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We investigate the complex dynamics of a diffusive Holling-Tanner predation model with the Allee effect on prey analytically and
numerically.We examine the existence of the positive equilibria and the related dynamical behaviors of themodel andfind thatwhen
the model is with weak Allee effect, the solutions are local and global stability for some conditions around the positive equilibrium.
In contrast, when the model is with strong Allee effect, this may lead to the phenomenon of bistability; that is to say, there is a
separatrix curve that separates the behavior of trajectories of the system, implying that the model is highly sensitive to the initial
conditions. Furthermore, we give the conditions of Turing instability and determine the Turing space in the parameters space. Based
on these results, we perform a series of numerical simulations and find that the model exhibits complex pattern replication: spots,
spots-stripes mixtures, and stripes patterns. The results show that the impact of the Allee effect essentially increases the models
spatiotemporal complexity.

1. Introduction

Recently, there has been a great interest in studying nonlinear
difference/differential equations and systems [1–6]. One of
the reasons for this is a necessity for some techniques which
can be used in investigating equations arising in mathe-
matical models describing real-life situations in population
biology, economy, probability theory, genetics, psychology,
sociology, and so forth. And the bases for analyzing the
dynamics of complex ecological systems are the interactions
between two species, particularly the dynamical relationship
between predators and their preys [7]. From the Lotka-
Volterra model [8, 9], several alternatives for modeling
continuous time consumer-resource interactions have been
proposed. In recent years, one of the important predator-
prey models is Holling-Tanner model, which was described
by May [10]. This model reads as follows:
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where 𝐻 and 𝑃 represent prey and predator population
densities at time 𝑡, respectively. 𝑟, 𝐾, 𝑐

1
, 𝑘
1
, 𝑠
1
, and 𝛿 are

positive constants. 𝑟
1
and 𝑠
1
are the intrinsic growth rate of

prey and predator, respectively. 𝐾 is the carrying capacity
of the prey, and 𝛿 takes on the role of the prey-dependent
carrying capacity for the predator. The rate at which the
predator consumes the prey, 𝑐

1
𝐻𝑃/(𝑘

1
+ 𝐻), is known as

the Holling type-II functional response [11]. The parameter
𝑐
1
is the maximum number of the prey that can be eaten

per predator per time, and 𝑘
1
is the saturation value that

corresponds to the number of the preys necessary to achieve
one half of the maximum rate 𝑐

1
.

The dynamics of model (1) has been considered in many
articles. For example, Hsu and Huang [12] obtained some
results on the global stability of the positive equilibrium.
More precise, under the conditions which local stability of
the positive equilibrium implies its global stability. Gasull and
coworkers [13] investigated the conditions of the asymptotic
stability of the positive equilibrium which does not imply
global stability. Sáez and González-Olivares [14] showed the
asymptotic stability of a positive equilibrium and gave a
qualitative description of the bifurcation curve.



2 Abstract and Applied Analysis

On the other hand, in population dynamics, any mecha-
nism that can lead to a positive relationship between a com-
ponent of individual fitness and either the number or density
of conspecifics constitutes what is usually called an Allee
effect [15–24], starting with the pioneer work of Allee [25].
The outflux of prey to constant rate can be considered as Allee
effect because a change on interaction dynamics is provoked,
for instance, due to difficulty of encountering mates [17].
Nowadays, it is widely accepted that the Allee effect greatly
increases the likelihood of local and global extinction [18] and
can lead to a rich variety of dynamical effects.

From an ecological point of view, the Allee effect has been
denominated in different ways [19–22] and modeled into
strong and weak ones [15, 16, 19], depending on the degree
of positive density dependence. Mathematically speaking, if
𝐻 = 𝐻(𝑡) indicates the population size, we assume that the
growth function 𝐺(𝐻) satisfies the following:

(i) if 𝐺(0) = 0, 𝐺(0) > 0, 𝐺(𝐻) is called weak Allee
effect;

(ii) if 𝐺(0) = 0, 𝐺(0) < 0, 𝐺(𝐻) is called strong Allee
effect.

The most common mathematical form describing this
phenomenon for a single species is given by

𝐺 (𝐻) = 𝐻 (1 − 𝐻) (𝐻 − 𝑚) , (2)

where 0 < 𝑚 < 1 or −1 < 𝑚 ≤ 0, which is named
the multiplicative Allee effect; here, a threshold value 𝑚 is
incorporated such that population growth is negative below
𝑚. When𝑚 < 𝐻 < 1, the per capita growth rate is positive.

Furthermore, Boukal et al. [22] proposed that the prey
exhibits a demographic Allee effect at low population densi-
ties due to reasons other than predation by the focal predator
as follows:

𝐺 (𝐻) = 𝐴𝐻 (1 − 𝐻)(1 −
𝑏 + 𝑐

𝐻 + 𝑐
) , (3)

where 𝑏 is the Allee threshold, and 𝑐 is an auxiliary parameter
(𝑐 > 0 and 𝑏 ≥ −𝑐). The auxiliary parameter 𝑐 affects the
overall shape of the per capita growth curve of the prey.
When 𝑐 is fixed, the unit growth rate of the species is only
in connection with the Allee threshold.

For model (1), we make a change of variables as follows:

(𝐻, 𝑃, 𝑡) = (𝐾�̃�,𝐾�̃�,
�̃�

𝑟
1

) . (4)

For the sake of convenience, we still use variables 𝐻 and 𝑃

instead of �̃� and �̃�.
(H1)Thebasicmodel is a Holling-Tanner type as the form
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(5)

where 𝑎 = 𝑐
1
/𝐾, 𝑘
1
= 𝐾, and 𝑟 = 𝑠

1
/𝑟.

(H2) Following Boukal et al. [22], in Allee effect equation
(3), we choose the auxiliary parameter 𝑐 = 1, and 𝑏+1 ≡ 𝑚 is
theAllee threshold.That is, prey𝐻 has the population growth
function

𝐺 (𝐻) = 𝐻 (1 − 𝐻) (1 −
𝑚

𝐻 + 1
) . (6)

Obviously, we have the following:

(i) if 0 < 𝑚 ≤ 1, 𝐺(0) = 0, 𝐺(0) > 0, the Allee effect (6)
is the weak one;

(ii) if 𝑚 > 1, 𝐺(0) = 0, 𝐺(0) < 0, the Allee effect (6) is
the strong one;

(iii) if𝑚 = 0, the Allee effect will disappear.

And we can get the following model with the Allee effect
on prey:
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(7)

(H3)Assume that the individuals in populations𝐻 and 𝑃
move randomly described as Brownian randommotion [26].
We can get a simple spatialmodel corresponding tomodel (7)
as follows:
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𝑃,

𝐻 (𝑥, 𝑦, 0) = 𝐻
0
> 0, 𝑃 (𝑥, 𝑦, 0) = 𝑃

0
> 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿) × (0, 𝐿) .

