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An analysis for the mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet is carried
out via symmetry analysis. By employing Lie group method to the given system of nonlinear partial differential equations, we can
obtain information about the invariants and symmetries of these equations.This information can be used to determine the similarity
variables that will reduce the number of independent variables in the system. The transformed ordinary differential equations are
solved numerically for some values of the parameters involved using fifth-order Improved Runge-Kutta Method (IRK5) coupled
with shooting method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of
assisting and opposing flows are considered. This paper’ results in comparison with known results are excellent.

1. Introduction

Over the course of the past several decades, there has been
a considerable amount of effort to investigate the process of
flow and heat transfer of a viscous and incompressible fluid
over a continuouslymoving surface through a quiescent fluid.
The proliferation of research on this particular phenomenon
has been sparked by its vast array of pragmatic applications
to a myriad of manufacturing processes. Examples of such
processes include the extrusion of polymers, continuous
casting, cooling of metallic plates, glass fiber production,
hot rolling, paper production, wire drawing, aerodynamic
extrusion of plastic sheets, crystal glowing, and others. The
significance of studying heat transfer and flow field is that it
is essential in determining the degree of quality of the end
results of processes such as the ones explicated by Karwe

and Jaluria [1]. Sakiadis [2] was the first to explore the flow
induced by a semi-infinite horizontally moving wall in an
ambient fluid. Crane [3] subsequently examined the flow over
a linearly stretching sheet in an ambient fluid and came up
with a solution which bore its likeness in closed analytical
form for the steady two-dimensional problem. Numerous
authors, such as Carragher and Crane [4], Elbashbeshy and
Bazid [5], P. S. Gupta and A. S. Gupta [6], Magyari and
Keller [7, 8], Magyari et al. [9], Liao and Pop [10], and
Nazar et al. [11], looked into this problem by considering
its various facts, such as uniform heat flux, permeability of
the surface, flow, and heat transfer unsteadiness. Pop [12],
Andersson [13], Takhar and Nath [14], and Nazar et al. [15]
have directed their attention to other physical characteristics
such as magnetic field, fluid viscoelasticity, suction, and
three-dimensional flow. In contrast, the stretching vertical
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plate has suffered a paucity of research. The problems dealt
with by Chen [16, 17], Lin and Chen [18], Ali and Al-Yousef
[19, 20], Ali [21, 22], and Abo-Eldahab [23] shall be addressed
in this class. Of additional noteworthy interest is the unsteady
boundary layer flow and heat transfer over a stretching
vertical sheet, a phenomenon that has recently been treated
by Ishak et al. [24] in a paper. As of late, Mahapatra and
Gupta [25, 26] carried out research on the heat transfer in
the steady two-dimensional stagnation point flow of a viscous
and incompressible Newtonian and viscoelastic fluids over a
horizontal stretching sheet considering the case of constant
surface temperature.

2. Mathematical Formulation of the Heat
Transfer in Steady Laminar Flow over
a Moving Surface

Consider the steady, two-dimensional flow of a viscous and
incompressible fluid near the stagnation point on a stretching
vertical surface placed in the plane 𝑦 = 0 of a Cartesian
system of coordinates 𝑂

𝑥𝑦
(𝑦 = 0) with the 𝑥-axis along

the sheet as shown in Figure 1. The fluid occupies the half
plane (𝑦 > 0). It is assumed that the velocity 𝑢

𝑤
(𝑥) and the

temperature 𝑇
𝑤
(𝑥) of the stretching sheet is proportional to

the distance 𝑥 from the stagnation-point, where 𝑇
𝑤
(𝑥) > 𝑇

∞

with 𝑇
∞
being the uniform temperature of the ambient fluid.

The velocity of the flow external to the boundary layer is
𝑢
𝑒
(𝑥). Under these assumptions along with the Boussinesq

and boundary layer approximations, the system of equations,
which model the boundary layer flow are given by

𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
= 0, (1)

𝑢
𝜕𝑢

𝜕𝑥
+ V
𝜕𝑢

𝜕𝑦
= 𝑢
𝑒

𝑑𝑢
𝑒

𝑑𝑥
+ 𝜈
𝜕
2

𝑢

𝜕𝑦2
± 𝑔𝛽 (𝑇 − 𝑇

∞
) , (2)

𝑢
𝜕𝑇

𝜕𝑥
+ V
𝜕𝑇

𝜕𝑦
= 𝛼
𝜕
2

𝑇

𝜕𝑦2
, (3)

where 𝑢 and V are the velocity components along 𝑥- and 𝑦-
axes, respectively, 𝑇 is the fluid temperature, 𝑔 is the gravity
acceleration, 𝛼, 𝜈, and 𝛽 are the thermal diffusivity, kinematic
viscosity, and thermal expansion coefficient, respectively, and
the “+” and “−” signs in (2) correspond to assisting buoyant
flow and to opposing buoyant flow, respectively. We shall
assume that the boundary conditions of (1)–(3) are

V (𝑥, 0) = 0, 𝑢 (𝑥, 0) = 𝑢
𝑤
(𝑥) = 𝑐𝑥,

𝑇 (𝑥, 0) = 𝑇
𝑤
(𝑥) = 𝑇

∞
+ 𝑏𝑥,

𝑢 (𝑥,∞) = 𝑢
𝑒
(𝑥) = 𝑎𝑥, 𝑇 (𝑥,∞) = 𝑇

∞
,

(4)

where 𝑎, 𝑏, and 𝑐 are positive constants. The continuity
equation can be satisfied by introducing a stream functionΨ,
such that

𝑢 =
𝜕Ψ

𝜕𝑦
, V = −

𝜕Ψ

𝜕𝑥
. (5)

𝑔

𝑔

𝑢𝑤

𝑢𝑤

𝑇𝑤

𝑇𝑤

𝑂

𝑇 = 𝑇∞

𝑇 = 𝑇∞

𝑢𝑒(𝑥) = 𝑎𝑥

𝑢𝑒(𝑥) = 𝑎𝑥

Figure 1: Physical model and coordinate system.

Therefore, from (1)–(3) with (5) we have

Ψ
𝑦
Ψ
𝑦𝑥
− Ψ
𝑥
Ψ
𝑦𝑦
+ 𝜈Ψ
𝑦𝑦𝑦

− 𝑢
𝑒
(𝑥)
𝑑

𝑑𝑥
𝑢
𝑒
(𝑥) ± 𝛽 (𝑇 − 𝑇

∞
) = 0,

Ψ
𝑦
𝑇
𝑥
− Ψ
𝑥
𝑇
𝑦
− 𝛼𝑇
𝑦𝑦
= 0.

(6)

The boundary conditions (4) will be as

Ψ
𝑥
(𝑥, 0) = 0, Ψ

𝑦
(𝑥, 0) = 𝑐𝑥,

𝑇 (𝑥, 0) = 𝑇
𝑤
(𝑥) = 𝑇

∞
+ 𝑏𝑥,

Ψ
𝑦
(𝑥,∞) = 𝑎𝑥, 𝑇 (𝑥,∞) = 𝑇

∞
.

