Research Article Oscillation for Higher Order Dynamic Equations on Time Scales

Taixiang Sun,¹ Qiuli He,² Hongjian Xi,³ and Weiyong Yu¹

¹ College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China

² College of Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, China

³ Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, China

Correspondence should be addressed to Taixiang Sun; stx1963@163.com

Received 15 February 2013; Accepted 26 August 2013

Academic Editor: Zhenkun Huang

Copyright © 2013 Taixiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the oscillation of the following higher order dynamic equation: $\{a_n(t)[(a_{n-1}(t)(\cdots(a_1(t)x^{\Delta}(t))^{\Delta}\cdots)^{\Delta})^{\Delta}]^{\alpha}\}^{\Delta} + p(t)x^{\beta}(t) = 0$, on some time scale **T**, where $n \ge 2$, $a_k(t)$ $(1 \le k \le n)$ and p(t) are positive rd-continuous functions on **T** and α, β are the quotient of odd positive integers. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.

1. Introduction

In this paper, we investigate the oscillation of the following higher order dynamic equation:

$$\begin{cases} a_n(t) \left[\left(a_{n-1}(t) \left(\cdots \left(a_1(t) x^{\Delta}(t) \right)^{\Delta} \cdots \right)^{\Delta} \right)^{\Delta} \right]^{\alpha} \\ + p(t) x^{\beta}(t) = 0, \end{cases}$$
(E)

on some time scale T, where $n \ge 2$, $a_k(t)$ $(1 \le k \le n)$ and p(t) are positive rd-continuous functions on T and α , β are the quotient of odd positive integers. Write

$$S_{k}(t, x(t)) = \begin{cases} x(t), & \text{if } k = 0, \\ a_{k}(t) S_{k-1}^{\Delta}(t, x(t)), & \text{if } 1 \le k \le n-1, \\ a_{n}(t) \left[S_{n-1}^{\Delta}(t, x(t)) \right]^{\alpha}, & \text{if } k = n, \end{cases}$$
(1)

then (*E*) reduces to the following equation:

$$S_{n}^{\Delta}(t, x(t)) + p(t) x^{\beta}(t) = 0.$$
(2)

Since we are interested in the oscillatory behavior of solutions near infinity, we assume that $\sup \mathbf{T} = \infty$ and $t_0 \in \mathbf{T}$ is a constant. For any $a \in \mathbf{T}$, we define the time scale interval $[a, \infty)_{\mathbf{T}} = \{t \in \mathbf{T} : t \ge a\}$. By a solution of (2), we mean

a nontrivial real-valued function $x(t) \in C^1_{rd}[T_x, \infty), T_x \ge t_0$, which has the property that $S_k(t, x(t)) \in C^1_{rd}[T_x, \infty)$ for $0 \le k \le n$ and satisfies (2) on $[T_x, \infty)$, where C^1_{rd} is the space of differentiable functions whose derivative is rd-continuous. The solutions vanishing in some neighborhood of infinity will be excluded from our consideration. A solution x(t) of (2) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise it is called nonoscillatory.

The theory of time scale, which has recently received a lot of attention, was introduced by Hilger's landmark paper [1], a rapidly expanding body of the literature that has sought to unify, extend, and generalize ideas from discrete calculus, quantum calculus, and continuous calculus to arbitrary time scale calculus, where a time scale is an nonempty closed subset of the real numbers, and the cases when this time scale is equal to the real numbers or to the integers represent the classical theories of differential or of difference equations. Many other interesting time scales exist, and they give rise to many applications (see [2]). The new theory of the so-called "dynamic equations" not only unifies the theories of differential equations and difference equations, but also extends these classical cases to cases "in between," for example, to the so-called q-difference equations when T = $\{1, q, q^2, \dots, q^k, \dots\}$, which has important applications in quantum theory (see [3]). In this work, knowledge and understanding of time scales and time scale notation are assumed; for an excellent introduction to the calculus on time scales, see Bohner and Peterson [2, 4]. In recent years, there has been much research activity concerning the oscillation and nonoscillation of solutions of various equations on time scales, and we refer the reader to the papers [5–20].

Recently, Erbe et al. in [21–23] considered the third-order dynamic equations

$$\left(a\left(t\right)\left[r\left(t\right)x^{\Delta}\left(t\right)\right]^{\Delta}\right)^{\Delta} + p\left(t\right)f\left(x\left(t\right)\right) = 0,$$

$$x^{\Delta\Delta\Delta}\left(t\right) + p\left(t\right)x\left(t\right) = 0,$$
(3)

$$\left(a\left(t\right)\left\{\left[r\left(t\right)x^{\Delta}\left(t\right)\right]^{\Delta}\right\}^{T}\right)^{-}+f\left(t,x\left(t\right)\right)=0,$$

respectively, and established some sufficient conditions for oscillation.

Hassan [24] studied the third-order dynamic equations

$$\left(a\left(t\right)\left\{\left[r\left(t\right)x^{\Delta}\left(t\right)\right]^{\Delta}\right\}^{\gamma}\right)^{\Delta}+f\left(t,x\left(\tau\left(t\right)\right)\right)=0\qquad(4)$$

and obtained some oscillation criteria, which improved and extended the results that have been established in [21–23].

2. Main Results

In this section, we investigate the oscillation of (2). To do this, we need the following lemmas.

Lemma 1 (see [25]). Assume that

$$\int_{t_0}^{\infty} \left[\frac{1}{a_n(s)}\right]^{1/\alpha} \Delta s = \int_{t_0}^{\infty} \frac{\Delta s}{a_i(s)} = \infty \quad \forall 1 \le i \le n-1, \quad (5)$$

and $1 \le m \le n$. Then,

- (1) $\liminf_{t \to \infty} S_m(t, x(t)) > 0$ implies $\lim_{t \to \infty} S_i(t, x(t)) = \infty$ for $0 \le i \le m 1$;
- (2) $\lim_{t \to \infty} \sup_{t \to \infty} S_m(t, x(t)) < 0 \quad implies \quad \lim_{t \to \infty} S_i(t, x(t)) = -\infty \text{ for } 0 \le i \le m 1.$

Lemma 2 (see [25]). Assume that (5) holds. If $S_n^{\Delta}(t, x(t)) < 0$ and x(t) > 0 for $t \ge t_0$, then there exists an integer $0 \le m \le n$ with m + n even such that

(1)
$$(-1)^{m+i}S_i(t, x(t)) > 0$$
 for $t \ge t_0$ and $m \le i \le n$;

(2) if m > 1, then there exists $T \ge t_0$ such that $S_i(t, x(t)) > 0$ for $1 \le i \le m - 1$ and $t \ge T$.