(8)

Here, the nonnegative constants 𝑑
1
and 𝑑

2
are the diffusion

coefficients of 𝐻(𝑡) and 𝑃(𝑡), respectively. ∇2 = 𝜕
2
/𝜕𝑥
2
+

𝜕
2
/𝜕𝑦
2 is the Laplacian operator in two-dimensional space,

which describes the random moving. The initial distribution
of species 𝑁

0
and 𝑃

0
are continuous functions. And the

boundary condition is assumed to be zero-flux one as follows:

𝜕𝐻

𝜕𝑛
=
𝜕𝑃

𝜕𝑛
= 0, (𝑥, 𝑦) ∈ 𝜕Ω. (9)

𝐿 indicates the size of the model in the directions of 𝑥 and 𝑦,
respectively, and 𝑛 is the outward unit normal vector of the
boundary 𝜕Ω. The main reason for choosing such boundary
conditions is that we are interested in the self-organization of
pattern, and the zero-flux boundary conditions imply that no
external input is imposed form exterior [27].

There are some excellent works on a Holling-Tanner
model considering the diffusion [28–33] and the references
therein. In [28], Guan and co-workers studied the spatiotem-
poral dynamics of a modified version of the Leslie-Gower
predator-preymodel incorporating a prey refuge and showed
that the model dynamics exhibits complex Turing pattern
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replication: stripes, cold/hot spots-stripes coexistence, and
cold/hot spots patterns. Without the Allee effect, Peng and
Wang [29, 30] analyzed the global stability of the unique
positive constant steady state and established some results
for the existence and nonexistence of positive nonconstant
steady states. Wang et al. [31] considered the Turing and
Hopf bifurcations of the equilibrium solutions. Liu and Xue
[32] investigated the pattern formation and found that spots,
black-eye, and labyrinthine patterns can be observed in the
model. Chen and Shi [33] proved global stability of the unique
constant equilibrium.

However, the research about the influence of Allee effect
on pattern formation of diffusive Holling-Tanner model
seems rare.Themain purpose of this paper is to study dynam-
ical behaviors of a Holling-Tanner predator-prey model with
the Allee effect.We will determine how the Allee effect affects
the dynamics of the model and focus on the stability of the
positive steady state and bifurcationmechanism and patterns
formation analysis of the model.

The rest of the paper is organized as follows. In Sections
2 and 3, we present our main results about the stability
and bifurcation analysis of the nonspatial model (7) and the
spatial model (8), respectively. Especially, in regards to the
spatial model (8) in Section 3, we will give the conditions of
the Turing instability and determine the Turing space, and by
performing a series of numerical simulations, we illustrate the
emergence of different patterns. Finally, in Section 4, some
conclusions and remarks are given.

2. Dynamics Analysis of
the Nonspatial Model (7)

2.1. Boundedness. Now, we prove that all solutions are even-
tually bounded.

Theorem 1. All the solutions of model (7) which are initiated
in R2
+
are uniformly bounded.

Proof. Let 𝐻(𝑡) and 𝑃(𝑡) be any solution of model (7) with
initial conditions (𝐻(0), 𝑃(0)) = (𝐻

0
, 𝑃
0
) such that 𝐻

0
> 0,

𝑃
0
> 0. From the first equation of model (7), we have

𝑑𝐻

𝑑𝑡
≤ 𝐻 (1 − 𝐻) ; (10)

a standard comparison theorem shows that
lim sup
𝑡→∞

𝐻(𝑡) ≤ 1. (11)

Then, from the second equation of model (7), we get 𝑑𝑃/𝑑𝑡 ≤
𝑟𝑃(1 − (𝑃/𝛿)), which implies that

lim sup
𝑡→∞

𝑃 (𝑡) ≤ 𝛿. (12)

Define the function 𝑊(𝑡) = 𝐻(𝑡) + 𝑃(𝑡), differentiating
both sides with respect to 𝑡; we get
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(14)

Using the theory of differential inequality, for all 𝑡 ≥ 𝑇 ≥

0, we have

0 ≤ 𝑊 (𝑡) ≤ 𝑀 − (𝑀 −𝑊(𝑇)) 𝑒
−(𝑡−𝑇)

. (15)

Hence, lim sup
𝑡→∞

(𝐻(𝑡) + 𝑃(𝑡)) ≤ 𝑀. This completes the
proof.

Remark 2. In fact, if 𝑚 ≥ 2, 𝑑𝐻/𝑑𝑡 < 0 always holds, which
means that the prey and predator will extinct. Hence, we will
later only focus on the case of 0 ≤ 𝑚 < 2.

Next, we will investigate the existence of equilibria and
their local and global stability with respect to model (7).

2.2. Equilibria Analysis in the Case of the Strong Allee Effect
(i.e., 1 < 𝑚 < 2). In this subsection, we consider the
existence and stability of the equilibrium of model (7) with
strong Allee effect; that is, 1 < 𝑚 < 2.

We note that model (7) is not defined at the 𝑃-axis,
particularly at the point (0, 0), but both isoclines pass through
this point, and in this case, it is a point of particular interest
[34].The character of (0, 0) can be obtained after rescaling the
time in model (7) by 𝑡 = 𝜏𝐻(1 + 𝐻) as follows:

𝑑𝐻

𝑑𝜏
= 𝐻
2
(1 − 𝐻) (1 + 𝐻 − 𝑚) − 𝑎𝐻

2
𝑃,

𝑑𝑃

𝑑𝜏
= 𝑟 (1 + 𝐻)𝑃(𝐻 −

𝑃

𝛿
) .

(16)

Lemma 3. The point (0, 0) of model (16) has a hyperbolic and
a parabolic sector [20, 35] determined for the line 𝑃 = (𝛿(𝑚 −

1 + 𝑟)/𝑟)𝐻. That is, there exists a separatrix curve in the phase
plane that divides the behavior of trajectories; the point (0, 0)
is then an attractor point for certain trajectories and a saddle
point for others.

Proof. As the Jacobianmatrix of the point (0, 0) formodel (16)
is the zeromatrix, we follow themethodology used in [20, 35]
given by the function 𝜑(𝑢, 𝑣) = (𝑢𝑣, 𝑣) = (𝐻, 𝑃). Then, we
have that

𝑑𝑢

𝑑𝜏
=
1

𝑣
(
𝑑𝐻

𝑑𝜏
− 𝑢

𝑑𝑃

𝑑𝜏
) ,

𝑑𝑣

𝑑𝜏
=
𝑑𝑃

𝑑𝜏
, (17)

and rescaling the time by 𝑇 = 𝑣𝜏, it becomes

𝑑𝑢

𝑑𝑇
= 𝑢( ((1 − 𝑢𝑣) (𝑢𝑣 + 1 − 𝑚) − 𝑎𝑣) 𝑢

−𝑟 (1 + 𝑢𝑣) (𝑢 −
1

𝛿
)) ,

𝑑𝑣

𝑑𝑇
= 𝑟 (1 + 𝑢𝑣) 𝑣 (𝑢 −

1

𝛿
) .