(7)

3. Main Results

3.1. Solution of the Problem by the Lie Point Symmetries.
At first, we derive the similarity solutions using Lie group
method under which (6) and the boundary conditions (7)
are invariant, and then we use these symmetries to determine
similarity variables. Now, consider the one-parameter 𝜀, Lie
group infinitesimal transformation in (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) given by

𝑥
∗

= 𝑥 + 𝜀𝜉 (𝑥, 𝑦; Ψ, 𝑢
𝑒
, 𝑇) + 𝑂 (𝜀

2

) = 𝑒
𝜀𝑋

𝑥,

𝑦
∗

= 𝑦 + 𝜀𝛾 (𝑥, 𝑦; Ψ, 𝑢
𝑒
, 𝑇) + 𝑂 (𝜀

2

) = 𝑒
𝜀𝑋

𝑦,

Ψ
∗

= Ψ + 𝜀Φ (𝑥, 𝑦; Ψ, 𝑢
𝑒
, 𝑇) + 𝑂 (𝜀

2

) = 𝑒
𝜀𝑋

Ψ,

𝑢
∗

𝑒
= 𝑢
𝑒
+ 𝜀𝑈 (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) + 𝑂 (𝜀

2

) = 𝑒
𝜀𝑋

𝑢
𝑒
,

𝑇
∗

= 𝑇 + 𝜀Υ (𝑥, 𝑦; Ψ, 𝑢
𝑒
, 𝑇) + 𝑂 (𝜀

2

) = 𝑒
𝜀𝑋

𝑇,

(8)
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here 𝜀 is the group parameter, and 𝑋 is vector filed. A
system of partial differential equations (6) is said to admit a
symmetry generated by the vector filed as

𝑋 ≡ 𝜉
𝜕

𝜕𝑥
+ 𝛾
𝜕

𝜕𝑦
+ 𝜙
𝜕

𝜕Ψ
+ 𝑈

𝜕

𝜕𝑢
𝑒

+ Υ
𝜕

𝜕𝑇
. (9)

Equivalently, we can obtain (𝑥∗, 𝑦∗; Ψ∗, 𝑢∗
𝑒
, 𝑇
∗

) by solving

𝑑𝑥
∗

𝑑𝜀
= 𝜉 (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) ,

𝑑𝑦
∗

𝑑𝜀
= 𝛾 (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) ,

𝑑Ψ
∗

𝑑𝜀
= Φ (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) ,

𝑑𝑢
∗

𝑒

𝑑𝜀
= 𝑈 (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) ,

𝑑𝑇
∗

𝑑𝜀
= Υ (𝑥, 𝑦; Ψ, 𝑢

𝑒
, 𝑇) ,

(10)

subject to initial conditions, (𝑥∗, 𝑦∗; Ψ∗, 𝑢∗
𝑒
, 𝑇
∗

)|
𝜀=0
≡ (𝑥,

𝑦; Ψ, 𝑢
𝑒
, 𝑇). If 𝑋 is left invariant by the transformation (𝑥, 𝑦;

Ψ, 𝑢
𝑒
, 𝑇) → (𝑥

∗

, 𝑦
∗

; Ψ
∗

, 𝑢
∗

𝑒
, 𝑇
∗

), then the solutions Ψ =

Ψ(𝑥, 𝑦), 𝑢
𝑒
= 𝑢
𝑒
(𝑥), and 𝑇 = 𝑇(𝑥, 𝑦) are invariant under the

symmetry (9) if

𝜑
Ψ
= 𝑋 (Ψ − Ψ (𝑥, 𝑦))

Ψ=Ψ(𝑥,𝑦) = 0,

𝜑
𝑢
𝑒

= 𝑋 (𝑢
𝑒
− 𝑢
𝑒
(𝑥))
𝑢
𝑒
=𝑢
𝑒
(𝑥,𝑦)
= 0,

𝜑
𝑇
= 𝑋 (𝑇 − 𝑇 (𝑥, 𝑦))

𝑇=𝑇(𝑥,𝑦) = 0.

(11)

Assume

Π
1
= Ψ
𝑦
Ψ
𝑦𝑥
− Ψ
𝑥
Ψ
𝑦𝑦
+ 𝜈Ψ
𝑦𝑦𝑦

− 𝑢
𝑒
(𝑢
𝑒
)
𝑥
± 𝛽 (𝑇 − 𝑇

∞
) = 0,

Π
2
= Ψ
𝑦
𝑇
𝑥
− Ψ
𝑥
𝑇
𝑦
− 𝛼𝑇
𝑦𝑦
= 0.

(12)

The vector 𝑋 as (9) is a Lie point symmetry vector filed for,
(6) if

𝑋
[3]

(Π
𝑗
)
Π
𝑗
=0

= 0, 𝑗 = 1, 2, (13)

where

𝑋
[3]

≡ 𝜉
𝜕

𝜕𝑥
+ 𝛾
𝜕

𝜕𝑦
+ Φ

𝜕

𝜕Ψ
+ 𝑈

𝜕

𝜕𝑢
𝑒

+ Υ
𝜕

𝜕𝑇

+ Φ
𝑥
𝜕

𝜕Ψ
𝑥

+ Φ
𝑦
𝜕

𝜕Ψ
𝑦

+ Υ
𝑥
𝜕

𝜕𝑇
𝑥

+ Υ
𝑦
𝜕

𝜕𝑇
𝑦

+ Υ
𝑦𝑦
𝜕

𝜕𝑇
𝑦𝑦

+ 𝑈
𝑥
𝜕

𝜕(𝑢
𝑒
)
𝑥

+ Φ
𝑦𝑥
𝜕

𝜕Ψ
𝑦𝑥

+ Φ
𝑦𝑦
𝜕

𝜕Ψ
𝑦𝑦

+ Φ
𝑦𝑦𝑦

𝜕

𝜕Ψ
𝑦𝑦𝑦

(14)

is the third prolongation of 𝑋. The components Φ𝑥, Φ𝑦, Υ𝑥,
Υ
𝑦, 𝑈𝑥, Φ𝑦𝑥, Φ𝑦𝑦, and Φ𝑦𝑦𝑦 can be determined from the

following expressions

Φ
𝑥

= 𝐷
𝑥
Φ − Ψ

𝑥
𝐷
𝑥
𝜉 − Ψ
𝑦
𝐷
𝑥
𝛾,

Φ
𝑦

= 𝐷
𝑦
Φ − Ψ

𝑥
𝐷
𝑦
𝜉 − Ψ
𝑦
𝐷
𝑦
𝛾,

Υ
𝑥

= 𝐷
𝑥
Υ − 𝑇
𝑥
𝐷
𝑥
𝜉 − 𝑇
𝑦
𝐷
𝑥
𝛾,

Υ
𝑦

= 𝐷
𝑦
Υ − 𝑇
𝑥
𝐷
𝑦
𝜉 − 𝑇
𝑦
𝐷
𝑦
𝛾,

Υ
𝑦𝑦

= 𝐷
𝑦
Υ
𝑦

− 𝑇
𝑦𝑥
𝐷
𝑦
𝜉 − 𝑇
𝑦𝑦
𝐷
𝑦
𝛾,

𝑈
𝑥

= 𝐷
𝑥
𝑈 − (𝑢

𝑒
)
𝑥
𝐷
𝑥
𝜉 − (𝑢

𝑒
)
𝑦
𝐷
𝑥
𝛾,

Φ
𝑥𝑦

= 𝐷
𝑦
Φ
𝑥

− Ψ
𝑥𝑥
𝐷
𝑦
𝜉 − Ψ
𝑥𝑦
𝐷
𝑦
𝛾,

Φ
𝑥𝑦

= 𝐷
𝑥
Φ
𝑦

− Ψ
𝑦𝑥
𝐷
𝑥
𝜉 − Ψ
𝑦𝑦
𝐷
𝑥
𝛾,

Φ
𝑦𝑦

= 𝐷
𝑦
Φ
𝑦

− Ψ
𝑦𝑥
𝐷
𝑦
𝜉 − Ψ
𝑦𝑦
𝐷
𝑦
𝛾,

Φ
𝑦𝑦𝑦

= 𝐷
𝑦
Φ
𝑦𝑦

− Ψ
𝑦𝑦𝑥
𝐷
𝑦
𝜉 − Ψ
𝑦𝑦𝑦
𝐷
𝑦
𝛾.