Remark 3. Let $a_n(t) = \cdots = a_1(t) = 1$, and let T be the set of integers. Then, Lemmas 1 and 2 are Lemma 1.8.10 and Theorem 1.8.11 of [26], respectively.

Lemma 4. Assume that (5) holds. Furthermore, suppose that

$$\int_{t_0}^{\infty} \frac{1}{a_{n-1}(u)} \left\{ \int_{u}^{\infty} \left[\frac{1}{a_n(s)} \int_{s}^{\infty} p(v) \,\Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u = \infty.$$
(6)

If x(t) is an eventually positive solution of (2), then there exists $T \ge t_0$ sufficiently large such that

(1)
$$S_n^{\Delta}(t, x(t)) < 0$$
 for $t \ge T$;

(2) either $S_i(t, x(t)) > 0$ for $t \ge T$ and $0 \le i \le n$ or $\lim_{t \to \infty} x(t) = 0$.

Proof. Pick $t_1 \ge t_0$ so that x(t) > 0 on $[t_1, \infty)_{T}$. It follows from (2) that

$$S_{n}^{\Delta}(t, x(t)) = -p(t) x^{\beta}(t) < 0 \quad \text{for } t \ge t_{1}.$$
 (7)

By Lemma 2, we see that there exists an integer $0 \le m \le n$ with m + n even such that $(-1)^{m+i}S_i(t, x(t)) > 0$ for $t \ge t_1$ and $m \le i \le n$, and x(t) is eventually monotone.

We claim that $\lim_{t\to\infty} x(t) \neq 0$ implies m = n. If not, then $S_{n-1}(t, x(t)) < 0$ ($t \ge t_1$) and $S_{n-2}(t, x(t)) > 0$ ($t \ge t_1$), and there exist $t_2 \ge t_1$ and a constant c > 0 such that $x(t) \ge c$ on $[t_2, \infty)_{\mathbf{T}}$. Integrating (2) from t into ∞ , we get that for $t \ge t_2$

$$-a_{n}(t)\left[S_{n-1}^{\Delta}(t,x(t))\right]^{\alpha} = -S_{n}(t,x(t)) \leq -c^{\beta} \int_{t}^{\infty} p(v) \,\Delta v.$$
(8)

Thus,

$$S_{n-1}(t, x(t)) \leq -c^{\beta/\alpha} \\ \times \int_{t}^{\infty} \left[\frac{1}{a_{n}(s)} \int_{s}^{\infty} p(v) \,\Delta v \right]^{1/\alpha} \Delta s \quad \text{for } t \geq t_{2}.$$
(9)

Again, integrating the above inequality from t_2 into t, we obtain that for $t \ge t_2$

$$S_{n-2}(t, x(t))$$

$$\leq S_{n-2}(t_2, x(t_2))$$

$$-c^{\beta/\alpha} \int_{t_2}^t \frac{1}{a_{n-1}(u)} \left\{ \int_u^\infty \left[\frac{1}{a_n(s)} \times \int_s^\infty p(v) \, \Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u.$$
(10)

It follows from (6) that $\lim_{t\to\infty} S_{n-2}(t, x(t)) = -\infty$, which is a contradiction to $S_{n-2}(t, x(t)) > 0$ $(t \ge t_1)$. The proof is completed.

Lemma 5. Assume that x(t) is an eventually positive solution of (2) such that $S_n^{\Delta}(t, x(t)) < 0$ for $t \ge T \ge t_0$ and $S_i(t, x(t)) > 0$ for $t \ge T$ and $0 \le i \le n$. Then,

$$S_{i}(t, x(t)) \ge S_{n}^{1/\alpha}(t, x(t)) B_{i+1}(t, T)$$

for $0 \le i \le n-1, \quad t \ge T,$ (11)

and there exist $T_1 > T$ and a constant c > 0 such that

$$x(t) \le cB_1(t,T) \quad for t \ge T_1, \tag{12}$$

where

$$B_{i}(t,T) = \begin{cases} \int_{T}^{t} \left[\frac{1}{a_{n}(s)}\right]^{1/\alpha} \Delta s, & \text{if } i = n, \\ \int_{T}^{t} \frac{B_{i+1}(s,T)}{a_{i}(s)} \Delta s, & \text{if } 1 \le i \le n-1. \end{cases}$$
(13)

Proof. Since $S_n^{\Delta}(t, x(t)) < 0$ $(t \ge T)$, it follows that $S_n(t, x(t))$ is strictly decreasing on $[T, \infty)_T$. Then, for $t \ge T$,

$$S_{n-1}(t, x(t)) \ge S_{n-1}(t, x(t)) - S_{n-1}(T, x(T))$$

= $\int_{T}^{t} \left[\frac{S_n(s, x(s))}{a_n(s)} \right]^{1/\alpha} \Delta s$
 $\ge S_n^{1/\alpha}(t, x(t)) B_n(t, T)$

 $S_{n-2}(t, x(t)) \ge S_{n-2}(t, x(t)) - S_{n-2}(T, x(T))$

$$= \int_{T}^{t} \frac{S_{n-1}(s, x(s))}{a_{n-1}(s)} \Delta s$$

$$\geq S_{n}^{1/\alpha}(t, x(t)) B_{n-1}(t, T)$$

$$S_{1}(t, x(t)) \ge S_{1}(t, x(t)) - S_{1}(T, x(T))$$

$$= \int_{T}^{t} \frac{S_{2}(s, x(s))}{a_{2}(s)} \Delta s \ge S_{n}^{1/\alpha}(t, x(t)) B_{2}(t, T)$$

$$S_{0}(t, x(t)) \ge x(t) - x(T)$$

$$= \int_{T}^{t} \frac{S_{1}(s, x(s))}{a_{1}(s)} \Delta s \ge S_{n}^{1/\alpha}(t, x(t)) B_{1}(t, T).$$
(14)

