algebra.

(2) (A, 𝑎𝐷
0
, [, ]) is an adjoining Lie algebra of (A, 𝑎𝐷

0
, ∘)

and [, ] such that

[𝑏, 𝑐] = 𝑎 (𝑏𝐷0 (𝑐) − 𝑐𝐷0 (𝑏)) , ∀𝑏, 𝑐 ∈ A. (16)

Proof. (1) By Lemma 6, 𝑎𝐷
0
is a derivation of the commu-

tative algebra A. So (A, 𝑎𝐷
0
, ∘) is a Novikov algebra by

Remark 3(2).
(2) (A, 𝑎𝐷

0
, [, ]) is an adjoining Lie algebra of (A, 𝑎𝐷

0
, ∘)

by Remark 3(1). For ∀𝑏, 𝑐 ∈ A, ∃𝑎 ∈ A, we have

[𝑏, 𝑐] = 𝑏 ∘ 𝑐 − 𝑐 ∘ 𝑏

= 𝑏𝑎𝐷
0 (𝑐) − 𝑐𝑎𝐷0 (𝑏) = 𝑎 (𝑏𝐷0 (𝑐) − 𝑐𝐷0 (𝑏))

(17)

since A is commutative. Hence we obtain the desired result.
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Let 𝑏
0
be a unity ofA. If we set 𝑎 = 𝑏

0
inTheorem 7, then

𝑎
𝑛
∘ 𝑎
𝑚
= 𝑎
𝑛
𝑏
0
𝐷
0
(𝑎
𝑚
) = 𝑎

𝑛
(𝑚𝑏
𝑚
) = (𝑚/2)(𝑎

𝑚+𝑛
+ 𝑎
𝑛−𝑚
).

Similarly, we obtain the following corollary.

Corollary 8. LetA be a commutative and associative algebra
satisfying Lemma 4. Then the following statements hold:

𝑎
𝑛
∘ 𝑎
𝑚
=
𝑚

2
(𝑎
𝑛+𝑚
+ 𝑎
𝑛−𝑚
) ,

𝑏
𝑛
∘ 𝑏
𝑚
=
𝑚

2
(𝑎
𝑛+𝑚
+ 𝑎
𝑚−𝑛
) ,

𝑎
𝑛
∘ 𝑏
𝑚
=
𝑚

2
(𝑏
𝑛+𝑚
− 𝑏
𝑛−𝑚
) ,

𝑏
𝑛
∘ 𝑎
𝑚
=
𝑚

2
(𝑏
𝑛+𝑚
+ 𝑏
𝑛−𝑚
) ,

[𝑎
𝑛
, 𝑎
𝑚
] =
1

2
(𝑚 − 𝑛) 𝑎𝑛+𝑚 +

1

2
(𝑚 + 𝑛) 𝑎𝑛−𝑚,

[𝑏
𝑛
, 𝑏
𝑚
] =
1

2
(𝑚 − 𝑛) 𝑎𝑛+𝑚 −

1

2
(𝑚 + 𝑛) 𝑎𝑛−𝑚,

[𝑎
𝑛
, 𝑏
𝑚
] =
1

2
(𝑚 − 𝑛) 𝑏𝑛+𝑚 −

1

2
(𝑛 + 𝑚) 𝑏𝑛−𝑚,

[𝑏
𝑛
, 𝑎
𝑚
] =
1

2
(𝑚 − 𝑛) 𝑏𝑛+𝑚 +

1

2
(𝑚 + 𝑛) 𝑏𝑛−𝑚.

(18)

We have the following: let sinh𝑥 = (𝑒𝑥 − 𝑒−𝑥)/2, cosh𝑥 =
(𝑒
𝑥
+ 𝑒
−𝑥
)/2, and let the field F be assumed R or C. We will

construct Novikov algebras over the linear space which is
generated by sinh𝑥 and cosh𝑥.

First, let T be a linear space generated by
{sinh𝑚𝑥, cosh 𝑛𝑥 | 𝑚, 𝑛 ∈ N} over F.

Lemma 9. T satisfying the above product is a commutative
associative algebra.

Proof. Since the above product is commutative and associa-
tive, we only needT to be closed for the product. In fact,

sinh 𝑚𝑥 sinh 𝑛𝑥 = 1
2
[cosh (𝑚 + 𝑛) 𝑥 − cosh (𝑚 − 𝑛) 𝑥] ,

cosh 𝑚𝑥 cosh 𝑛𝑥 = 1
2
[cosh (𝑚 + 𝑛) 𝑥 + cosh (𝑚 − 𝑛) 𝑥] ,

sinh 𝑚𝑥 cosh 𝑛𝑥 = 1
2
[sinh (𝑚 + 𝑛) 𝑥 + sinh (𝑚 − 𝑛) 𝑥] .