(18)
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Clearly, if 𝑣 = 0, then 𝑑𝑣/𝑑𝑇 = 0. Moreover, 𝑑𝑢/𝑑𝑇 =

𝑢((1 − 𝑚)𝑢 − 𝑟(𝑢 − (1/𝛿))).
The singularities of model (18) are (0, 0) and (𝑟/(𝛿(𝑚−1+

𝑟)), 0); that is, a separatrix straight exists in the phase plane𝑢𝑣,
given by 𝑢 = 𝑟/(𝛿(𝑚 − 1 + 𝑟)). The Jacobian matrixes of (0, 0)
and (𝑟/(𝛿(𝑚 − 1 + 𝑟)), 0) for model (18) are

𝐽
(0,0)

= (

𝑟

𝛿
0

0 −
𝑟

𝛿

) ,

𝐽
(𝑟/(𝛿(𝑚−1+𝑟)),0)

= (

−
𝑟

𝛿
−
𝑟
2
(−2𝑟𝑚 + 𝑎𝛿 (𝑚 − 1 + 𝑟) + 𝑟)

𝛿3(𝑚 − 1 + 𝑟)
3

0 −
𝑟 (𝑚 − 1)

𝛿 (𝑚 − 1 + 𝑟)

) .

(19)

Then, (0, 0) is a hyperbolic saddle point, and (𝑟/(𝛿(𝑚 −

1 + 𝑟)), 0) is an attractor point. Using the blowing down, the
point (0, 0) is a saddle node in model (16), and the line 𝑃 =

((𝛿(𝑚−1+𝑟))/𝑟)𝐻 divides the behavior of trajectories on the
phase plane. The proof is completed.

Moreover, it is easy to verify thatmodel (7) always has two
boundary equilibria 𝐸

0
= (𝑚 − 1, 0) and 𝐸

1
= (1, 0). And the

behavior of model (7) around 𝐸
0
and 𝐸

1
is found as follows.

The Jacobian matrix of model (7) at the equilibrium 𝐸
0
=

(𝑚 − 1, 0) takes the form

𝐽
𝐸
1

= (

(𝑚 − 1) (2 − 𝑚)

𝑚

𝑎 (𝑚 − 1)

𝑚

0 𝑟

) . (20)

Hence, the equilibrium 𝐸
0
= (𝑚 − 1, 0) is an unstable node

point (nodal source).
The Jacobian matrix of model (7) at the equilibrium 𝐸

0
=

(1, 0) takes the form

𝐽
𝐸
0

= (

𝑚

2
− 1 −

𝑎

2

0 𝑟

) . (21)

Hence, the equilibrium 𝐸
1
= (1, 0) is a saddle point.

And model (7) has a positive equilibrium 𝐸 = (𝐻, 𝛿𝐻),
where𝐻 satisfies

𝐻
2
− (𝑚 − 𝑎𝛿)𝐻 − (1 − 𝑚) = 0. (22)

For simplicity, we consider 𝐴 = 𝑚 − 𝑎𝛿 and 𝐵 =

√(𝑚 − 𝑎𝛿)
2
+ 4(1 − 𝑚); then, the two roots of (22) are given

by

𝐻
+
=
1

2
(𝐴 + 𝐵) , 𝐻

−
=
1

2
(𝐴 − 𝐵) . (23)

Lemma 4.

(i) Suppose that𝑚 − 𝑎𝛿 > 0 and 1 < 𝑚 < 2.

(a) If 𝐵2 > 0 holds, model (7) has two positive
equilibria 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) and 𝐸

−
= (𝐻
−
, 𝛿𝐻
−
).

(b) If 𝐵2 = 0 holds, model (7) has a unique positive
equilibrium𝐸

𝑒
= (𝐻
𝑒
, 𝛿𝐻
𝑒
). Note that in this case

𝐻
𝑒
= 𝐻
+
= 𝐻
−
= 𝐴/2 = √𝑚 − 1.

(c) If 𝐵2 < 0, model (7) has no positive equilibrium.

(ii) If𝑚 − 𝑎𝛿 ≤ 0, model (7) has no positive equilibrium.

Let 𝐸 = (𝑁, 𝑃) be an arbitrary positive equilibrium. The
Jacobian matrix of model (7) at the positive equilibrium 𝐸 =

(𝐻, 𝛿𝐻) takes the form

𝐽
𝐸
= (

𝐻(𝑎𝛿𝐻 + 2𝑚 − (1 + 𝐻)
2
)

(1 + 𝐻)
2

−
𝑎𝐻

1 + 𝐻

𝑟𝛿 −𝑟

) . (24)

Then, we can get

det (𝐽
𝐸
) =

𝑟𝐻 (𝐻
2
+ 2𝐻 + 1 + 𝑎𝛿 − 2𝑚)

(𝐻 + 1)
2

,

tr (𝐽
𝐸
) =

𝐻 (𝑎𝛿𝐻 + 2𝑚 − (1 + 𝐻)
2
)

(1 + 𝐻)
2

− 𝑟.

(25)

We can see that the sign of det(𝐽
𝐸
) is determined by

𝐹 (𝐻) ≜ 𝐻
2
+ 2𝐻 + 1 + 𝑎𝛿 − 2𝑚 = 𝐻

2
+ 2𝐻 + 1 − 𝐴 − 𝑚.

(26)

Thus, we can obtain

𝐹 (𝐻
+
) =

(𝐴 + 𝐵)
2

4
+ 𝐵 − 𝑚 + 1 = 𝐵(1 +

𝐴

2
) +

1

2
𝐵
2
> 0;

𝐹 (𝐻
−
) =

(𝐴 − 𝐵)
2

4
− 𝐵 − 𝑚 + 1 = −

1

2
𝐵 (𝐴 − 𝐵) − 𝐵 < 0;

𝐹 (𝐻
𝑒
) =

𝐴

4
+ 1 − 𝑚 = 0.

(27)

Hence, we obtain det(𝐽
𝐸
+

) > 0, det(𝐽
𝐸
−

) < 0, and
det(𝐽
𝐸
𝑒

) = 0. And the positive equilibrium 𝐸
−
= (𝐻
−
, 𝛿𝐻
−
)

is a saddle point. The nature of the equilibrium point 𝐸
+
is

dependent on the sign of the trace of the Jacobian matrix
evaluated in this point. Whether 𝐸

+
is a node or a focus

depends on the sign of (tr(𝐽
𝐸
+

))
2
− 4 det(𝐽

𝐸
+

).
In the following results, we study the stability of the

positive equilibrium𝐸
+
and the unique positive equilibria𝐸

𝑒
.