On the other hand, we have that for $t \ge T$,

$$S_{n-1}(t, x(t)) = \int_{T}^{t} \left[\frac{S_n(s, x(s))}{a_n(s)} \right]^{1/\alpha} \Delta s + S_{n-1}(T, x(T))$$

$$\leq S_{n-1}(T, x(T)) + S_n^{1/\alpha}(T, x(T)) B_n(t, T).$$
(15)

Thus, there exist $T_1 > T$ and a constant $b_1 > 0$ such that

$$S_{n-1}(t, x(t)) \le b_1 B_n(t, T) \quad \text{for } t \ge T_1.$$
 (16)

Again,

$$S_{n-2}(t, x(t)) = S_{n-2}(T_1, x(T_1)) + \int_{T_1}^t \frac{S_{n-1}(s, x(s))}{a_{n-1}(s)} \Delta s$$

$$\leq S_{n-2}(T_1, x(T_1)) + b_1 \int_{T}^t \frac{B_n(s, T)}{a_{n-1}(s)} \Delta s.$$
 (17)

Thus, there exists a constant $b_2 > 0$ such that

$$S_{n-2}(t, x(t)) \le b_2 \int_T^t \frac{B_n(s, T)}{a_{n-1}(s)} \Delta s$$

= $b_2 B_{n-1}(t, T)$ for $t \ge T_1$. (18)

Again,

$$S_{n-3}(t, x(t)) = S_{n-3}(T_1, x(T_1)) + \int_{T_1}^t \frac{S_{n-2}(s, x(s))}{a_{n-2}(s)} \Delta s$$

$$\leq S_{n-3}(T_1, x(T_1)) + b_2 \int_T^t \frac{B_{n-1}(s, T)}{a_{n-2}(s)} \Delta s.$$
(19)

Thus, there exists a constant $b_3 > 0$ such that

$$S_{n-3}(t, x(t)) \le b_3 \int_T^t \frac{B_{n-1}(s, T)}{a_{n-2}(s)} \Delta s$$

= $b_3 B_{n-2}(t, T)$ for $t \ge T_1$. (20)

The rest of the proof is by induction. The proof is completed. $\hfill \Box$

Lemma 6 (see [2]). Let $f : \mathbf{R} \to \mathbf{R}$ be continuously differentiable and suppose that $g : \mathbf{T} \to \mathbf{R}$ is delta differentiable. Then, $f \circ g$ is delta differentiable and the formula

$$(f \circ g)^{\Delta}(t) = g^{\Delta}(t) \int_{0}^{1} f'(hg(t) + (1-h)g^{\sigma}(t)) dh.$$
(21)

Lemma 7 (see [27]). *If A*, *B are nonnegative and* $\lambda > 1$, *then*

$$A^{\lambda} - \lambda A B^{\lambda - 1} + (\lambda - 1) B^{\lambda} \ge 0.$$
⁽²²⁾

Now, we state and prove our main results.

Theorem 8. Suppose that (5) and (6) hold. If there exists a positive nondecreasing delta differentiable function θ such that for all sufficiently large $T \in [t_0, \infty)_T$ and for any positive constants c_1, c_2 , there is a $T_1 > T$ such that

$$\limsup_{t \to \infty} \int_{T_1}^t \left[\theta(s) p(s) - \frac{\theta^{\Delta}(s)}{B_1^{\alpha}(s,T)} \delta_1(t,T,c_1,c_2) \right] \Delta s = \infty,$$
(23)

where

$$\delta_1(t, T, c_1, c_2) = \begin{cases} c_1, & \text{if } \alpha < \beta, \\ 1, & \text{if } \alpha = \beta, \\ c_2 B_1^{\alpha - \beta}(t, T), & \text{if } \alpha > \beta, \end{cases}$$
(24)

and $B_1(t,T)$ is as in Lemma 5. Then, every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution x(t) on $[t_0, \infty)_{\mathbf{T}}$. Then, without loss of generality, there is a $t_1 \ge t_0$, sufficiently large, such that x(t) > 0 for $t \ge t_1$. Therefore, we get from Lemma 4 that there exists $t_2 \ge t_1$ such that

or

(35)

Let $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$. Consider

$$w(t) = \theta(t) \frac{S_n(t, x(t))}{x^{\beta}(t)} \quad \text{for } t \ge t_2.$$
(25)

It follows from Lemma 6 that

$$\left(x^{\beta}\right)^{\Delta}(t) = \beta x^{\Delta}(t) \int_{0}^{1} \left(hx(t) + (1-h)x(t)^{\sigma}\right)^{\beta-1} dh > 0$$

for $t \ge t_{2}$.
(26)

Then,

$$w^{\Delta} = \left[\frac{\theta}{x^{\beta}}\right]^{\Delta} S_{n}^{\sigma}(\cdot, x) + \frac{\theta}{x^{\beta}} S_{n}^{\Delta}(\cdot, x)$$
$$= \left[\frac{\theta^{\Delta}}{(x^{\beta})^{\sigma}} - \frac{\theta(x^{\beta})^{\Delta}}{x^{\beta}(x^{\beta})^{\sigma}}\right] S_{n}^{\sigma}(\cdot, x) - \theta p \qquad (27)$$
$$\leq \frac{\theta^{\Delta}}{x^{\beta}} S_{n}(\cdot, x) - \theta p.$$

From (11) and (27), we get

$$w^{\Delta}(t) \leq \frac{\theta^{\Delta}(t)}{B_{1}^{\alpha}(t,t_{2})} x^{\alpha-\beta}(t) - \theta(t) p(t) \quad \text{for } t \geq t_{2}.$$
(28)

Now, we consider the following three cases.