(19)

SoT is a commutative and associative algebra.

Lemma 10. Let T be a linear space generated by {sinh 𝑚𝑥,
cosh 𝑛𝑥 | 𝑚, 𝑛 ∈ N} over F, and then {1, sinh 𝑚𝑥, cosh 𝑛𝑥 |
𝑚, 𝑛 ∈ N0} is a basis ofT.

Proof. For ∀𝑛 ∈ N0, suppose that there are 𝑐0, 𝑎𝑖, 𝑏𝑗 ∈ F, 𝑖, 𝑗 ∈
N0 such that

𝑐
0
+ 𝑎
1
sinh 𝑥 + 𝑏

1
cosh 𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑛
sinh 𝑛𝑥 + 𝑏

𝑛
cosh 𝑛𝑥

= 0.

(20)

We take derivative for (20) such that its derivative order is
2𝑘 − 1 (𝑘 ∈ N0), and put 𝑥 = 0. Then we have

𝑎
1
+ 2
2𝑘−1
𝑎
2
+ ⋅ ⋅ ⋅ + 𝑛

2𝑘−1
𝑎
𝑛
= 0. (21)

Let 𝑘 = 1, 2, . . . , 𝑛, and then we obtain the following system
of 𝑛 linear equations:

𝑎
1
+ 2𝑎
2
+ ⋅ ⋅ ⋅ + 𝑛𝑎

𝑛
= 0

𝑎
1
+ 2
3
𝑎
2
+ ⋅ ⋅ ⋅ + 𝑛

3
𝑎
𝑛
= 0

...

𝑎
1
+ 2
2𝑛−1
𝑎
2
+ ⋅ ⋅ ⋅ + 𝑛

2𝑛−1
𝑎
𝑛
= 0.

(22)

If 𝑎
1
, . . . , 𝑎

𝑛
are seen to be unknown, then the coefficient

matrix of (22) is the Vandermonde matrix whose determi-
nant is not 0, so 𝑎

𝑖
= 0, 𝑖 = 1, . . . , 𝑛.

We take derivative for (20) such that its derivative order
is 2𝑘 (𝑘 ∈ N0), and put 𝑥 = 0. Then we have

𝑏
1
+ 2
2𝑘
𝑏
2
+ ⋅ ⋅ ⋅ + 𝑛

2𝑘
𝑏
𝑛
= 0. (23)

Let 𝑘 = 1, 2, . . . , 𝑛, and then we obtain the following system
of 𝑛 linear equations:

𝑏
1
+ 2
2
𝑏
2
+ ⋅ ⋅ ⋅ + 𝑛

2
𝑏
𝑛
= 0

𝑏
1
+ 2
4
𝑏
2
+ ⋅ ⋅ ⋅ + 𝑛

4
𝑏
𝑛
= 0

...

𝑏
1
+ 2
2𝑛
𝑏
2
+ ⋅ ⋅ ⋅ + 𝑛

2𝑛
𝑏
𝑛
= 0.

(24)

If 𝑏
1
, . . . , 𝑏

𝑛
are seen to be unknown, then the coefficient

matrix of (24) is the Vandermonde matrix whose determi-
nant is not 0, so 𝑏

𝑖
= 0, 𝑖 = 1, . . . , 𝑛. Since, for any 𝑖 ∈ N0,

𝑎
𝑖
= 0 and 𝑏

𝑖
= 0 satisfy (20), we have 𝑐

0
= 0. Hence {1,

sinh 𝑥, cosh𝑥,. . ., sinh 𝑛𝑥, cosh 𝑛𝑥} are linearly independent
for any 𝑛 ∈ N0, and then {1, sinh 𝑛𝑥, cosh 𝑚𝑥 | 𝑛,𝑚 ∈ N0}
are linearly independent and so they form a basis of T as
desired.

Theorem 11. Let A
1
, A
2
be commutative and associative

algebras over F. If 𝜑: A
1
→ A

2
is an isomorphism and

𝐷
1
∈ DerA

1
, then the following statements hold:

(1) 𝐷
2
:= 𝜑𝐷

1
𝜑
−1
∈ DerA

2
,

(2) 𝜑: (A
1
, 𝐷
1
, ∘) → (A

2
, 𝐷
2
, ∘) is also an isomorphism

of Novikov algebras.
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Proof. (1) For any 𝑎, 𝑏 ∈ A
1
, we have

(𝜑𝐷
1
𝜑
−1
) (𝜑 (𝑎) 𝜑 (𝑏))

= (𝜑𝐷
1
𝜑
−1
) (𝜑 (𝑎𝑏))

= 𝜑𝐷
1 (𝑎𝑏) = 𝜑 (𝐷1 (𝑎) 𝑏 + 𝑎𝐷1 (𝑏))

= 𝜑 (𝐷
1 (𝑎)) 𝜑 (𝑏) + 𝜑 (𝑎) 𝜑 (𝐷1 (𝑏))

= (𝜑𝐷
1
𝜑
−1
) (𝜑 (𝑎)) 𝜑 (𝑏) + 𝜑 (𝑎) (𝜑𝐷1𝜑

−1
) (𝜑 (𝑏)) .