(15)

Here, 𝐷
𝑥
and 𝐷

𝑦
are introduced as the following total

derivatives:

𝐷
𝑥
≡ 𝜕
𝑥
+ Ψ
𝑥
𝜕
Ψ
+ (𝑢
𝑒
)
𝑥
𝜕
𝑢
𝑒

+ 𝑇
𝑥
𝜕
𝑇

+ Ψ
𝑥𝑥
𝜕
Ψ
𝑥

+ (𝑢
𝑒
)
𝑥𝑥
𝜕
(𝑢
𝑒
)
𝑥

+ 𝑇
𝑥𝑥
𝜕
𝑇
𝑥

+ Ψ
𝑥𝑦
𝜕
Ψ
𝑦

+ 𝑇
𝑥𝑦
𝜕
𝑇
𝑦

+ ⋅ ⋅ ⋅ ,

𝐷
𝑦
≡ 𝜕
𝑦
+ Ψ
𝑦
𝜕
Ψ
+ (𝑢
𝑒
)
𝑦
𝜕
𝑢
𝑒

+ 𝑇
𝑦
𝜕
𝑇
+ Ψ
𝑦𝑦
𝜕
Ψ
𝑦

+ (𝑢
𝑒
)
𝑦𝑦
𝜕
(𝑢
𝑒
)
𝑦

+ 𝑇
𝑦𝑦
𝜕
𝑇
𝑦

+ Ψ
𝑦𝑥
𝜕
Ψ
𝑥

+ 𝑇
𝑦𝑥
𝜕
𝑇
𝑥

+ ⋅ ⋅ ⋅ .

(16)

Form (13) we have the system of linear differential equations
as follows:

− 𝑈(𝑢
𝑒
)
𝑥
± 𝛽Υ − Φ

𝑥

Ψ
𝑦𝑦
+ Φ
𝑦

Ψ
𝑦𝑥
− 𝑈
𝑥

𝑢
𝑒

+ Φ
𝑦𝑥

Ψ
𝑦
− Φ
𝑦𝑦

Ψ
𝑥
+ 𝜈Φ
𝑦𝑦𝑦

= 0,

− Φ
𝑥

𝑇
𝑦
+ Φ
𝑦

𝑇
𝑥
+ Υ
𝑥

Ψ
𝑦
− Υ
𝑦

Ψ
𝑥
− 𝛼Υ
𝑦𝑦

= 0.

(17)

Replacing the functions 𝜙𝑥, 𝜙𝑦, 𝜙𝑦𝑥, 𝜙𝑦𝑦, 𝜙𝑦𝑦𝑦, 𝑈𝑥, Υ𝑥, and
Υ
𝑦 given by the relation (15) and eliminating any dependence

between partial differential derivatives of the functions Ψ,
𝑢
𝑒
, and 𝑇, we obtain the new partial differential equations

corresponding to (6) (see the Appendix).
Looking at this conditions as a polynomial in the partial

derivatives of the functionsΨ, 𝑢
𝑒
, and 𝑇 and identifying with
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the polynom zero, we obtain the PDE system of 𝜁, 𝛾, Φ, 𝑈,
and Υ. The general solution of this PDE system is

𝜁 = 𝐾
0
+ 𝐾
1
𝑥, 𝛾 = 𝐾

2
,

Φ = 𝐾
3
+ 𝐾
4
𝑥 + 𝐾

5
𝑦 +
𝐾
1

2
Ψ + 𝐾

6
𝑢
𝑒
,

𝑈 = 𝐾
7
+ 𝐾
8
𝑥 + 𝐾

9
𝑦 + 𝐾

10
Ψ + 𝐾

11
𝑢
𝑒
+
𝐾
1

2
𝑇,

Υ = 𝐾
12
+ 𝐾
13
𝑥 + 𝐾

14
Ψ + 𝐾

15
𝑢
𝑒
+ 𝐾
16
𝑇,

(18)

where 𝐾
0
, . . . , 𝐾

16
∈ R, and consequently the infinitesimal

generator of the symmetry group 𝐺 is

𝑋 = 𝐾
0

𝜕

𝜕𝑥
+ 𝐾
1
(𝑥
𝜕

𝜕𝑥
+
1

2
Ψ
𝜕

𝜕Ψ
+
1

2
𝑇
𝜕

𝜕𝑢
𝑒

) + 𝐾
2

𝜕

𝜕𝑦
,

+ 𝐾
3

𝜕

𝜕Ψ
+ 𝐾
4
𝑥
𝜕

𝜕Ψ
+ 𝐾
5
𝑦
𝜕

𝜕Ψ
+ 𝐾
6
𝑢
𝑒

𝜕

𝜕Ψ
+ 𝐾
7

𝜕

𝜕𝑢
𝑒

,

+ 𝐾
8
𝑥
𝜕

𝜕𝑢
𝑒

+𝐾
9
𝑦
𝜕

𝜕𝑢
𝑒

+𝐾
10
Ψ
𝜕

𝜕𝑢
𝑒

+𝐾
11
𝑢
𝑒

𝜕

𝜕𝑢
𝑒

+𝐾
12

𝜕

𝜕𝑇
,

+ 𝐾
13
𝑥
𝜕

𝜕𝑇
+ 𝐾
14
Ψ
𝜕

𝜕𝑇
+ 𝐾
15
𝑢
𝑒

𝜕

𝜕𝑇
+ 𝐾
16
𝑇
𝜕

𝜕𝑇
.

(19)

From which, the system of nonlinear (6) has the sixteen-
parameter Lie group of point symmetries generated by

𝑋
1
≡
𝜕

𝜕𝑥
, 𝑋

2
≡ 𝑥
𝜕

𝜕𝑥
+
1

2
Ψ
𝜕

𝜕Ψ
+
1

2
𝑇
𝜕

𝜕𝑢
𝑒

,

𝑋
3
≡
𝜕

𝜕𝑦
, 𝑋

4
≡
𝜕

𝜕Ψ
, 𝑋

5
≡ 𝑥
𝜕

𝜕Ψ
,

𝑋
6
≡ 𝑦

𝜕

𝜕Ψ
, 𝑋

7
≡ 𝑢
𝑒

𝜕

𝜕Ψ
, 𝑋

8
≡
𝜕

𝜕𝑢
𝑒

,

𝑋
9
≡ 𝑥

𝜕

𝜕𝑢
𝑒

, 𝑋
10
≡ 𝑦

𝜕

𝜕𝑢
𝑒

, 𝑋
11
≡ Ψ

𝜕

𝜕𝑢
𝑒

,

𝑋
12
≡ 𝑢
𝑒

𝜕

𝜕𝑢
𝑒

, 𝑋
13
≡
𝜕

𝜕𝑇
, 𝑋

14
≡ 𝑥
𝜕

𝜕𝑇
,

𝑋
15
≡ Ψ

𝜕

𝜕𝑇
, 𝑋

16
≡ 𝑢
𝑒

𝜕

𝜕𝑇
, 𝑋

17
≡ 𝑇

𝜕

𝜕𝑇
.

(20)

For 𝑋
1
up to 𝑋

17
, respectively, the characteristic 𝜑 =

(𝜑
Ψ
, 𝜑
𝑢
𝑒

, 𝜑
𝑇
) has the components as follows:

𝜑
𝑋
1

= (−Ψ
𝑥
, −(𝑢
𝑒
)
𝑥
, −𝑇
𝑥
) ,

𝜑
𝑋
2

= (−𝑥Ψ
𝑥
+ Ψ, −𝑥(𝑢

𝑒
)
𝑥
+
1

2
𝑇, −𝑥𝑇

𝑥
) ,

𝜑
𝑋
3

= (−Ψ
𝑦
, 0, −𝑇

𝑦
) , 𝜑

𝑋
4

= (1, 0, 0) ,

𝜑
𝑋
5

= (𝑥, 0, 0) , 𝜑
𝑋
6

= (𝑦, 0, 0) ,

𝜑
𝑋
7

= (𝑢
𝑒
, 0, 0) , 𝜑

𝑋
8

= (0, 1, 0) ,

𝜑
𝑋
9

= (0, 𝑥, 0) , 𝜑
𝑋
10

= (0, 𝑦, 0) ,

𝜑
𝑋
11

= (0, Ψ, 0) , 𝜑
𝑋
12

= (0, 𝑢
𝑒
, 0) ,

𝜑
𝑋
13

= (0, 0, 1) , 𝜑
𝑋
14

= (0, 0, 𝑥) ,

𝜑
𝑋
15

= (0, 0, Ψ) , 𝜑
𝑋
16

= (0, 0, 𝑢
𝑒
) , 𝜑

𝑋
17

= (0, 0, 𝑇) .