Case 1. If $\alpha = \beta$, then

$$x^{\alpha-\beta}(t) = 1 \quad \text{for } t \ge t_2. \tag{29}$$

Case 2. If $\alpha > \beta$, then it follows from (12) that there exist $t_3 > t_2$ and a constant $c_2 > 0$ such that

$$x^{\alpha-\beta}(t) \le c_2 B_1^{\alpha-\beta}(t,t_2) \quad \text{for } t \ge t_3.$$
(30)

Case 3. If $\alpha < \beta$, then

$$x(t) \ge x(t_2) \quad \text{for } t \ge t_2. \tag{31}$$

Thus,

$$x^{\alpha-\beta}(t) \le c_1 = x^{\alpha-\beta}(t_2) \quad \text{for } t \ge t_2.$$
(32)

From (27)–(32), we obtain

$$w^{\Delta}(t) \le \frac{\theta^{\Delta}(t)}{B_{1}^{\alpha}(t,t_{2})} \delta_{1}(t,t_{2},c_{1},c_{2}) - \theta(t) p(t) \quad \text{for } t \ge t_{3}.$$
(33)

Integrating the above inequality from t_3 into t, we have

$$\int_{t_{3}}^{t} \left[\theta(s) p(s) - \frac{\theta^{\Delta}(s)}{B_{1}^{\alpha}(s, t_{2})} \delta_{1}(s, t_{2}, c_{1}, c_{2}) \right] \Delta s \leq w(t_{3}) < \infty$$

$$(34)$$

which gives a contradiction to (23). The proof is completed. $\hfill\square$

Theorem 9. Suppose that (5) and (6) hold. If there exists a positive nondecreasing delta differentiable function θ such that for all sufficiently large $T \in [t_0, \infty)_T$ and for any positive constants c_1, c_2 , there is a $T_1 > T$ such that

$$\begin{split} \limsup_{t \to \infty} \int_{T_1}^t \left[\theta\left(s\right) p\left(s\right) \\ &- \frac{\left(\alpha/\beta\right)^{\alpha} \left(\theta^{\Delta}\left(s\right)\right)^{\alpha+1} a_1^{\alpha}\left(s\right)}{\left(\alpha+1\right)^{\alpha+1} \left(B_2\left(s,T\right) \theta\left(s\right) \delta_2\left(s,T,c_1,c_2\right)\right)^{\alpha}} \right] \Delta s \\ &= \infty, \end{split}$$

where

$$\delta_{2}(t,T,c_{1},c_{2}) = \begin{cases} c_{1} & \text{if } \alpha < \beta, \\ 1, & \text{if } \alpha = \beta, \\ c_{2}B_{1}^{(\beta/\alpha)-1}(\sigma(t),T), & \text{if } \alpha > \beta, \end{cases}$$
(36)

and $B_1(t, T)$, $B_2(t, T)$ are as in Lemma 5. Then, every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution x(t) on $[t_0, \infty)_T$. Then, without loss of generality, there is a $t_1 \ge t_0$, sufficiently large, such that x(t) > 0 for $t \ge t_1$. Therefore, we get from Lemma 4 that there exists $t_2 \ge t_1$ such that

(i)
$$S_n^{\Delta}(t, x(t)) < 0$$
 for $t \ge t_2$;

(ii) either $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$ or $\lim_{t \to \infty} x(t) = 0$.

Let $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$. Note that

$$(x^{\beta})^{\Delta} = \beta x^{\Delta} \int_{0}^{1} (hx + (1-h) x^{\sigma})^{\beta-1} dh$$

$$= \beta x^{\Delta} \int_{0}^{1} \frac{(hx + (1-h) x^{\sigma})^{\beta}}{hx + (1-h) x^{\sigma}} dh$$

$$\ge \beta x^{\Delta} \frac{x^{\beta}}{x^{\sigma}}.$$

$$(37)$$

From (11), we have

$$\frac{\left(x^{\beta}\right)^{\Delta}}{x^{\beta}} \ge \beta \frac{x^{\Delta}}{x^{\sigma}} \ge \beta \frac{S_{n}^{1/\alpha}\left(\cdot, x\right) B_{2}\left(\cdot, t_{2}\right)}{a_{1}x^{\sigma}} \\
\ge \beta \frac{\left(S_{n}^{\sigma}\left(\cdot, x\right)\right)^{1/\alpha} B_{2}\left(\cdot, t_{2}\right)}{a_{1}x^{\sigma}} \\
= \beta \frac{\left(w^{\sigma}\right)^{1/\alpha}}{a_{1}\left(\theta^{\sigma}\right)^{1/\alpha}} \left(x^{\sigma}\right)^{\left(\beta/\alpha\right)-1} B_{2}\left(\cdot, t_{2}\right).$$
(38)

Then it follows from (27) that for $t \ge t_2$,

$$w^{\Delta} = \left[\frac{\theta}{x^{\beta}}\right]^{\Delta} S_{n}^{\sigma}(\cdot, x) + \frac{\theta}{x^{\beta}} S_{n}^{\Delta}(\cdot, x)$$
$$= \left[\frac{\theta^{\Delta}}{\left(x^{\beta}\right)^{\sigma}} - \frac{\theta\left(x^{\beta}\right)^{\Delta}}{x^{\beta}\left(x^{\beta}\right)^{\sigma}}\right] S_{n}^{\sigma}(\cdot, x) - \theta p$$
$$\leq \theta^{\Delta} \frac{w^{\sigma}}{\theta^{\sigma}} - \beta \frac{B_{2}\left(\cdot, t_{2}\right) \theta}{a_{1}} \frac{\left(w^{\sigma}\right)^{1+(1/\alpha)}}{\left(\theta^{\sigma}\right)^{1+(1/\alpha)}} \left(x^{\sigma}\right)^{\left(\beta/\alpha\right)-1} - \theta p.$$
(39)

Now, we consider the following three cases.