Theorem 5. Define

𝑟
+
=

𝐻
+

(1 + 𝐻
+
)
2
(𝑎𝛿𝐻
+
+ 2𝑚 − (1 + 𝐻

+
)
2

) . (28)
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Figure 1: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3

and 𝑟 = 0.15. In this case, 𝐸
0
= (0.3, 0) is an unstable node point,

𝐸
1

= (1, 0) and 𝐸
−

= (0.5, 0.4) are saddle points; the positive
equilibrium 𝐸

+
= (0.6, 0.48) is local asymptotically stable. There

exists a separatrix curve determined by the stable manifold of the
equilibrium point 𝐸

−
. The dotted curves are the nullclines.

(a) If 𝑟 > 𝑟
+
, the positive equilibrium 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) is a

locally asymptotically stable point;

(a1) if (𝑟
+
− 𝑟)
2
< 4 det(𝐽

𝐸
+

), then 𝐸
+
is a stable focus,

(a2) if (𝑟
+
− 𝑟)
2
> 4 det(𝐽

𝐸
+

), then 𝐸
+
is a stable node

point.

(b) If 𝑟 < 𝑟
+
, the positive equilibrium 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) is

an unstable point;

(b1) if (𝑟
+
− 𝑟)
2
< 4 det(𝐽

𝐸
+

), then 𝐸
+
is an unstable

focus surrounded by a stable limit cycle,
(b2) if (𝑟

+
− 𝑟)
2
> 4 det(𝐽

𝐸
+

), then 𝐸
+
is an unstable

node and the limit cycle disappears.

(c) AHopf bifurcation occurs at 𝑟 = 𝑟
+
around the positive

equilibrium 𝐸
+
= (𝐻
+
, 𝛿𝐻
+
). That is to say, model (7)

has at least one positive periodic orbit.

Proof. Here, we only give the proof of the existence of Hopf
bifurcation. It is easy to see that

(i) tr(𝐽(𝐸
+
))|
𝑟=𝑟
+

= 0 holds,

(ii) the characteristic equation is 𝜆2 +det(𝐽(𝐸
+
))|
𝑟=𝑟
+

= 0,
whose roots are purely imaginary,

(iii) (𝑑/𝑑𝑟)[tr(𝐽(𝐸
+
))]
𝑟=𝑟
+

= −1 ̸= 0.

From the Poincaré-Andronov-Hopf BifurcationTheorem
[36], we know that model (7) undergoes a Hopf bifurcation at
𝐸
+
as 𝑟 passes through the value 𝑟

+
. The proof is completed.

0.55 0.65

0.42

0.44

0.46

0.48

0.52

0.5

0.60.5

0.4
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H

E+

E−

Figure 2: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3,
and 𝑟 = 0.0375. The model enters into a Hopf bifurcation around
𝐸
+
= (0.6, 0.48) at 𝑟 = 𝑟

+
.

Figure 1 illustrates the local stability of the positive
equilibrium 𝐸

+
and the separatrix curve generated by the

stable manifold of the positive equilibrium 𝐸
−
. The orbits

initiating the right of the separatrix curve tend to 𝐸
+
, while

the orbits initiating the left of the separatrix curve tend
to (0, 0) that represents the extinction of the population.
Figure 2 illustrates a Hopf bifurcation situation of the model
around 𝐸

+
. The parameter values are given in the figures.

Theorem 6. The unique equilibrium point 𝐸
𝑒
= (√𝑚 − 1,

(1/𝛿)√𝑚 − 1) is

(i) a nonhyperbolic attractor node, if and only if 𝑟 >

√𝑚 − 1(1 − √𝑚 − 1)
2
/(1 + √𝑚 − 1);

(ii) a nonhyperbolic repellor node, if and only if 𝑟 >

√𝑚 − 1(1 − √𝑚 − 1)
2
/(1 + √𝑚 − 1);

(iii) a cusp point, if and only if 𝑟 = √𝑚 − 1(1 − √𝑚 − 1)
2
/

(1 + √𝑚 − 1), and in this case, there exists a unique
trajectory which attains the point 𝐸

𝑒
. And in this case,

the point (0, 0) is a global attractor.

Proof. We have

tr (𝐽
𝐸
𝑒

) =

√𝑚 − 1(1 − √𝑚 − 1)
2

1 + √𝑚 − 1
− 𝑟. (29)

Hence (i) and (ii) hold.
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Figure 3: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.2556936062, 𝛿 = 0.8,
𝑚 = 1.3, and 𝑟 = 0.07238979895. 𝐸

0
= (0.3, 0) is an unstable

node point; 𝐸
1
= (1, 0) is saddle point; the positive equilibrium

𝐸
2
= (0.2, 0.4) is a cusp point. In this case, the point (0, 0) is globally

asymptotically stable. The dotted curves are the nullclines.

Moreover, tr(𝐽
𝐸
𝑒

) = 0, if and only if 𝑟 = √𝑚 − 1(1 −

√𝑚 − 1)
2
/(1 − √𝑚 + 1). In this case, we obtain the Jacobian

matrix of (16) as follows:

𝐽 (√𝑚 − 1,
1

𝛿
√𝑚 − 1)

= (
(𝑚 − 1) (1 − √𝑚 − 1)

2

− (𝑚 − 1) (1 − √𝑚 − 1)
2

(𝑚 − 1) (1 − √𝑚 − 1)
2

− (𝑚 − 1) (1 − √𝑚 − 1)
2)

= (𝑚 − 1) (1 − √𝑚 − 1)
2

(
1 −1

1 −1
) ;

(30)

and the associate Jordan matrix is

(

0 − (𝑚 − 1) (1 − √𝑚 − 1)
2

0 0

) . (31)

Then, the singularity (√𝑚 − 1, (1/𝛿)√𝑚 − 1) is a cusp point,
since it is a point of codimension 2, and we have a Bogdanov-
Takens bifurcation [37].

The cusp point is shown in Figure 3.

2.3. EquilibriaAnalysis in the Case of theWeakAllee Effect (i.e.,
0 < 𝑚 ≤ 1). In this subsection, we consider the stability of
the equilibrium of model (7) with weak Allee effect (0 < 𝑚 ≤

1).
It is easy to verify thatmodel (7) always has one boundary

equilibrium 𝐸
0
= (1, 0) which is a saddle point and a positive

equilibrium 𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
), where

𝐻
∗
=
𝑚 − 𝑎𝛿 + √(𝑚 − 𝑎𝛿)

2
+ 4 (1 − 𝑚)

2
.

(32)

From (24), we have

det (𝐽
𝐸
∗) =

𝑟𝐻
∗
(𝐻
∗2

+ 2𝐻
∗
+ 1 + 𝑎𝛿 − 2𝑚)

(𝐻∗ + 1)
2

> 0,

tr (𝐽
𝐸
∗) =

𝐻
∗
(𝑎𝛿𝐻

∗
+ 2𝑚 − (1 + 𝐻

∗
)
2

)

(1 + 𝐻∗)
2

− 𝑟.