(21)

Equation (21) shows that no solutions are invariant under
the groups generated by 𝑋

1
and 𝑋

3
up to 𝑋

17
. For 𝑋

2
, the

characteristic 𝜑 = (𝜑
Ψ
, 𝜑
𝑢
𝑒

, 𝜑
𝑇
) has the components

𝜑
Ψ
= −𝑥Ψ

𝑥
+ Ψ, 𝜑

𝑢
𝑒

= −𝑥(𝑢
𝑒
)
𝑥
+
1

2
𝑇, 𝜑

𝑇
= −𝑥𝑇

𝑥
.

(22)

Therefore, the general solutions of the invariant surface
conditions (11) by using the boundary conditions (7) are as
follows:

Ψ (𝑥, 𝑦) = 𝑐𝑥𝐹 (𝑦) , 𝑢
𝑒
(𝑥) = 𝑎𝑥,

𝑇 (𝑥, 𝑦) = (𝑇
𝑤
− 𝑇
∞
)𝐻 (𝑦) + 𝑇

∞
.

(23)

Substitution from (23) into (6) yields

𝑐𝑥 [𝑐(𝐹


(𝑦))
2

− 𝑐𝐹 (𝑦) 𝐹


(𝑦) − 𝜈𝐹


(𝑦)]

− 𝑎
2

𝑥 ± 𝑔𝛽 (𝑇
𝑤
− 𝑇
∞
)𝐻 (𝑦) = 0,

𝑐𝐹 (𝑦)𝐻


(𝑦) + 𝛼𝐻


(𝑦) = 0.

(24)

For simplifying we can use 𝐹(𝑦) = √𝜈/𝑐𝑓(𝜂) and 𝐻(𝑦) =
𝜃(𝜂) with 𝜂 = √𝑐/V𝑦. Therefore, we have

𝑓


(𝜂) + 𝑓 (𝜂) 𝑓


(𝜂) − (𝑓


(𝜂))
2

+ (
𝑎

𝑐
)

2

± 𝜆𝜃 (𝜂) = 0,

(25)

1

Pr
𝜃


(𝜂) + 𝑓 (𝜂) 𝜃


(𝜂) = 0, (26)

where Pr = 𝜈/𝑐 is the Prandtl number and 𝜆 = 𝐺
𝑟
𝑥

/Re2
𝑥
is

the buoyancy parameter with 𝐺
𝑟
𝑥

= 𝑔𝛽(𝑇
𝑤
− 𝑇
∞
)𝑥
3

/V2 is the
local Grashof number and Re2

𝑥
= 𝑢
𝑤
𝑥/V is the local Reynolds

number. Equations (25) and (26) subject to the boundary (7)
become

𝑓 (0) = 0, 𝑓


(0) = 1, 𝜃 (0) = 1,

𝑓


(∞) =
𝑎

𝑐
, 𝜃 (∞) = 0.

(27)

When 𝜆 = 0 and 𝑎/𝑐 = 1, the solution of (25) subject to
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Table 1: Values of 𝑓(0) for different values of 𝑎/𝑐 when the
buoyancy force term 𝜆𝜃 in (25) is absent.

𝑎/𝑐

Mahapatra
and Gupta

[25]
Nazar et al. [11] Ishak et al. [28] Present work

0 −1.0000

0.1 −0.9694 −0.9694 −0.9694 −0.9694

0.2 −0.9181 −0.9181 −0.9181 −0.9181

0.5 −0.6673 −0.6673 −0.6673 −0.6673

2 2.0175 2.0176 2.0175 2.0175
3 4.7293 4.7296 4.7294 4.7293
4 — — — 8.0004
10 — — — 36.2574

Table 2: Values of 𝑓(0) and −𝜃(0) for 𝑎/𝑐 = 1, 𝜆 = 1 and various
Pr.

Pr Buoyancy assisting flow Buoyancy opposing flow
𝑓


(0) −𝜃


(0) 𝑓


(0) −𝜃


(0)

0 0.604 0.200 −0.663 0.200
0.72 0.419 0.702 −0.448 0.647
6.8 0.219 2.101 −0.224 2.059
20 0.145 3.584 −0.146 3.552
40 0.109 5.058 −0.109 5.034
60 0.091 6.191 −0.091 6.169
80 0.080 7.146 −0.080 7.127
100 0.072 7.987 −0.073 7.970
200 0.053 11.290 −0.053 11.277
400 0.038 15.962 −0.038 15.953
1000 0.024 25.234 −0.024 25.228

boundary condition (27) is given by

𝑓 (𝜂) = 𝜂. (28)

3.2. Numerical Results. Equations (25) and (26) subject to
boundary conditions (27) have been solved numerically using
the shooting method coupled with fifth-order Improved
Runge-Kutta Method (IRK5) [27]. For the validation of the
Lie group method used in this study, the case when the
buoyancy term 𝜆𝜃 in (25) is absent has been also considered
and compared with the results reported by Mahapatra and
Gupta [25, 26], Nazar et al. [11], and Ishak et al. [28]. This
comparison is shown in Table 1. It is seen that the present
values of 𝑓(0) are in very good agreement with those
obtained by Mahapatra and Gupta [25, 26], Nazar et al. [11],
and Ishak et al. [28]. Therefore, it can be concluded that the
present Lie group method can be used with great confidence
to study the problem discussed in this paper.

The values of the skin friction coefficient and −𝜃(0) for
various Pr when 𝑎/𝑐 = 1 and 𝜆 = 1 are tabulated in Table 2,
for both cases of assisting and opposing flows. The values of

2

1.5

1

0.5

0

𝑓
 (
𝜂
)

0 1 2 3 4 5 6 7 8
𝜂

𝑎/𝑐 = 2

𝑎/𝑐 = 1.5

𝑎/𝑐 = 1

𝑎/𝑐 = 0.5

𝑎/𝑐 = 0

Figure 2: Velocity profiles for some values of 𝑎/𝑐 when Pr = 1 and
𝜆 = 1.

−𝜃


(0) are positive in all cases discussed in this study. Also,
the effects of 𝜆 on the skin friction coefficient are found to
be more significant for fluids having smaller Pr, since the
viscosity is less than the fluids with larger Pr.

The resulting profiles of dimensionless velocity 𝑓(𝜂) and
dimensionless temperature 𝜃(𝜂) are shown in Figures 2 and 3
for various values of 𝑎/𝑐, 𝜆, and Pr. From Figure 2, it is seen
that for assisting flow, the velocity increases at the beginning
until it achieves a certain value then decreases until the value
becomes constant, that is unity at the outside of the boundary
layer. From Figure 2, it can be seen that when 𝑎/𝑐 > 1, the
flow has a boundary layer structure, and the thickness of the
boundary layer decreases with increase in 𝑎/𝑐. According to
Mahapatra and Gupta [25, 26], it can be explained as follows:
for 𝑎 fixed value of 𝑐 corresponding to the stretching of the
surface, an increase in 𝑎 in relation to 𝑐 implies an increase
in straining motion near the stagnation region resulting in
increased acceleration of the external stream, and this leads
to thinning of the boundary layer with increase in 𝑎/𝑐.