Case 1. If $\alpha = \beta$, then

$$(x^{\sigma})^{(\beta/\alpha)-1}(t) = 1 \quad \text{for } t \ge t_2.$$
 (40)

Case 2. If $\alpha > \beta$, then it follows from (12) that there exist

 $t_3 > t_2$ and a constant *c* such that

$$x(t) \le cB_1(t, t_2) \quad \text{for } t \ge t_3. \tag{41}$$

Thus,

$$(x^{\sigma})^{(\beta/\alpha)-1}(t) \ge c_2 B_1^{(\beta/\alpha)-1}(\sigma(t), t_2), \qquad (42)$$

with $c_2 = c^{(\beta/\alpha)-1}$.

Case 3. If $\alpha < \beta$, then

$$x(t) \ge x(t_2) \quad \text{for } t \ge t_2.$$
 (43)

Thus,

$$(x^{\sigma})^{(\beta/\alpha)-1}(t) \ge c_1 = x^{(\beta/\alpha)-1}(t_2).$$
 (44)

From (39)–(44), we obtain that for $t \ge t_3$,

$$w^{\Delta} \leq \frac{w^{\sigma}}{\theta^{\sigma}} \theta^{\Delta} - \frac{\beta B_{2}\left(\cdot, t_{2}\right) \theta \delta_{2}\left(\cdot, t_{2}, c_{1}, c_{2}\right)}{a_{1}} \frac{\left(w^{\sigma}\right)^{1+\left(1/\alpha\right)}}{\left(\theta^{\sigma}\right)^{1+\left(1/\alpha\right)}} - \theta p$$

$$= -\frac{\beta B_{2}\left(\cdot, t_{2}\right) \theta \delta_{2}\left(\cdot, t_{2}, c_{1}, c_{2}\right)}{a_{1}}$$

$$\times \left\{ \frac{\left(w^{\sigma}\right)^{1+\left(1/\alpha\right)}}{\left(\theta^{\sigma}\right)^{1+\left(1/\alpha\right)}} - \frac{w^{\sigma}}{\theta^{\sigma}} \frac{a_{1}\theta^{\Delta}}{\beta B_{2}\left(\cdot, t_{2}\right) \theta \delta_{2}\left(\cdot, t_{2}, c_{1}, c_{2}\right)} \right\} - \theta p.$$

$$(45)$$

Let

$$A = \frac{w^{\sigma}}{\theta^{\sigma}}, \qquad B = \left[\frac{\alpha a_1 \theta^{\Delta}}{(\alpha+1)\beta B_2(\cdot, t_2)\theta \delta_2(\cdot, t_2, c_1, c_2)}\right]^{\alpha},$$
(46)

with $\lambda = 1 + 1/\alpha$. By Lemma 7, we have

$$w^{\Delta} \leq \frac{\left(\alpha/\beta\right)^{\alpha} \left(\theta^{\Delta}\right)^{\alpha+1} a_{1}^{\alpha}}{\left(\alpha+1\right)^{\alpha+1} \left(B_{2}\left(\cdot,t_{2}\right) \theta \delta_{2}\left(\cdot,t_{2},c_{1},c_{2}\right)\right)^{\alpha}} - \theta p. \quad (47)$$

Integrating the above inequality from t_3 into t, it follows that

$$\int_{t_{3}}^{t} \left[\theta(s) p(s) - \frac{(\alpha/\beta)^{\alpha} (\theta^{\Delta}(s))^{\alpha+1} a_{1}^{\alpha}(s)}{(\alpha+1)^{\alpha+1} (B_{2}(s,t_{2}) \theta(s) \delta_{2}(s,t_{2},c_{1},c_{2}))^{\alpha}} \right] \Delta s$$

$$\leq w(t_{3}) < \infty,$$
(48)

which gives a contradiction to (35). The proof is completed. $\hfill\square$

Remark 10. The trick used in the proofs of Theorems 8 and 9 is from [16].

Theorem 11. Suppose that (5) and (6) hold. If for all sufficiently large $T \in [t_0, \infty)_T$,

$$\int_{T}^{\infty} p(u) \left[\int_{T}^{u} \frac{\Delta s}{a_{1}(s)} \right]^{\beta} \Delta u = \infty,$$
(49)

then every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution x(t) on $[t_0, \infty)_{\mathbf{T}}$. Then, without loss of generality, there is a $t_1 \ge t_0$, sufficiently large, such that x(t) > 0 for $t \ge t_1$. Therefore, we get from Lemma 4 that there exists $t_2 \ge t_1$ such that

(i) S[∆]_n(t, x(t)) < 0 for t ≥ t₂;
(ii) either S_i(t, x(t)) > 0 for t ≥ t₂ and 0 ≤ i ≤ n or lim_{t→∞}x(t) = 0.

Let $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$. Then, for $t \ge t_2$,

$$x(t) = x(t_{2}) + \int_{t_{2}}^{t} \frac{S_{1}(s, x(s))}{a_{1}(s)} \Delta s$$

$$\geq S_{1}(t_{2}, x(t_{2})) \int_{t_{2}}^{t} \frac{\Delta s}{a_{1}(s)}.$$
(50)

It follows from (2) that

$$-S_{n}^{\Delta}(t,x(t)) \ge p(t) \left[S_{1}(t_{2},x(t_{2})) \int_{t_{2}}^{t} \frac{\Delta s}{a_{1}(s)} \right]^{\beta}.$$
 (51)