(25)

So (1) holds.
(2) For any 𝑎, 𝑏 ∈ A

1
, we have

𝜑 (𝑎 ∘ 𝑏) = 𝜑 (𝑎𝐷1 (𝑏)) = 𝜑 (𝑎) 𝜑 (𝐷1 (𝑏))

= 𝜑 (𝑎) (𝜑𝐷1𝜑
−1
) (𝜑 (𝑏)) = 𝜑 (𝑎)𝐷2 (𝜑 (𝑏))

= 𝜑 (𝑎) ∘ 𝜑 (𝑏) .

(26)

So (2) holds.

Theorem 12. LetA be a commutative and associative algebra
over F satisfying Lemma 4, let 𝐷

0
be its derivation satisfying

(10), and letT be a commutative and associative algebra over
F satisfying Lemmas 9 and 10. If 𝜑 : A → T satisfies

𝜑 (𝑏
𝑚
) = cosh 𝑚𝑥, 𝑚 = 0, 1, 2, . . . ,

𝜑 (𝑎
𝑛
) = sinh 𝑛𝑥, 𝑛 = 1, 2, . . . ,

(27)

then the following statements hold:

(1) 𝜑 is an isomorphism of commutative and associative
algebras,

(2) 𝜑𝐷
0
𝜑
−1
= d/d𝑥,

(3) 𝜑 : (A, 𝑎𝐷
0
, ∘) → (T, 𝜑(𝑎)(d/d𝑥), ∘) is an isomor-

phism of Novikov algebras.

Proof. It is clear by Lemma 10, (8), and (19).
(2) By Lemma 6, we have

𝜑𝐷
0
𝜑
−1
(sinh 𝑛𝑥) = 𝜑𝐷0 (𝑎𝑛)

= 𝜑 (𝑛𝑏
𝑛
) = 𝑛 cosh 𝑛𝑥

=
d sinh 𝑛𝑥

d𝑥
,

𝜑𝐷
0
𝜑
−1
(cosh 𝑛𝑥) = 𝜑𝐷0 (𝑏𝑛)

= 𝜑 (𝑛𝑎
𝑛
) = 𝑛 sinh 𝑛𝑥

=
d cosh 𝑛𝑥

d𝑥
.

(28)

So (2) holds.

(3) It is clear that 𝜑(𝑎𝐷
0
)𝜑
−1
= 𝜑(𝑎)d/d𝑥. By (27) and

(10), we have

𝜑 (𝑎𝐷
0
) 𝜑
−1
(sinh 𝑛𝑥) = 𝜑 (𝑎𝐷0) (𝑎𝑛)

= 𝜑 (𝑎𝐷
0
(𝑎
𝑛
)) = 𝜑 (𝑎𝑛𝑏

𝑛
)

= 𝜑 (𝑎) 𝜑 (𝑛𝑏𝑛) = 𝜑 (𝑎) 𝑛 cosh 𝑛𝑥

=
𝜑 (𝑎) d (sinh 𝑛𝑥)

d𝑥
.

(29)

Similarly, we have 𝜑(𝑎𝐷
0
)𝜑
−1
(cosh 𝑛𝑥) = 𝜑(𝑎)d(cosh 𝑛𝑥)/

d𝑥. So 𝜑(𝑎𝐷
0
)𝜑
−1
= 𝜑(𝑎)d/d𝑥.

By Theorems 7 and 11 and Remark 3(2), we have

𝜑 (𝑏 ∘ 𝑐) = 𝜑 (𝑏𝑎𝐷0 (𝑐))

= 𝜑 (𝑏) 𝜑 (𝑎𝐷0 (𝑐))

= 𝜑 (𝑏) [𝜑 (𝑎𝐷0) 𝜑
−1
(𝜑 (𝑐))]

=
𝜑 (𝑏) 𝜑 (𝑎) d
d𝑥 (𝜑 (𝑐))

= 𝜑 (𝑏) ∘ 𝜑 (𝑐) , ∀𝑏, 𝑐 ∈ A.

(30)

So 𝜑 : (A
0
, 𝑎𝐷
0
, ∘) → (T, 𝜑(𝑎)(d/d𝑥), ∘) is an isomorphism

of Novikov algebras.
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