The opposite trend occurs for opposing flow. From
Figure 3, it is observed that the temperature of the fluid
decreases, as the distance from the surface increases, for both
cases of assisting and opposing flow, for all values of 𝑎/𝑐, 𝜆,
and Pr until it achieves a constant value, namely, zero. This
is not surprising, since the fluid receives the heat from the
surface, and then the heat energy is changed into other energy
forms such as kinetic energy.

The skin friction coefficient and −𝜃(0) are shown in
Figures 4, 5, 6, and 7. Figures 4 and 6 suggest that an assisting
buoyancy flow produces an increase in the skin friction
coefficient, while an opposing buoyant flow gives rise to a
decrease in the skin friction coefficient. This is because, the
fluid velocity increases when the buoyancy force increases
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Figure 3: Temperature profiles for some values of 𝑎/𝑐 when Pr = 1
and 𝜆 = 1; solid line: assisting flow and dash line: opposing flow.

and hence increases the wall shear stress, which increases
the skin friction coefficient. Figure 4 shows that all curves
intersect at a point where 𝜆 = 0; that is, when the buoyancy
force is zero.This is because (25) and (26) are uncoupledwhen
𝜆 = 0; in other words, the solutions to the flow field are not
affected by the thermal field in which the buoyancy force is
lacking. Also in this case, the value of 𝑓(0) = 0 remains
constant, namely, zero. This value agreed with the exact
solution (25), which implies 𝑓(𝜂) = 0, for all 𝜂. Moreover,
for assisting flow, it can be seen that 𝑓(0) decreases when
Pr increases for a fixed value of 𝜆. This is because when Pr
increases, the viscosity increases and slows down the flow
hence reduces the surface shear stress and thus reduces the
skin friction coefficient 𝑓(0). The opposite trends can be
observed for opposing flow. In addition, from Figure 7 the
effects of Pr can be examined; that is, increasing Pr enhances
the rate of heat transfer, since increasing of Pr will cause the
increasing of viscosity then reduces the thermal conductivity,
and thus −𝜃(0) increases.

The resulting profiles of dimensionless velocity 𝑓(𝜂)
and dimensionless temperature 𝜃(𝜂) are shown in Figures
8 and 9 for various values of 𝜆. Figure 8 shows that the
velocity profiles increases and decreases for assisting flow and
opposing flow, respectively, when 𝜆 increases. In Figure 9, it
is observed that, for a particular value of Pr, the temperature
profiles is slightly increased, as the buoyancy parameter 𝜆
is increased, for the case of assisting flow. The opposite
trend occurs for opposing flow. This is clear from the fact
that assisting buoyant flow produces a favorable pressure
gradient that enhances the momentum transport, which in
turn increases the surface heat transfer rate.

The values of 𝑓(0) and −𝜃(0) are shown in Table 3
for 𝑎/𝑐 = 1, Pr = 1, and various 𝜆. Table 3 shows

𝑎/𝑐 = 2

𝑎/𝑐 = 1.5

𝑎/𝑐 = 1

𝑎/𝑐 = 0.5

𝑎/𝑐 = 0

3

2

1

0

−1

0 1 2 3 4
𝜆

𝑓

(0
)

Figure 4: Variation with 𝜆 of the skin friction coefficient for some
values of 𝑎/𝑐 when Pr = 1; solid line: assisting flow and dash line:
opposing flow.
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𝜆

−
𝜃
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𝑎/𝑐 = 0.5

𝑎/𝑐 = 0

Figure 5: Variation with 𝜆 of −𝜃(0) for some values of 𝑎/𝑐 when
Pr = 1; solid line: assisting flow and dash line: opposing flow.

that the functions 𝑓(0) and −𝜃(0) increases and decreases
for assisting flow and opposing flow, respectively, when 𝜆
increases.The values of𝑓(0) and−𝜃(0) are shown inTable 4
for 𝜆 = 1, Pr = 1, and various 𝑎/𝑐. Table 4 shows that the
functions 𝑓(0) and −𝜃(0) increase for both assisting flow
and opposing flow when 𝑎/𝑐 increases.
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Figure 6: Variation with 𝜆 of the skin friction coefficient for some
values of Pr when 𝑎/𝑐 = 1; solid line: assisting flow and dash line:
opposing flow.
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Figure 7: Variation with 𝜆 of −𝜃(0) for some values of Pr when
𝑎/𝑐 = 1; solid line: assisting flow and dash line: opposing flow.

4. Conclusions

Lie group method is applicable to both linear and nonlin-
ear partial differential equations, which leads to similarity
variables that used to reduce the number of independent
variables in partial differential equations. By determining the

1.2

1.1

1

0.9

0.8

0.7

𝑓
 (
𝜂
)

0 1 2 3 4
𝜂

𝜆 = 0, 0.5, 1, 2, 3

𝜆 = 0, 0.5, 1, 2, 3

Figure 8: Velocity profiles for some values of 𝜆 when Pr = 1 and
𝑎/𝑐 = 1.
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𝜆 = 0, 0.5, 1, 2, 3

𝜆 = 0, 0.5, 1, 2, 3

𝜂

Figure 9: Temperature profiles for some values of 𝜆 when Pr = 1
and 𝑎/𝑐 = 1.

transformation group under which the given partial differen-
tial equations are invariant, we can obtain information about
the invariants and symmetries of these equations. This infor-
mation can be used to determine the similarity variables that
will reduce the number of independent variables in the sys-
tem. In this work, we have used Lie group method to obtain
similarity reductions of nonlinear boundary layer equations
(1)–(3), for the two-dimensional boundary layer equations of
the liquid flow for the mixed convection boundary layers in
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Table 3: Values of 𝑓(0) and −𝜃(0) for 𝑎/𝑐 = 1, Pr = 1, and various
𝜆.

𝜆
Buoyancy assisting flow Buoyancy opposing flow
𝑓


(0) −𝜃


(0) 𝑓


(0) −𝜃


(0)

0 10.6673 1.2346 2.6696 2.1381
2 16.7304 1.3282 0.65818 2.1298
4 22.1328 1.3987 −1.4727 2.1207
6 27.1134 1.4562 −3.7690 2.1104
8 31.7902 1.5051 −6.3244 2.0982
10 36.2321 1.5478 −9.4295 2.0816

Table 4: Values of 𝑓(0) and −𝜃(0) for 𝜆 = 1, Pr = 1, and various
𝑎/𝑐.

𝑎/𝑐
Buoyancy assisting flow Buoyancy opposing flow
𝑓


(0) −𝜃


(0) 𝑓


(0) −𝜃


(0)

0.0 6.8627 1.2032 1.0149 0.9356
0.5 8.3387 1.2788 3.3862 1.1005
1.0 11.379 1.3952 7.5631 1.2931
1.5 15.567 1.5207 12.692 1.4596
2.0 20.578 1.6420 18.479 1.6032

the stagnation-point flow toward a stretching vertical sheet.
By determining the transformation group under which the
given partial differential equations are invariant, we obtained
the invariants and the symmetries of these equations. In turn,
we used these invariants and symmetries to determine the
similarity variables that reduced the number of indepen-
dent variables. Therefore, the governing partial differential
equations (1)–(3) are reduced to a set of two nonlinear
ordinary differential equations (25) and (26). The resulting
system of nonlinear ordinary differential equations (25) and
(26) subjected to the boundary conditions (27) is solved
numerically using the shooting method coupled with fifth-
order Improved Runge-Kutta Method (IRK5). Effects of the
parameters 𝜆, Pr, and 𝑎/𝑐 of the fluid on the flow and heat
transfer characteristics have been examined and discussed
in detail. Our results are in complete agreement with those
reported by Ishak et al. [28]. Therefore, it can be concluded
that the Lie group method can be used with great confidence
to study the problem discussed in this paper.
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− 𝜁
𝑦𝑥
Ψ
𝑥
− 𝜁
𝑦
Ψ
𝑥𝑥