Integrating the above inequality from t_2 into ∞ , we have

$$S_{n}(t_{2},x(t_{2})) \geq S_{1}^{\beta}(t_{2},x(t_{2})) \int_{t_{2}}^{\infty} p(u) \left[\int_{t_{2}}^{u} \frac{\Delta s}{a_{1}(s)}\right]^{\beta} \Delta u,$$
(52)

which gives a contradiction to (49). The proof is completed. $\hfill \Box$

Theorem 12. Suppose that (5) and (6) hold. If for all sufficiently large $T \in [t_0, \infty)_T$,

$$\limsup_{t \to \infty} B_1^{\alpha}(t,T) \,\delta_3\left(t,T,c_1,c_2\right) \int_t^{\infty} p(s) \,\Delta s > 1, \qquad (53)$$

where

$$\delta_{3}(t, T, c_{1}, c_{2}) = \begin{cases} c_{1}, c_{1} \text{ is any positive constant,} \\ & \text{if } \alpha < \beta, \\ 1, & \text{if } \alpha = \beta, \\ c_{2}B_{1}^{\beta - \alpha}(t, T), c_{2} \text{ is any positive constant,} \\ & \text{if } \alpha > \beta, \end{cases}$$
(54)

and $B_1(t,T)$ is as in Lemma 5, then every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution x(t) on $[t_0, \infty)$. Then, without loss of generality, there is a $t_1 \ge t_0$, sufficiently large, such that x(t) > 0 for $t \ge t_1$. Therefore, we get from Lemma 4 that there exists $t_2 \ge t_1$ such that

- (i) $S_n^{\Delta}(t, x(t)) < 0$ for $t \ge t_2$;
- (ii) either $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$ or $\lim_{t \to \infty} x(t) = 0$.

Let $S_i(t, x(t)) > 0$ for $t \ge t_2$ and $0 \le i \le n$. Then, it follows from (2) and (11) that for $t \ge t_2$,

$$\int_{t}^{\infty} p(s) x^{\beta}(s) \Delta s \leq S_{n}(t, x(t)) \leq \left[\frac{x(t)}{B_{1}(t, t_{2})}\right]^{\alpha}.$$
 (55)

Using the fact that x(t) is strictly increasing on $[t_2, \infty)_T$, we obtain

$$x^{\beta}(t) \int_{t}^{\infty} p(s) \Delta s \leq \left[\frac{x(t)}{B_{1}(t,t_{2})}\right]^{\alpha}.$$
 (56)

Thus,

$$B_{1}^{\alpha}\left(t,t_{2}\right)x^{\beta-\alpha}\left(t\right)\int_{t}^{\infty}p\left(s\right)\Delta s\leq1.$$
(57)

Now, we consider the following three cases.

Case 1. If $\alpha = \beta$, then

$$x^{\beta-\alpha}(t) = 1 \quad \text{for } t \ge t_2. \tag{58}$$

Case 2. If $\alpha > \beta$, then it follows from (12) that there exist $t_3 > t_2$ and a constant *c* such that

$$x(t) \leq cB_1(t,t_2) \quad \text{for } t \geq t_3.$$

Thus,

$$x^{\beta-\alpha}\left(t\right) \ge c_2 B_1^{\beta-\alpha}\left(t,t_2\right),\tag{60}$$

with $c_2 = c^{\beta - \alpha}$.

Case 3. If $\alpha < \beta$, then

$$x(t) \ge x(t_2) \quad \text{for } t \ge t_2.$$
 (61)

Thus,

$$x^{\beta-\alpha}(t) \ge c_1 = x^{\beta-\alpha}(t_2).$$
(62)

From (57)–(62), we obtain that for $t \ge t_3$,

$$B_{1}^{\alpha}(t,t_{2})\,\delta_{3}(t,t_{2},c_{1},c_{2})\int_{t}^{\infty}p(s)\,\Delta s\leq 1,$$
(63)

which gives a contradiction to (53). The proof is completed. $\hfill\square$

3. Examples

In this section, we give some examples to illustrate our main results.

Example 1. Consider the following higher order dynamic equation:

$$S_{n}^{\Delta}(t, x(t)) + t^{\gamma} x^{\beta}(t) = 0, \qquad (64)$$

on an arbitrary time scale T with sup T = ∞ , where $n \ge 2$, α, β and $S_k(t, x(t))$ ($0 \le k \le n$) are as in (2) with $a_n(t) = t^{\alpha-1}, a_{n-1}(t) = \cdots = a_1(t) = t$, and $\gamma > -1$. Then, every solution of (64) is either oscillatory or tends to zero.

Proof. Note that

$$\int_{t_0}^{\infty} \left[\frac{1}{a_n(s)}\right]^{1/\alpha} \Delta s = \int_{t_0}^{\infty} \left[\frac{1}{s^{\alpha-1}}\right]^{1/\alpha} \Delta s = \infty,$$
$$\int_{t_0}^{\infty} \frac{\Delta s}{a_i(s)} = \int_{t_0}^{\infty} \frac{\Delta s}{s} = \infty \quad \text{for } 1 \le i \le n-1, \qquad (65)$$
$$\int_{t_0}^{\infty} p(s) \Delta s = \int_{t_0}^{\infty} s^{\gamma} \Delta s = \infty,$$

by Example 5.60 in [4]. Pick $t_1 > t_0$ such that

$$\int_{t_0}^{t_1} \frac{1}{a_{n-1}(u)} \left\{ \int_{u}^{t_1} \left[\frac{1}{a_n(s)} \right]^{1/\alpha} \Delta s \right\} \Delta u > 0.$$
 (66)

Then,

(59)

$$\int_{t_0}^{\infty} \frac{1}{a_{n-1}(u)} \left\{ \int_{u}^{\infty} \left[\frac{1}{a_n(s)} \int_{s}^{\infty} p(v) \Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u$$
$$\geq \left[\int_{t_1}^{\infty} p(v) \Delta v \right]^{1/\alpha} \qquad (67)$$
$$\times \int_{t_0}^{t_1} \frac{1}{a_{n-1}(u)} \left(\int_{u}^{t_1} \left[\frac{1}{a_n(s)} \right]^{1/\alpha} \Delta s \right) \Delta u = \infty.$$

Let $T \in [t_0, \infty)_T$, sufficiently large, and $u_1 > T$ such that $\int_T^{u_1} (1/a_1(s)) \Delta s > 1$, then

$$\int_{T}^{\infty} p(u) \left[\int_{T}^{u} \frac{1}{a_{1}(s)} \Delta s \right]^{\beta} \Delta u$$

$$\geq \int_{u_{1}}^{\infty} p(u) \left[\int_{T}^{u} \frac{1}{a_{1}(s)} \Delta s \right]^{\beta} \Delta u \qquad (68)$$

$$\geq \int_{u_{1}}^{\infty} p(u) \Delta u = \infty.$$

Thus, conditions (5), (6), and (49) are satisfied. By Theorem 11, every solution of (64) is either oscillatory or tends to zero. \Box