(33)

Hence, we have the following results on the stability of the
positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
).

Theorem 7. Define

𝑟
∗
=
𝐻
∗
(𝑎𝛿𝐻

∗
+ 2𝑚 − (1 + 𝐻

∗
)
2

)

(1 + 𝐻∗)
2

. (34)

(a) If 𝑟 > 𝑟
∗, the positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
) is a

locally asymptotically stable point, and

(a1) if (𝑟∗ − 𝑟)2 < 4 det(𝐽
𝐸
∗), then 𝐸∗ is a stable focus;

(a2) if (𝑟∗ − 𝑟)
2
> 4 det(𝐽

𝐸
∗), then 𝐸∗ is a stable node

point.

(b) If 𝑟 < 𝑟
∗, the positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
) is

an unstable point, and

(b1) if (𝑟∗ − 𝑟)
2
< 4 det(𝐽

𝐸
∗), then 𝐸

∗ is an unstable
focus surrounded by a stable limit cycle;

(b2) if (𝑟∗ − 𝑟)
2
> 4 det(𝐽

𝐸
∗), then 𝐸

∗ is an unstable
node and the limit cycle disappears.

(c) AHopf bifurcation occurs at 𝑟 = 𝑟
∗ around the positive

equilibrium 𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
). That is to say, model (7)

has at least one positive periodic orbit.

In the following theorem, we study the global behavior of
the positive equilibrium 𝐸

∗.

Theorem 8. If 0 < 𝑚 < 1/(1 + 𝑎𝛿), the positive equilibrium
𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
) is globally asymptotically stable.

Proof. Construct the following Lyapunov function:

𝑉 (𝐻, 𝑃) = ∫

𝐻

𝐻
∗

𝜉 − 𝐻
+

𝜉𝜙 (𝜉)
𝑑𝜉 +

1

𝑟
∫

𝑃

𝛿𝐻
∗

𝜂 − 𝛿𝐻
∗

𝜂
𝑑𝜂, (35)

where

𝜙 (𝐻) =
𝑎𝐻

𝐻 + 1
. (36)

Then,

𝑑𝑉

𝑑𝑡
=
𝐻 − 𝐻

∗

𝐻𝜙 (𝐻)

𝑑𝐻

𝑑𝑡
+
𝑃 − 𝛿𝐻

∗

𝑟𝑃

𝑑𝑃

𝑑𝑡
. (37)
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Figure 4:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8,𝑚 = 1.3, and 𝑟 = 0.1.
In this case,𝐸

0
= (1, 0) is saddle point; the positive equilibrium𝐸

∗
=

(0.3232928050, 0.4849392075) is globally asymptotically stable. The
dotted curves are the nullclines.
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Figure 5:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3, and 𝑟 =

0.025265. The model enters into a Hopf bifurcation around 𝐸
∗
=

(0.3232928050, 0.4849392075) at 𝑟 = 𝑟
∗.

Substituting the value of 𝑑𝐻/𝑑𝑡 and 𝑑𝑃/𝑑𝑡 from the
model of (7), we obtained

𝑑𝑉

𝑑𝑡
=
𝐻 − 𝐻

∗

𝑎𝐻
[(1 − 𝐻) (1 + 𝐻 − 𝑚) − 𝑎𝛿𝐻

∗
]

−
𝛿

𝐻
(𝑃 − 𝛿𝐻

∗
)
2

.

(38)

Note that 𝑎𝛿𝐻∗ = 𝐻
∗
(1 − 𝐻

∗
)(1 + 𝐻

∗
− 𝑚); we obtain

𝑑𝑉

𝑑𝑡
= −

(𝐻 − 𝐻
∗
)
2

𝑎𝐻
(𝐻 + 𝐻

∗
− 𝑚) −

𝛿

𝐻
(𝑃 − 𝛿𝐻

∗
)
2

. (39)
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Figure 6:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.8, 𝛿 = 1.5, 𝑚 = 0.75, and 𝑟 =

0.025.The positive equilibrium𝐸
∗
= (0.3232928050, 0.4849392075)

is an unstable focus surrounded by a stable limit cycle.

Hence, if 0 < 𝑚 < 1/(1+𝑎𝛿),𝐻∗ −𝑚 > 0which is equivalent
to 𝑑𝑉/𝑑𝑡 < 0.

Hence, the positive equilibrium 𝐸
∗

= (𝐻
∗
, 𝛿𝐻
∗
) is

globally asymptotically stable. This completes the proof.

Figure 4 demonstrates the global stability situation of
model (7) around 𝐸

∗. Figure 5 illustrates a Hopf bifurcation
situation of the model around 𝐸

∗. Figure 6 shows a stable
limit cycle around 𝐸

∗ which is an unstable focus. The
parameter values are given in the figures.

3. Dynamics of the Spatial Model (8)
In this section, we will investigate the dynamics of the spatial
model (8). As an example, we only focus on the positive
equilibrium point 𝐸∗ = (𝐻

∗
, 𝛿𝐻
∗
) in the case of weak Allee

effect (0 < 𝑚 < 1).

3.1. Turing Instability. Mathematically speaking, an equilib-
rium is Turing instability (diffusion-driven instability) means
that it is an asymptotically stable equilibrium 𝐸

∗ of model
(7) but is unstable with respect to the solutions of reaction-
diffusion model (8).

In the presence of diffusion, we will introduce small
perturbations𝑈

1
= 𝐻−𝐻

∗,𝑈
2
= 𝑃−𝛿𝐻

∗, where |𝑈
1
|, |𝑈
2
| ≪

1. To study the effect of diffusion on the model, we have
considered the linearized form of model as follows:

𝜕𝑈
1

𝜕𝑡
= 𝑟
∗
𝑈
1
−

𝑎𝐻
∗

1 + 𝐻∗
𝑈
2
+ 𝑑
1
∇
2
𝑈
1
,

𝜕𝑈
2

𝜕𝑡
= 𝑟𝛿𝑈

1
− 𝑟𝑈
2
+ 𝑑
2
∇
2
𝑈
2
,

(40)

where 𝑟∗ is defined as (34).
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Following Malchow et al. [38], we can know that any
solution of model (40) can be expanded into a Fourier series
so that

𝑈
1
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑢
𝑛𝑚

(r, 𝑡) =
∞

∑

𝑛,𝑚=0

𝛼
𝑛𝑚

(𝑡) sin kr,

𝑈
2
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑣
𝑛𝑚

(r, 𝑡) =
∞

∑

𝑛,𝑚=0

𝛽
𝑛𝑚

(𝑡) sin kr,

(41)

where r = (𝑥, 𝑦), and 0 < 𝑥 < 𝐿 and 0 < 𝑦 < 𝐿. k = (𝑘
𝑛
, 𝑘
𝑚
),

and 𝑘
𝑛

= 𝑛𝜋/𝐿 and 𝑘
𝑚

= 𝑚𝜋/𝐿 are the corresponding
wavenumbers.