− 𝜁
Ψ𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ
Ψ
𝑥𝑥
Ψ
𝑦
− 𝜁
Ψ
Ψ
𝑥
Ψ
𝑦𝑥

− 𝜁
𝑢
𝑒
𝑥
(𝑢
𝑒
)
𝑦
Ψ
𝑥
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦𝑥
Ψ
𝑥
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑥𝑥

− 𝜁
𝑇𝑥
𝑇
𝑦
Ψ
𝑥
− 𝜁
𝑇
𝑇
𝑦𝑥
Ψ
𝑥
− 𝜁
𝑇
𝑇
𝑦
Ψ
𝑥𝑥
− 𝛾
𝑦𝑥
Ψ
𝑦
− 𝛾
𝑦
Ψ
𝑦𝑥

− 𝛾
Ψ𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ
Ψ
𝑦𝑥
Ψ
𝑦
− 𝛾
Ψ
Ψ
𝑦
Ψ
𝑦𝑥
− 𝛾
𝑢
𝑒
𝑥
(𝑢
𝑒
)
𝑦
Ψ
𝑦

− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑦𝑥
Ψ
𝑦
− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑦𝑥
− 𝛾
𝑦𝑥
𝑇
𝑦
Ψ
𝑦
− 𝛾
𝑦
𝑇
𝑦𝑥
Ψ
𝑦

− 𝛾
𝑦
𝑇
𝑦
Ψ
𝑦𝑥
− 𝜁
𝑥
Ψ
𝑦𝑥
− 𝜁
Ψ
Ψ
𝑥
Ψ
𝑦
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑥
+ 𝜁
𝑥
𝑇
𝑥

−𝛾
𝑥
Ψ
𝑦𝑦
− 𝛾
Ψ
Ψ
𝑥
Ψ
𝑦𝑦
− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦𝑦
− 𝛾
𝑇
𝑇
𝑥
Ψ
𝑦𝑦
]

− Ψ
𝑥
[Φ
𝑦𝑥
+ Φ
𝑦Ψ
Ψ
𝑥
+ Φ
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥
+ Φ
𝑦𝑇
𝑇
𝑥
+ Φ
𝑇
𝑇
𝑦𝑥

+ Φ
𝑇𝑥
𝑇
𝑦
+ Φ
𝑇Ψ
𝑇
𝑦
Ψ
𝑥
+ Φ
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦
− 𝜁
𝑦𝑥
Ψ
𝑥

− 𝜁
𝑦
Ψ
𝑥𝑥
− 𝜁
𝑦Ψ
Ψ
𝑥
Ψ
𝑥
− 𝜁
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
− 𝜁
𝑦𝑇
𝑇
𝑥
Ψ
𝑥

− 𝜁
Ψ𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ
Ψ
𝑥𝑥
Ψ
𝑦
− 𝜁
Ψ
Ψ
𝑥
Ψ
𝑦𝑥
− 𝜁
ΨΨ
Ψ
𝑥
Ψ
𝑥
Ψ
𝑦

− 𝜁
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ𝑇
𝑇
𝑥
Ψ
𝑥
Ψ
𝑦
− 𝛾
𝑦𝑥
Ψ
𝑦
− 𝛾
𝑦𝑥
Ψ
𝑦

− 𝛾
𝑦
Ψ
𝑦𝑥
− 𝛾
𝑦Ψ
Ψ
𝑥
Ψ
𝑦
− 𝛾
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦
− 𝛾
𝑦𝑇
𝑇
𝑥
Ψ
𝑦

− 𝛾
Ψ𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ
Ψ
𝑦𝑥
Ψ
𝑦
− 𝛾
Ψ
Ψ
𝑦
Ψ
𝑦𝑥
− 𝛾
ΨΨ
Ψ
𝑥
Ψ
𝑦
Ψ
𝑦

− 𝛾
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ𝑇
𝑇
𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
𝑇𝑥
𝑇
𝑦
Ψ
𝑦

− 𝛾
𝑇
𝑇
𝑦𝑥
Ψ
𝑦
− 𝛾
𝑇
𝑇
𝑦
Ψ
𝑦𝑥
− 𝛾
𝑇Ψ
Ψ
𝑥
𝑇
𝑦
Ψ
𝑦

−𝛾
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦
Ψ
𝑦
− 𝛾
𝑇𝑇
𝑇
𝑥
𝑇
𝑦
𝑇
𝑦
]

+ 𝜈 [Φ
𝑦𝑥𝑦
+ Φ
𝑦Ψ
Ψ
𝑥𝑦
+ Φ
𝑦Ψ𝑦
Ψ
𝑥
+ Φ
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦

+ Φ
𝑦𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
+ Φ
𝑦𝑇
𝑇
𝑥𝑦
+ Φ
𝑦𝑇𝑦
𝑇
𝑥
+ Φ
𝑇
𝑇
𝑦𝑥𝑦

+ Φ
𝑇𝑦
𝑇
𝑦𝑥
+ Φ
𝑇𝑥
𝑇
𝑦𝑦
+ Φ
𝑇𝑥𝑦
𝑇
𝑦
+ Φ
𝑇Ψ𝑦
𝑇
𝑦
Ψ
𝑥

+ Φ
𝑇Ψ
𝑇
𝑦𝑦
Ψ
𝑥
+ Φ
𝑇Ψ
𝑇
𝑦
Ψ
𝑥𝑦
+ Φ
𝑇𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
𝑇
𝑦

+ Φ
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
𝑇
𝑦
+ Φ
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦𝑦
− 𝜁
𝑦𝑥𝑦
Ψ
𝑥

− 𝜁
𝑦𝑥
Ψ
𝑥𝑦
− 𝜁
𝑦𝑦
Ψ
𝑥𝑥
− 𝜁
𝑦
Ψ
𝑥𝑥𝑦
− 𝜁
𝑦Ψ𝑦
Ψ
𝑥
Ψ
𝑥

− 𝜁
𝑦Ψ
Ψ
𝑥𝑦
Ψ
𝑥
− 𝜁
𝑦Ψ
Ψ
𝑥
Ψ
𝑥𝑦
− 𝜁
𝑦𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
Ψ
𝑥

− 𝜁
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
Ψ
𝑥
− 𝜁
𝑦𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥𝑦
− 𝜁
𝑦𝑇𝑦
𝑇
𝑥
Ψ
𝑥

− 𝜁
𝑦𝑇
𝑇
𝑥𝑦
Ψ
𝑥
− 𝜁
𝑦𝑇
𝑇
𝑥
Ψ
𝑥𝑦
− 𝜁
Ψ𝑥𝑦
Ψ
𝑥
Ψ
𝑦

− 𝜁
Ψ𝑥
Ψ
𝑥𝑦
Ψ
𝑦
− 𝜁
Ψ𝑥
Ψ
𝑥
Ψ
𝑦𝑦
− 𝜁
Ψ𝑥𝑦
Ψ
𝑥𝑥
Ψ
𝑦
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− 𝜁
Ψ
Ψ
𝑥𝑥𝑦
Ψ
𝑦
− 𝜁
Ψ
Ψ
𝑥𝑥
Ψ
𝑦𝑦
− 𝜁
Ψ𝑦
Ψ
𝑥
Ψ
𝑦𝑥

− 𝜁
Ψ
Ψ
𝑥𝑦
Ψ
𝑦𝑥
− 𝜁
Ψ
Ψ
𝑥
Ψ
𝑦𝑥𝑦
− 𝜁
ΨΨ𝑦
Ψ
𝑥
Ψ
𝑥
Ψ
𝑦

− 𝜁
ΨΨ
Ψ
𝑥𝑦
Ψ
𝑥
Ψ
𝑦
− 𝜁
ΨΨ
Ψ
𝑥
Ψ
𝑥𝑦
Ψ
𝑦
− 𝜁
ΨΨ
Ψ
𝑥
Ψ
𝑥
Ψ
𝑦𝑦

− 𝜁
Ψ𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
Ψ
𝑥
Ψ
𝑦

− 𝜁
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥𝑦
Ψ
𝑦
− 𝜁
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
Ψ
𝑦𝑦