Example 2. Consider the following higher order dynamic equation:

$$S_{n}^{\Delta}(t,x(t)) + \frac{1}{t^{1+\gamma}} x^{\beta}(t) = 0, \qquad (69)$$

on an arbitrary time scale T with sup $\mathbf{T} = \infty$, where $n \ge 2$, $S_k(t, x(t))$ $(0 \le k \le n)$ are as in (2) with $a_n(t) = 1, a_{n-1}(t) = t^{1/\alpha}, a_{n-2}(t) = \cdots = a_1(t) = t, 0 < \gamma < \min\{1, \beta\}$, and α, β are the quotient of odd positive integers with $\alpha \ge 1$. Then, every solution of (69) is either oscillatory or tends to zero.

Proof. Note that

$$\int_{t_0}^{\infty} \left[\frac{1}{a_n(s)}\right]^{1/\alpha} \Delta s = \int_{t_0}^{\infty} \Delta s = \infty,$$

$$\int_{t_0}^{\infty} \frac{1}{a_{n-1}(s)} \Delta s = \int_{t_0}^{\infty} \frac{1}{s^{1/\alpha}} \Delta s = \infty,$$
(70)
$$\int_{t_0}^{\infty} \frac{1}{a_i(s)} \Delta s = \int_{t_0}^{\infty} \frac{1}{s} \Delta s = \infty \quad \text{for } 1 \le i \le n-2.$$

Pick $t_1 > t_0$ such that $\int_{t_0}^{t_1} (\Delta u/u^{1/\alpha}) > 0$, then

$$\int_{t_0}^{\infty} \frac{1}{a_{n-1}(u)} \left\{ \int_{u}^{\infty} \left[\frac{1}{a_n(s)} \int_{s}^{\infty} p(v) \Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u$$

$$= \int_{t_0}^{\infty} \frac{1}{u^{1/\alpha}} \left\{ \int_{u}^{\infty} \left[\int_{s}^{\infty} \frac{1}{v^{\gamma+1}} \Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u$$

$$\geq \frac{1}{\gamma} \int_{t_0}^{\infty} \frac{1}{u^{1/\alpha}} \left\{ \int_{u}^{\infty} \left[\int_{s}^{\infty} \frac{(v^{\gamma})^{\Delta}}{v^{\gamma}(v^{\gamma})^{\sigma}} \Delta v \right]^{1/\alpha} \Delta s \right\} \Delta u$$

$$= \frac{1}{\gamma} \int_{t_0}^{\infty} \frac{1}{u^{1/\alpha}} \left[\int_{u}^{\infty} \left(\frac{1}{s^{\gamma}} \right)^{1/\alpha} \Delta s \right] \Delta u$$

$$\geq \frac{1}{\gamma} \int_{t_0}^{t_1} \frac{1}{u^{1/\alpha}} \left[\int_{t_1}^{\infty} \left(\frac{1}{s^{\gamma}} \right)^{1/\alpha} \Delta s \right] \Delta u$$

$$= \frac{1}{\gamma} \left[\int_{t_1}^{\infty} \left(\frac{1}{s^{\gamma}} \right)^{1/\alpha} \Delta s \right] \int_{t_0}^{t_1} \frac{\Delta u}{u^{1/\alpha}}$$

$$= \infty.$$
(71)

Let $M = \max\{c_1, 1, c_2\}$ with c_1, c_2 being positive constants, $\rho = \min\{\alpha, \beta\}$, and $\gamma < \tau < \min\{1, \beta\}$. Pick $T_1 > T > 0$ such that

$$\frac{1}{t^{\gamma}} \ge \frac{2}{t^{\tau}} \ge \frac{2M}{\left[(1/2)^{n+(1/\alpha)} \left(t - 2^{n-1}T \right) \right]^{\rho}} \quad \text{for } t \ge T_1.$$
(72)

Let $\theta(t) = t$, then

$$\begin{split} B_{1}(t,T) &= \int_{T}^{t} \frac{1}{a_{1}(u_{1})} \\ &\times \left[\int_{T}^{u_{1}} \frac{1}{a_{2}(u_{2})} \\ &\times \left[\cdots \left[\int_{T}^{u_{n-2}} \frac{1}{a_{n-1}(u_{n-1})} \left[\int_{T}^{u_{n-1}} \Delta u_{n} \right]^{1/\alpha} \right] \\ &\qquad \times \Delta u_{n-1} \right] \cdots \right] \Delta u_{2} \right] \Delta u_{1} \\ &= \int_{2^{n-1}T}^{t} \frac{1}{u_{1}} \\ &\times \left[\int_{2^{n-2}T}^{u_{1}} \frac{1}{u_{2}} \left[\cdots \left[\int_{2T}^{u_{n-2}} \left[\frac{1}{u_{n-1}} \int_{T}^{u_{n-1}} \Delta u_{n} \right]^{1/\alpha} \right] \\ &\qquad \times \Delta u_{n-1} \right] \cdots \right] \Delta u_{2} \right] \Delta u_{1} \\ &\geq \left(\frac{1}{2} \right)^{n+(1/\alpha)} \left(t - 2^{n-1}T \right), \\ &\int_{T_{1}}^{t} \left[\theta(s) p(s) - \frac{\theta^{\Delta}(s)}{B_{1}^{\alpha}(s,T)} \delta_{1}(s,T) \right] \Delta s \\ &= \int_{T_{1}}^{t} \left[\frac{1}{s^{\gamma}} - \frac{1}{B_{1}^{\alpha}(s,T)} \delta_{1}(s,T,c_{1},c_{2}) \right] \Delta s \\ &\geq \int_{T_{1}}^{t} \left[\frac{2}{t^{\tau}} - \frac{M}{\left[(1/2)^{n+(1/\alpha)} (t - 2^{n-1}T) \right]^{\rho}} \right] \Delta s \\ &\geq \int_{T_{1}}^{t} \frac{1}{t^{\tau}} \Delta s. \end{split}$$

Thus,

$$\limsup_{t \to \infty} \int_{T_1}^t \left[\theta(s) p(s) - \frac{\theta^{\Delta}(s)}{B_1^{\alpha}(s,T)} \delta_1(s,T,c_1,c_2) \right] \Delta s = \infty.$$
(74)

So conditions (5), (6), and (23) are satisfied. Then, by Theorem 8, every solution of (69) is either oscillatory or tends to zero. \Box

This project is supported by NNSF of China (11261005 and 51267001), NSF of Guangxi (2011GXNSFA018135 and 2012GXNSFDA276040), and SF of ED of Guangxi (2013ZD061).