Having substituted 𝑢
𝑛𝑚

and 𝑣
𝑛𝑚

into (40), we obtain

𝑑𝛼
𝑛𝑚

𝑑𝑡
= (𝑟
∗
− 𝑑
1
𝑘
2
) 𝛼
𝑛𝑚

−
𝑎𝐻
∗

1 + 𝐻∗
𝛽
𝑛𝑚
,

𝑑𝛽
𝑛𝑚

𝑑𝑡
= 𝑟𝛿𝛼

𝑛𝑚
− (𝑟 + 𝑑

2
𝑘
2
) 𝛽
𝑛𝑚
,

(42)

where 𝑘2 = 𝑘
2

𝑛
+ 𝑘
2

𝑚
.

A general solution of (42) has the form 𝐶
1
exp(𝜆

1
𝑡) +

𝐶
2
exp(𝜆

2
𝑡), where the constants 𝐶

1
and 𝐶

2
are determined

by the initial conditions (3), and the exponents 𝜆
1
and 𝜆

2
are

the eigenvalues of the following matrix:

𝐷 = (
𝑟
∗
− 𝑑
1
𝑘
2

−
𝑎𝐻
∗

1 + 𝐻∗

𝑟𝛿 −𝑟 − 𝑑
2
𝑘
2

). (43)

Correspondingly, 𝜆
1
and 𝜆

2
are the solutions of the

following equation:

𝜆
2
− tr (𝐷) 𝜆 + det (𝐷) = 0, (44)

where

tr (𝐷) = 𝑟
∗
− 𝑟 − (𝑑

1
+ 𝑑
2
) 𝑘
2
,

det (𝐷) = 𝑑
1
𝑑
2
𝑘
4
+ (𝑟𝑑
1
− 𝑟
∗
𝑑
2
) 𝑘
2
+ det (𝐽 (𝐸∗)) .

(45)

Summarizing the previous discussions, we can get the
following theorem immediately.

Theorem 9. (i) The positive equilibrium 𝐸
∗ of model (8) is

locally asymptotically stable if 𝑟 > max{𝑟∗, 𝑟∗𝑑
2
/𝑑
1
} holds.

(ii) If the positive equilibrium 𝐸
∗ of model (7) is globally

asymptotically stable, then the corresponding steady state 𝐸∗ of
model (8) is also globally asymptotically stable.

Proof. (i) Using Routh-Hurwitz criteria, we can know that
the positive equilibrium 𝐸

∗ is locally asymptotically stable,
if and only if tr(𝐷) < 0 and det(𝐷) > 0. So, we obtain
𝑟 > max{𝑟∗, 𝑟∗𝑑

2
/𝑑
1
}.

(ii) We select the Lyapunov function for model (8) as
follows:

𝑉
2
(𝑡) = ∬

Ω

𝑉 (𝐻, 𝑃) 𝑑𝑥 𝑑𝑦, (46)

where 𝑉(𝐻, 𝑃) is the same as defined in (35). So,
𝑑𝑉
2

𝑑𝑡
= ∬
Ω

𝑑𝑉

𝑑𝑡
𝑑𝑥 𝑑𝑦

+∬
Ω

{
𝜕𝑉

𝜕𝐻
𝑑
1
∇
2
𝐻 +

𝜕𝑉

𝜕𝑃
𝑑
2
∇
2
𝑃}𝑑𝑥𝑑𝑦.

(47)

Using Green’s first identity in the plane,

∬
Ω

𝐹∇
2
𝐺𝑑𝑥𝑑𝑦 = ∫

𝜕Ω

𝐹
𝜕𝐺

𝜕𝑛
𝑑𝑠 −∬

Ω

(∇𝐹 ⋅ ∇𝐺) 𝑑𝑥 𝑑𝑦.

(48)

Considering the zero-flux boundary conditions, one can
show that

∬
Ω

𝜕𝑉

𝜕𝐻
𝑑
1
∇
2
𝐻𝑑𝑥𝑑𝑦

= −𝑑
1
∬
Ω

𝜕
2
𝑉

𝜕𝐻2
[(

𝜕𝐻

𝜕𝑥
)

2

+ (
𝜕𝐻

𝜕𝑦
)

2

]𝑑𝑥𝑑𝑦 ≤ 0,

∬
Ω

𝜕𝑉

𝜕𝑃
𝑑
2
∇
2
𝑃𝑑𝑥𝑑𝑦

= −𝑑
2
∬
Ω

𝜕
2
𝑉

𝜕𝑃2
[(

𝜕𝑃

𝜕𝑥
)

2

+ (
𝜕𝑃

𝜕𝑦
)

2

]𝑑𝑥𝑑𝑦 ≤ 0.

(49)

From the previous analysis, we note that 𝑑𝑉
2
/𝑑𝑡 < 0 is

valid if 𝑑𝑉/𝑑𝑡 < 0 is true. This implies that the equilibrium
𝐸
∗ of bothmodel (7) andmodel (8) is globally asymptotically

stable if 0 < 𝑚 < 1/(1 + 𝑎𝛿) holds. This ends the proof.

On the other hand, Turing instability sets in when at least
one of the conditions is either tr(𝐷) < 0 or det(𝐷) > 0. It is
evident that the condition tr(𝐷) < 0 is not violated when the
requirement 𝑟∗ − 𝑟 < 0 is met [39]. Hence, only violation of
condition det(𝐷) > 0 gives rise to diffusion instability. Then,
the condition for diffusive instability is given by

𝐺(𝑘
2
) ≡ 𝑑
1
𝑑
2
𝑘
4
+ (𝑟𝑑
1
− 𝑟
∗
𝑑
2
) 𝑘
2
+ det (𝐽 (𝐸∗)) < 0. (50)

𝐺(⋅) is quadratic in 𝑘
2, and the graph of 𝐺(𝑘2) = 0 is a

parabola. The minimum of 𝐺(𝑘2) occurs at 𝑘2 = 𝑘
2

𝑚
, where

𝑘
2

𝑚
=
𝑟
∗
𝑑
2
− 𝑟𝑑
1

2𝑑
1
𝑑
2

> 0. (51)

The critical wave number 𝑘
𝑐
of the first perturbations to grow

is found by evaluating 𝑘
𝑚
from (51).