− 𝜁
Ψ𝑇𝑦
𝑇
𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ𝑇
𝑇
𝑥𝑦
Ψ
𝑥
Ψ
𝑦
− 𝜁
Ψ𝑇
𝑇
𝑥
Ψ
𝑥𝑦
Ψ
𝑦

− 𝜁
Ψ𝑇
𝑇
𝑥
Ψ
𝑥
Ψ
𝑦𝑦
− 𝜁
𝑇𝑥𝑦
𝑇
𝑦
Ψ
𝑥
− 𝜁
𝑇𝑥
𝑇
𝑦𝑦
Ψ
𝑥

− 𝜁
𝑇𝑥
𝑇
𝑦
Ψ
𝑥𝑦
− 𝜁
𝑇𝑦
𝑇
𝑦𝑥
Ψ
𝑥
− 𝜁
𝑇
𝑇
𝑦𝑥𝑦
Ψ
𝑥
− 𝜁
𝑇
𝑇
𝑦𝑥
Ψ
𝑥𝑦

− 𝜁
𝑇𝑦
𝑇
𝑦
Ψ
𝑥𝑥
− 𝜁
𝑇
𝑇
𝑦𝑦
Ψ
𝑥𝑥
− 𝜁
𝑇
𝑇
𝑦
Ψ
𝑥𝑥𝑦

− 𝜁
𝑇Ψ𝑦
𝑇
𝑦
Ψ
𝑥𝑥
− 𝜁
𝑇Ψ
𝑇
𝑦𝑦
Ψ
𝑥𝑥
− 𝜁
𝑇Ψ
𝑇
𝑦
Ψ
𝑥𝑥𝑦

− 𝜁
𝑇𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
𝑇
𝑦
Ψ
𝑥
− 𝜁
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
𝑇
𝑦
Ψ
𝑥

− 𝜁
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦𝑦
Ψ
𝑥
− 𝜁
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦
Ψ
𝑥𝑦

− 𝜁
𝑇𝑢
𝑒
𝑦
𝑇
𝑥
𝑇
𝑦
Ψ
𝑥
− 𝜁
𝑇𝑢
𝑒

𝑇
𝑥𝑦
𝑇
𝑦
Ψ
𝑥
− 𝜁
𝑇𝑢
𝑒
𝑦
𝑇
𝑥
𝑇
𝑦𝑦
Ψ
𝑥

− 𝜁
𝑇𝑢
𝑒
𝑦
𝑇
𝑥
𝑇
𝑦
Ψ
𝑥𝑦
− 𝛾
𝑦𝑥𝑦
Ψ
𝑦
− 𝛾
𝑦𝑥
Ψ
𝑦𝑦
− 𝛾
𝑦𝑦
Ψ
𝑦𝑥

− 𝛾
𝑦
Ψ
𝑦𝑥𝑦
− 𝛾
𝑦Ψ𝑦
Ψ
𝑥
Ψ
𝑦
− 𝛾
𝑦Ψ
Ψ
𝑥𝑦
Ψ
𝑦
− 𝛾
𝑦Ψ
Ψ
𝑥
Ψ
𝑦𝑦

− 𝛾
Ψ𝑥𝑦
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ𝑥
Ψ
𝑦𝑦
Ψ
𝑦
− 𝛾
Ψ𝑥
Ψ
𝑦
Ψ
𝑦𝑦
− 𝛾
Ψ𝑦
Ψ
𝑦𝑥
Ψ
𝑦

− 𝛾
Ψ
Ψ
𝑦𝑥𝑦
Ψ
𝑦
− 𝛾
Ψ𝑦
Ψ
𝑦
Ψ
𝑦𝑥
− 𝛾
Ψ
Ψ
𝑦𝑦
Ψ
𝑦𝑥

− 𝛾
Ψ
Ψ
𝑦
Ψ
𝑦𝑥𝑦
− 𝛾
ΨΨ𝑦
Ψ
𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
ΨΨ
Ψ
𝑥𝑦
Ψ
𝑦
Ψ
𝑦

− 𝛾
ΨΨ
Ψ
𝑥
Ψ
𝑦𝑦
Ψ
𝑦
− 𝛾
ΨΨ
Ψ
𝑥
Ψ
𝑦
Ψ
𝑦𝑦
− 𝛾
Ψ𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
Ψ
𝑦
Ψ
𝑦

− 𝛾
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦𝑦
Ψ
𝑦

− 𝛾
Ψ𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦
Ψ
𝑦𝑦
− 𝛾
Ψ𝑇𝑦
𝑇
𝑥
Ψ
𝑦
Ψ
𝑦
− 𝛾
Ψ𝑇
𝑇
𝑥𝑦
Ψ
𝑦
Ψ
𝑦

− 𝛾
Ψ𝑇
𝑇
𝑥
Ψ
𝑦𝑦
Ψ
𝑦
− 𝛾
Ψ𝑇
𝑇
𝑥
Ψ
𝑦
Ψ
𝑦𝑦
− 𝛾
𝑇𝑥𝑦
𝑇
𝑦
Ψ
𝑦

− 𝛾
𝑇𝑥
𝑇
𝑦𝑦
Ψ
𝑦
− 𝛾
𝑇𝑥
𝑇
𝑦
Ψ
𝑦𝑦
− 𝛾
𝑇𝑦
𝑇
𝑦𝑥
Ψ
𝑦
− 𝛾
𝑇
𝑇
𝑦𝑥𝑦
Ψ
𝑦

− 𝛾
𝑇
𝑇
𝑦𝑥
Ψ
𝑦𝑦
− 𝛾
𝑇𝑦
𝑇
𝑦
Ψ
𝑦𝑥
− 𝛾
𝑇
𝑇
𝑦𝑦
Ψ
𝑦𝑥

− 𝛾
𝑇
𝑇
𝑦
Ψ
𝑦𝑥𝑦
− 𝛾
𝑇Ψ𝑦
Ψ
𝑥
𝑇
𝑦
Ψ
𝑦
− 𝛾
𝑇Ψ
Ψ
𝑥𝑦
𝑇
𝑦
Ψ
𝑦

− 𝛾
𝑇Ψ
Ψ
𝑥
𝑇
𝑦𝑦
Ψ
𝑦
− 𝛾
𝑇Ψ
Ψ
𝑥
𝑇
𝑦
Ψ
𝑦𝑦
− 𝛾
𝑇𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑥
𝑇
𝑦
Ψ
𝑦

− 𝛾
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥𝑦
𝑇
𝑦
Ψ
𝑦
− 𝛾
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦𝑦
Ψ
𝑦

− 𝛾
𝑇𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦𝑦
Ψ
𝑦
− 𝛾
𝑇𝑇𝑦
𝑇
𝑥
𝑇
𝑦
𝑇
𝑦
− 𝛾
𝑇𝑇
𝑇
𝑥𝑦
𝑇
𝑦
𝑇
𝑦

− 𝛾
𝑇𝑇
𝑇
𝑥
𝑇
𝑦𝑦
𝑇
𝑦
− 𝛾
𝑇𝑇
𝑇
𝑥
𝑇
𝑦
𝑇
𝑦𝑦
− 𝜁
𝑦
Ψ
𝑦𝑦𝑥
− 𝜁
Ψ
Ψ
𝑦
Ψ
𝑦𝑦𝑥

− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑦𝑦𝑥
− 𝜁
𝑇
𝑇
𝑦
Ψ
𝑦𝑦𝑥
− 𝛾
𝑦
Ψ
𝑦𝑦𝑦

−𝛾
Ψ
Ψ
𝑦
Ψ
𝑦𝑦𝑦
− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑦𝑦𝑦
− 𝛾
𝑇
𝑇
𝑦
Ψ
𝑦𝑦𝑦
] = 0,