References

- S. Hilger, "Analysis on measure chains—a unified approach to continuous and discrete calculus," *Results in Mathematics*, vol. 18, no. 1-2, pp. 18–56, 1990.
- [2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA, 2001.
- [3] V. Kac and P. Cheung, Quantum Calculus, Universitext, 2002.
- [4] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003.
- [5] M. Bohner and S. H. Saker, "Oscillation of second order nonlinear dynamic equations on time scales," *The Rocky Mountain Journal of Mathematics*, vol. 34, no. 4, pp. 1239–1254, 2004.
- [6] L. Erbe, "Oscillation results for second-order linear equations on a time scale," *Journal of Difference Equations and Applications*, vol. 8, no. 11, pp. 1061–1071, 2002.
- [7] T. S. Hassan, "Oscillation criteria for half-linear dynamic equations on time scales," *Journal of Mathematical Analysis and Applications*, vol. 345, no. 1, pp. 176–185, 2008.
- [8] R. P. Agarwal, M. Bohner, and S. H. Saker, "Oscillation of second order delay dynamic equations," *The Canadian Applied Mathematics Quarterly*, vol. 13, no. 1, pp. 1–17, 2005.
- [9] M. Bohner, B. Karpuz, and Ö. Öcalan, "Iterated oscillation criteria for delay dynamic equations of first order," *Advances in Difference Equations*, vol. 2008, Article ID 458687, 12 pages, 2008.
- [10] L. Erbe, A. Peterson, and S. H. Saker, "Oscillation criteria for second-order nonlinear delay dynamic equations," *Journal of Mathematical Analysis and Applications*, vol. 333, no. 1, pp. 505– 522, 2007.
- [11] Z. Han, B. Shi, and S. Sun, "Oscillation criteria for second-order delay dynamic equations on time scales," *Advances in Difference Equations*, vol. 2007, Article ID 070730, 16 pages, 2007.
- [12] Z. Han, S. Sun, and B. Shi, "Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales," *Journal of Mathematical Analysis and Applications*, vol. 334, no. 2, pp. 847–858, 2007.
- [13] T. Sun, H. Xi, X. Peng, and W. Yu, "Nonoscillatory solutions for higher-order neutral dynamic equations on time scales," *Abstract and Applied Analysis*, vol. 2010, Article ID 428963, 16 pages, 2010.
- [14] T. Sun, H. Xi, and X. Peng, "Asymptotic behavior of solutions of higher-order dynamic equations on time scales," *Advances in Difference Equations*, vol. 2011, Article ID 237219, 14 pages, 2011.
- [15] T. Sun, H. Xi, and W. Yu, "Asymptotic behaviors of higher order nonlinear dynamic equations on time scales," *Journal of Applied Mathematics and Computing*, vol. 37, no. 1-2, pp. 177–192, 2011.
- [16] S. R. Grace, R. P. Agarwal, B. Kaymakçalan, and W. Sae-jie, "On the oscillation of certain second order nonlinear dynamic equations," *Mathematical and Computer Modelling*, vol. 50, no. 1-2, pp. 273–286, 2009.

- [17] R. P. Agarwal, M. Bohner, T. Li, and C. Zhang, "Oscillation theorems for fourth-order halflinear delay dynamic equations with damping," *Mediterranean Journal of Mathematics*, 2013.
- [18] C. Zhang, T. Li, R. P. Agarwal, and M. Bohner, "Oscillation results for fourth-order nonlinear dynamic equations," *Applied Mathematics Letters*, vol. 25, no. 12, pp. 2058–2065, 2012.
- [19] Y. Qi and J. Yu, "Oscillation criteria for fourth-order nonlinear delay dynamic equations," *Electronic Journal of Differential Equations*, vol. 2013, Article ID 740568, 11 pages, 2013.
- [20] S. R. Grace, S. Sun, and Y. Wang, "On the oscillation of fourth order strongly superlinear and strongly sublinear dynamic equations," *Journal of Applied Mathematics and Computing*, 2013.
- [21] L. Erbe, A. Peterson, and S. H. Saker, "Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales," *Journal of Computational and Applied Mathematics*, vol. 181, no. 1, pp. 92–102, 2005.
- [22] L. Erbe, A. Peterson, and S. H. Saker, "Hille and Nehari type criteria for third-order dynamic equations," *Journal of Mathematical Analysis and Applications*, vol. 329, no. 1, pp. 112– 131, 2007.
- [23] L. Erbe, A. Peterson, and S. H. Saker, "Oscillation and asymptotic behavior of a third-order nonlinear dynamic equation," *The Canadian Applied Mathematics Quarterly*, vol. 14, no. 2, pp. 129–147, 2006.
- [24] T. S. Hassan, "Oscillation of third order nonlinear delay dynamic equations on time scales," *Mathematical and Computer Modelling*, vol. 49, no. 7-8, pp. 1573–1586, 2009.
- [25] T. Sun, W. Yu, and H. Xi, "Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales," *Journal of Applied Mathematics & Informatics*, vol. 30, no. 1-2, pp. 289–304, 2012.
- [26] R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker, New York, NY, USA, 2nd edition, 2000.
- [27] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, UK, 2nd edition, 1988.