Thus, a sufficient condition for Turing instability is that
𝐺(𝑘
2

𝑚
) is negative. Therefore,

𝐺(𝑘
2

𝑚
) = det (𝐽 (𝐸∗)) −

(𝑟𝑑
1
− 𝑟
∗
𝑑
2
)
2

4𝑑
1
𝑑
2

< 0. (52)

Combination of (51) and (52) leads to the following final
criterion for diffusive instability:

(𝑟𝑑
1
− 𝑟
∗
𝑑
2
)
2

> 4𝑑
1
𝑑
2
det (𝐽 (𝐸∗)) . (53)

Summarizing the previous discussions, we can obtain the
following theorem.
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Theorem 10. If 𝑟𝑑
1
/𝑑
2

< 𝑟
∗

< 𝑟 and 𝑟
∗
𝑑
2
− 𝑟𝑑
1

>

2√𝑑
1
𝑑
2
det(𝐽(𝐸∗)) hold, the criterion for Turing instability

for model (8) emerges, and the critical wave number 𝑘
𝑐
=

√(𝑟∗𝑑
2
− 𝑟𝑑
1
)/2𝑑
1
𝑑
2
.

The Turing instability (or bifurcation) breaks spatial
symmetry, leading to the formation of patterns that are
stationary in time and oscillatory in space [40, 41]. We adopt
the intrinsic growth rates of predator 𝑟 as the bifurcation
parameter, and the linear stability analysis yields the bifurca-
tion diagram shown in Figure 7.TheTuring bifurcation curve
separates the parametric space into two domains. Above the
curve, the solutions of model (8) are stable for all pairs of
(𝑚, 𝑟); that is, there is no Turing instability. While below the
curve, the solutions of model (8) are unstable for (𝑚, 𝑟) and
diffusive instability emerges; that is, Turing patterns emerge.
This domain is called the Turing space.

3.2. Pattern Formation. In this subsection, we performed
extensive numerical simulations of the spatially extended
model (8) in two-dimension spaces, and the qualitative
results are shown here. All our numerical simulations employ
the zero-flux boundary conditions with a model size of 𝐿×𝐿,
with 𝐿 = 100 discretized through 𝑥 → (𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and𝑦 → (𝑦
0
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), with 𝑛 = 200. Other parameters

are fixed as 𝑎 = 0.8, 𝛿 = 1.75, 𝑟 = 0.15, 𝑑
1
= 0.01, and 𝑑

2
= 1.

The numerical integration of model (8) is performed by
using a finite difference approximation for the spatial deriva-
tives and an explicit Euler method for the time integration
[42] with a time stepsize of 𝜏 = 1/100. The initial condition
is always a small amplitude random perturbation around the
positive constant steady state solution 𝐸

∗. After the initial
period during which the perturbation spread, either the
model goes into a time-dependent state or to an essentially
steady state solution (time independent).

More precisely, the concentrations (𝐻
𝑛+1

𝑖,𝑗
, 𝑃
𝑛+1

𝑖,𝑗
) at the

moment (𝑛 + 1)𝜏 at the mesh position (𝑖, 𝑗) are given by

𝐻
𝑛+1

𝑖,𝑗
= 𝐻
𝑛

𝑖,𝑗
+ 𝜏𝑑
1
Δ
ℎ
𝐻
𝑛

𝑖,𝑗
+ 𝜏𝑓 (𝐻

𝑛

𝑖,𝑗
, 𝑃
𝑛

𝑖,𝑗
) ,

𝑃
𝑛+1

𝑖,𝑗
= 𝑃
𝑛

𝑖,𝑗
+ 𝜏𝑑
2
Δ
ℎ
𝑃
𝑛

𝑖,𝑗
+ 𝜏𝑔 (𝐻

𝑛

𝑖,𝑗
, 𝑃
𝑛

𝑖,𝑗
) ,

(54)

with the Laplacian defined by

Δ
ℎ
𝐻
𝑛

𝑖,𝑗
=
𝐻
𝑛

𝑖+1,𝑗
+ 𝐻
𝑛

𝑖−1,𝑗
+ 𝐻
𝑛

𝑖,𝑗+1
+ 𝐻
𝑛

𝑖,𝑗−1
− 4𝐻
𝑛

𝑖,𝑗

ℎ2
, (55)

where 𝑓(𝐻, 𝑃) = 𝐻(1 − 𝐻)(1 − 𝑚/(𝐻 + 1)) − 𝑎𝐻𝑃/(1 + 𝐻),
𝑔(𝐻, 𝑃) = 𝑟𝑃(1 − 𝑃/𝛿𝐻), and the space stepsize ℎ = 1/3.

In the numerical simulations, different types of dynamics
are observed, and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝐻, for
instance.

Figure 8 shows the evolution of the spatial pattern of
prey 𝐻 at 𝑡 = 0, 500, 1000, 2000, with small random
perturbation of the stationary solution 𝐸

∗ of the spatially
homogeneous systems when 𝑚 is located in “Turing space.”

1.2

0.8

1

0.6

0.4

0.2

0
0.7 0.8 0.9 1

r

m

Turing space

Figure 7: Turing bifurcation diagram for model (8) using 𝑚 and 𝑟

as parameters. Other parameters are taken as 𝑎 = 0.8, 𝛿 = 1.75,
𝑑
1
= 0.01, and 𝑑

2
= 1. Above the curve, the positive equilibrium

𝐸
∗ is the only stable solution of model (3). Below the curve, the

positive equilibrium 𝐸
∗ loses its stability with respect to model (3),

and Turing instability occurs; this domain is called the Turing space.

In this case, one can see that for model (8), the random initial
distribution leads to the formation of a strongly irregular
transient pattern in the domain. After the irregular pattern
is formed (c.f., Figures 8(b) and 8(c)), it grows slightly and
jumps alternately for a certain time, and finally spots patterns,
which are isolated zones with low prey densities, prevail over
the whole domain, and the dynamics of the model does not
undergo any further changes (c.f., Figure 8(d)).

Figure 9 shows stripe patterns are interlaced stripes of
high and lowpopulation densities of prey𝐻 for the parameter
𝑚 = 0.78 at 𝑡 = 1000. In Figure 10, with the parameter 𝑚 =

0.85, the spot-stripe mixtures pattern is time independent
with low prey densities.

4. Concluding Remarks

In this paper, we are concerned with the complex dynamics
in a diffusive Holling-Tanner predator-prey model with the
Allee effect on prey. The value of this study lies in two
folds. First, the local asymptotic stability conditions for
coexisting equilibrium and conditions for Hopf bifurcation
are described briefly for the model with the weak and strong
Allee effects. Second, it gives the analysis of Turing instability
which determines the Turing space in the spatial domain
and meanwhile illustrates the Turing pattern formation close
to the onset Turing bifurcation via numerical simulations,
which shows that the model dynamics exhibits complex
pattern replication.