Υ
𝑥
Ψ
𝑦
+ Υ
Ψ
Ψ
𝑥
Ψ
𝑦
+ Υ
𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑦

+ Υ
𝑇
𝑇
𝑥
Ψ
𝑦
− 𝜁
𝑥
𝑇
𝑥
Ψ
𝑦
− 𝜁
Ψ
𝑇
𝑥
Ψ
𝑥
Ψ
𝑦

− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
Ψ
𝑦
− 𝜁
𝑇
𝑇
𝑥
𝑇
𝑥
Ψ
𝑦
− 𝛾
𝑥
𝑇
𝑦
Ψ
𝑦

− 𝛾
Ψ
𝑇
𝑦
Ψ
𝑥
Ψ
𝑦
− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑥
𝑇
𝑦
Ψ
𝑦

− 𝛾
𝑇
𝑇
𝑥
𝑇
𝑦
Ψ
𝑦
− Υ
𝑦
Ψ
𝑥
− Υ
Ψ
Ψ
𝑦
Ψ
𝑥

− Υ
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑥
− Υ
𝑇
𝑇
𝑦
Ψ
𝑥
+ 𝜁
𝑦
𝑇
𝑥
Ψ
𝑥

+ 𝜁
Ψ
𝑇
𝑥
Ψ
𝑦
Ψ
𝑥
+ 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑥
Ψ
𝑥

+ 𝜁
𝑇
𝑇
𝑦
𝑇
𝑥
Ψ
𝑥
+ 𝛾
𝑦
𝑇
𝑦
Ψ
𝑥
+ 𝛾
Ψ
𝑇
𝑦
Ψ
𝑦
Ψ
𝑥

+ 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑦
Ψ
𝑥
+ 𝜁
𝑇
𝑇
𝑦
𝑇
𝑦
Ψ
𝑥
− Φ
𝑥
𝑇
𝑦

− Φ
Ψ
𝑇
𝑦
Ψ
𝑥
− Φ
𝑢
𝑒

𝑇
𝑦
(𝑢
𝑒
)
𝑥
− Φ
𝑇
𝑇
𝑦
𝑇
𝑥

+ 𝜁
𝑥
Ψ
𝑥
𝑇
𝑦
+ 𝜁
Ψ
Ψ
𝑥
Ψ
𝑥
𝑇
𝑦
+ 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
𝑇
𝑦

+ 𝜁
𝑇
𝑇
𝑥
Ψ
𝑥
𝑇
𝑦
+ 𝛾
𝑥
Ψ
𝑦
𝑇
𝑦
+ 𝛾
Ψ
Ψ
𝑥
Ψ
𝑦
𝑇
𝑦

+ 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑥
Ψ
𝑥
𝑇
𝑦
+ 𝛾
𝑇
𝑇
𝑥
Ψ
𝑦
𝑇
𝑦
+ Φ
𝑦
𝑇
𝑥

+ Φ
Ψ
𝑇
𝑥
Ψ
𝑦
+ Φ
𝑢
𝑒

𝑇
𝑥
(𝑢
𝑒
)
𝑦
+ Φ
𝑇
𝑇
𝑥
𝑇
𝑦

− 𝜁
𝑦
Ψ
𝑥
𝑇
𝑥
− 𝜁
Ψ
Ψ
𝑥
Ψ
𝑦
𝑇
𝑥
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑥
𝑇
𝑥

− 𝜁
𝑇
𝑇
𝑦
Ψ
𝑥
𝑇
𝑥
− 𝛾
𝑦
Ψ
𝑦
𝑇
𝑥
− 𝛾
Ψ
Ψ
𝑦
Ψ
𝑦
𝑇
𝑥

− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑦
Ψ
𝑦
𝑇
𝑥
− 𝛾
𝑇
𝑇
𝑦
Ψ
𝑦
𝑇
𝑥

− 𝛼 [Υ
𝑦𝑦
+ Υ
Ψ𝑦
Ψ
𝑦
+ Υ
Ψ
Ψ
𝑦𝑦
+ Υ
𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑦

+ Υ
𝑢
𝑒

(𝑢
𝑒
)
𝑦𝑦
+ Υ
𝑇𝑦
𝑇
𝑦
+ Υ
𝑇
𝑇
𝑦𝑦
− 𝜁
𝑦𝑦
𝑇
𝑥

− 𝜁
𝑦
𝑇
𝑥𝑦
− 𝜁
Ψ𝑦
𝑇
𝑥
Ψ
𝑦
− 𝜁
Ψ
𝑇
𝑥𝑦
Ψ
𝑦

− 𝜁
Ψ
𝑇
𝑥
Ψ
𝑦𝑦
− 𝜁
𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑦
𝑇
𝑥
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦𝑦
𝑇
𝑥

− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑥𝑦
− 𝜁
𝑇𝑦
𝑇
𝑦
𝑇
𝑥
− 𝜁
𝑇
𝑇
𝑦𝑦
𝑇
𝑥

− 𝜁
𝑇
𝑇
𝑦
𝑇
𝑥𝑦
− 𝛾
𝑦𝑦
𝑇
𝑦
− 𝛾
𝑦
𝑇
𝑦𝑦
− 𝛾
Ψ𝑦
𝑇
𝑦
Ψ
𝑦

− 𝛾
Ψ
𝑇
𝑦𝑦
Ψ
𝑦
− 𝛾
Ψ
𝑇
𝑦
Ψ
𝑦𝑦
− 𝜁
𝑢
𝑒
𝑦
(𝑢
𝑒
)
𝑦
𝑇
𝑦

− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦𝑦
𝑇
𝑦
− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑦𝑦
− 𝜁
𝑇𝑦
𝑇
𝑦
𝑇
𝑦

− 𝜁
𝑇
𝑇
𝑦𝑦
𝑇
𝑦
− 𝜁
𝑇
𝑇
𝑦
𝑇
𝑦𝑦
− 𝜁
𝑦
𝑇
𝑦𝑥
− 𝜁
Ψ
𝑇
𝑦𝑥
Ψ
𝑦

− 𝜁
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑦𝑥
− 𝜁
𝑇
𝑇
𝑦
𝑇
𝑦𝑥
− 𝛾
𝑦
𝑇
𝑦𝑦

−𝛾
Ψ
𝑇
𝑦𝑦
Ψ
𝑦
− 𝛾
𝑢
𝑒

(𝑢
𝑒
)
𝑦
𝑇
𝑦𝑦
− 𝛾
𝑇
𝑇
𝑦
𝑇
𝑦𝑦
] = 0.

(A.1)
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List of Symbols

𝑎, 𝑏, and 𝑐: Constants
𝑔: Acceleration due to gravity (ms−2)
𝑓: Dimensionless stream function
Gr
𝑥
: Local Grashof number

Pr: Prandtl number
Re
𝑥
: Local Reynolds number

𝑇: Fluid temperature (K)
𝑇
∞
: Ambient temperature (K)

𝑇
𝑤(𝑥)

: Temperature of the stretching surface (K)
𝑢, V: Velocity components along the 𝑥 and 𝑦

directions, respectively,
𝑢
𝑒(𝑥)

: Velocity of external flow (ms−1)
𝑢
𝑤(𝑥)

: Velocity of the stretching surface (ms−1)
𝑥, 𝑦: Cartesian coordinates along the surface and

normal to it, respectively, (m).

Greek Symbols

𝛼: Thermal diffusivity (m2 s−1)
𝛽: Thermal expansion coefficient (K−1)
𝜂: Pseudo-similarity variable
𝜃: Dimensionless temperature
𝜆: Buoyancy parameter
𝜈: Kinematic viscosity (m2 s−1)
Ψ: Stream function.

Subscripts

𝑤: Condition at the stretching sheet
∞: Condition at infinity.
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