We note that in the analyzed models, a big difference
between the dynamics of model with strong or weak Allee
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Figure 8: Spots pattern of𝐻 in model (8) for𝑚 = 0.75. Times: (a) 0, (b) 500, (c) 1000, and (d) 2000.
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Figure 9: Stripes pattern of𝐻 inmodel (8) for𝑚 = 0.78 at 𝑡 = 1000.

effect exists. In the case of strong Allee effect, two positive
equilibria can coexist for a subset of parameters with a var-
ied dynamics but different to other Holling-Tanner models
analyzed earlier [12–14]. We have shown that one of these
equilibria is always a saddle point and proved the existence
of a separatrix curve. And there is no global asymptotically

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Figure 10: Spot-stripe mixtures pattern of 𝐻 in model (8) for 𝑚 =

0.85 at 𝑡 = 1000.

stable positive equilibrium. In this case, the point (0, 0) is
an attractor in addition to locally stable positive equilibrium
𝐸
+
for determined parameter values, which leads to the

existence of a bistability phenomenon. The dynamics of the
model is determined by the initial conditions; the predator
and prey may be extinction or coexistence. This means
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that the strong Allee effect could easily lead to the risk
of population extinction. Nevertheless, in the case of weak
Allee effect, model (7) can only have one unique positive
equilibrium, which is globally asymptotically stable under
some conditions. Therefore, the predators and preys can
coexist in stable conditions.

Furthermore, we have investigated the conditions for
the predator-prey model which experiences spatial patterns
through diffusion-driven instability. We have derived the
conditions of Turing instability in terms of our model
parameters analytically. In addition, to get a deeper insight
into the model’s dynamics behaviour, we select the different
values of parameter𝑚. An increase of𝑚, from the numerical
results, one can see that our model has rich and complex
spatiotemporal behavior. We find three typical Turing pat-
terns, that is, spots pattern, stripes pattern, and spots-stripes
mixtures pattern. To the best of our knowledge, the Turing
pattern we illustrate here is the first reported case to our
model. And our complete analysis of the spatial model will
give new suggestion to the models with the Allee effect.
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[3] S. Stević, “Asymptotic behavior of a class of nonlinear difference
equations,” Discrete Dynamics in Nature and Society, Article ID
47156, 10 pages, 2006.

[4] M. De La Sen and S. Alonso-Quesada, “Model-matching-based
control of the Beverton-Holt equation in ecology,” Discrete
Dynamics in Nature and Society, Article ID 793512, 21 pages,
2008.

[5] M. De la Sen and S. Alonso-Quesada, “A control theory point
of view on Beverton-Holt equation in population dynamics
and some of its generalizations,” Applied Mathematics and
Computation, vol. 199, no. 2, pp. 464–481, 2008.

[6] J. He, “Asymptotic methods for solitary solutions and com-
pactons,” Abstract and Applied Analysis, vol. 2012, Article ID
916793, 130 pages, 2012.

[7] Y. Li and D. Xiao, “Bifurcations of a predator-prey system of
Holling and Leslie types,” Chaos, Solitons & Fractals, vol. 34, no.
2, pp. 606–620, 2007.

[8] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins,
Baltimore, Md, USA, 1925.

[9] V. Volterra, “Fluctuations in the abundance of a species con-
sidered mathematically,”Nature, vol. 118, no. 2972, pp. 558–560,
1926.

[10] R. M. May, Stability and Complexity in Model Ecosystems,
Princeton University Press, Princeton, NJ, USA, 1974.

[11] C. S. Holling, “The components of predation as revealed by a
study of small-mammal predation of the European Pine Sawfly,”
The Canadian Entomologist, vol. 91, no. 5, pp. 293–320, 1959.

[12] S. B. Hsu and T. W. Huang, “Global stability for a class of
predator-prey systems,” SIAM Journal on Applied Mathematics,
vol. 55, no. 3, pp. 763–783, 1995.

[13] A. Gasull, R. E. Kooij, and J. Torregrosa, “Limit cycles in the
Holling-Tanner model,” Publicacions Matematiques, vol. 41, no.
1, pp. 149–167, 1997.
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in a Leslie-Gower predator-prey model with additive Allee
effect,” SIAM Journal on Applied Mathematics, vol. 69, no. 5, pp.
1244–1262, 2009.

[22] D. S. Boukal, M. W. Sabelis, and L. Berec, “How predator
functional responses and Allee effects in prey affect the paradox
of enrichment and population collapses,”Theoretical Population
Biology, vol. 72, no. 1, pp. 136–147, 2007.

[23] Y. Cai, W. Wang, and J. Wang, “Dynamics of a diffusive
predator-prey model with additive Allee effect,” International
Journal of Biomathematics, vol. 5, no. 2, Article ID 1250023, 2012.

[24] A. Morozov, S. Petrovskii, and B. L. Li, “Bifurcations and chaos
in a predator-prey system with the Allee effect,” Proceedings of
the Royal Society B, vol. 271, no. 1546, pp. 1407–1414, 2004.

[25] W. C. Allee, Animal Aggregations: A Study in General Sociology,
University of Chicago Press, Chicago, Ill, USA, 1931.

[26] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-
Diffusion Equations, Wiley Series in Mathematical and Com-
putational Biology, John Wiley & Sons, Chichester, UK, 2003.

[27] J. D. Murray, “Discussion: turing’s theory of morphogenesis-its
influence on modelling biological pattern and form,” Bulletin of
Mathematical Biology, vol. 52, no. 1-2, pp. 119–132, 1990.

[28] X. Guan, W. Wang, and Y. Cai, “Spatiotemporal dynamics of a
Leslie-Gower predator-preymodel incorporating a prey refuge,”
Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp.
2385–2395, 2011.

[29] R. Peng and M. Wang, “Positive steady states of the Holling-
Tanner prey-predator model with diffusion,” Proceedings of the
Royal Society of Edinburgh A, vol. 135, no. 1, pp. 149–164, 2005.



12 Abstract and Applied Analysis

[30] R. Peng and M. Wang, “Global stability of the equilibrium
of a diffusive Holling-Tanner prey-predator model,” Applied
Mathematics Letters, vol. 20, no. 6, pp. 664–670, 2007.

[31] W. Wang, Y. Lin, L. Zhang, F. Rao, and Y. Tan, “Complex
patterns in a predator-preymodel with self and cross-diffusion,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 16, no. 4, pp. 2006–2015, 2011.

[32] P. Liu and Y. Xue, “Spatiotemporal dynamics of a predator-prey
model,” Nonlinear Dynamics, vol. 69, no. 1-2, pp. 71–77, 2012.

[33] S. Chen and J. Shi, “Global stability in a diffusiveHolling-Tanner
predator-prey model,” Applied Mathematics Letters, vol. 25, no.
3, pp. 614–618, 2012.

[34] J. Mena-Lorca, E. Gonzalez-Olivares, and B. Gonzalez-Yanez,
“The Leslie-Gower predator-prey model with Allee effect on
prey: a simple model with a rich and interesting dynamiscs,”
in Proceedings of the International Symposium on Mathematical
and Computational Biology, pp. 105–132, 2006.
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