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We investigate the oscillation of the following higher order dynamic equation: {𝑎
𝑛
(𝑡)[(𝑎

𝑛−1
(𝑡)(⋅ ⋅ ⋅ (𝑎

1
(𝑡)𝑥
Δ

(𝑡))
Δ

⋅ ⋅ ⋅ )
Δ

)
Δ

]
𝛼

}
Δ

+

𝑝(𝑡)𝑥
𝛽

(𝑡) = 0, on some time scale T, where 𝑛 ≥ 2, 𝑎
𝑘
(𝑡) (1 ≤ 𝑘 ≤ 𝑛) and 𝑝(𝑡) are positive rd-continuous functions on T and

𝛼, 𝛽 are the quotient of odd positive integers. We give sufficient conditions under which every solution of this equation is either
oscillatory or tends to zero.

1. Introduction

In this paper, we investigate the oscillation of the following
higher order dynamic equation:

{𝑎
𝑛
(𝑡) [(𝑎

𝑛−1
(𝑡) (⋅ ⋅ ⋅ (𝑎

1
(𝑡) 𝑥
Δ

(𝑡))
Δ

⋅ ⋅ ⋅ )
Δ

)

Δ

]

𝛼

}

Δ

+ 𝑝 (𝑡) 𝑥
𝛽

(𝑡) = 0,

(𝐸)

on some time scale T, where 𝑛 ≥ 2, 𝑎
𝑘
(𝑡) (1 ≤ 𝑘 ≤ 𝑛) and

𝑝(𝑡) are positive rd-continuous functions on T and 𝛼, 𝛽 are
the quotient of odd positive integers. Write

𝑆
𝑘
(𝑡, 𝑥 (𝑡)) =

{{

{{

{

𝑥 (𝑡) , if 𝑘 = 0,

𝑎
𝑘
(𝑡) 𝑆
Δ

𝑘−1
(𝑡, 𝑥 (𝑡)) , if 1 ≤ 𝑘 ≤ 𝑛 − 1,

𝑎
𝑛
(𝑡) [𝑆
Δ

𝑛−1
(𝑡, 𝑥 (𝑡))]

𝛼

, if 𝑘 = 𝑛,

(1)

then (𝐸) reduces to the following equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) + 𝑝 (𝑡) 𝑥

𝛽

(𝑡) = 0. (2)

Since we are interested in the oscillatory behavior of
solutions near infinity, we assume that sup T = ∞ and 𝑡

0
∈ T

is a constant. For any 𝑎 ∈ T, we define the time scale interval
[𝑎,∞)T = {𝑡 ∈ T : 𝑡 ≥ 𝑎}. By a solution of (2), we mean

a nontrivial real-valued function 𝑥(𝑡) ∈ 𝐶
1

rd[𝑇𝑥,∞), 𝑇
𝑥
≥ 𝑡
0
,

which has the property that 𝑆
𝑘
(𝑡, 𝑥(𝑡)) ∈ 𝐶

1

rd[𝑇𝑥,∞) for
0 ≤ 𝑘 ≤ 𝑛 and satisfies (2) on [𝑇

𝑥
,∞), where 𝐶1rd is the space

of differentiable functions whose derivative is rd-continuous.
The solutions vanishing in someneighborhood of infinitywill
be excluded from our consideration. A solution 𝑥(𝑡) of (2) is
said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise it is called nonoscillatory.

The theory of time scale, which has recently received a
lot of attention, was introduced by Hilger’s landmark paper
[1], a rapidly expanding body of the literature that has sought
to unify, extend, and generalize ideas from discrete calculus,
quantum calculus, and continuous calculus to arbitrary time
scale calculus, where a time scale is an nonempty closed
subset of the real numbers, and the cases when this time
scale is equal to the real numbers or to the integers rep-
resent the classical theories of differential or of difference
equations. Many other interesting time scales exist, and they
give rise to many applications (see [2]). The new theory
of the so-called “dynamic equations” not only unifies the
theories of differential equations and difference equations,
but also extends these classical cases to cases “in between,”
for example, to the so-called 𝑞-difference equations when
T = {1, 𝑞, 𝑞

2

, . . . , 𝑞
𝑘

, . . .}, which has important applications
in quantum theory (see [3]). In this work, knowledge and
understanding of time scales and time scale notation are
assumed; for an excellent introduction to the calculus on time
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scales, see Bohner and Peterson [2, 4]. In recent years, there
has been much research activity concerning the oscillation
and nonoscillation of solutions of various equations on time
scales, and we refer the reader to the papers [5–20].

Recently, Erbe et al. in [21–23] considered the third-order
dynamic equations

(𝑎 (𝑡) [𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

)
Δ

+ 𝑝 (𝑡) 𝑓 (𝑥 (𝑡)) = 0,

𝑥
ΔΔΔ

(𝑡) + 𝑝 (𝑡) 𝑥 (𝑡) = 0,

(𝑎 (𝑡) {[𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

}
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑥 (𝑡)) = 0,

(3)

respectively, and established some sufficient conditions for
oscillation.

Hassan [24] studied the third-order dynamic equations

(𝑎 (𝑡) {[𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

}
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑥 (𝜏 (𝑡))) = 0 (4)

and obtained some oscillation criteria, which improved and
extended the results that have been established in [21–23].

2. Main Results

In this section, we investigate the oscillation of (2). To do this,
we need the following lemmas.

Lemma 1 (see [25]). Assume that

∫
∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫
∞

𝑡0

Δ𝑠

𝑎
𝑖
(𝑠)

= ∞ ∀1 ≤ 𝑖 ≤ 𝑛 − 1, (5)

and 1 ≤ 𝑚 ≤ 𝑛. Then,

(1) lim inf
𝑡→∞

𝑆
𝑚
(𝑡, 𝑥(𝑡)) > 0 implies lim

𝑡→∞
𝑆
𝑖
(𝑡,

𝑥(𝑡)) = ∞ for 0 ≤ 𝑖 ≤ 𝑚 − 1;
(2) lim sup

𝑡→∞
𝑆
𝑚
(𝑡, 𝑥(𝑡)) < 0 implies lim

𝑡→∞
𝑆
𝑖
(𝑡,

𝑥(𝑡)) = −∞ for 0 ≤ 𝑖 ≤ 𝑚 − 1.

Lemma 2 (see [25]). Assume that (5) holds. If 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0

and 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
0
, then there exists an integer 0 ≤ 𝑚 ≤ 𝑛

with𝑚 + 𝑛 even such that

(1) (−1)𝑚+𝑖𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

0
and𝑚 ≤ 𝑖 ≤ 𝑛;

(2) if𝑚 > 1, then there exists 𝑇 ≥ 𝑡
0
such that 𝑆

𝑖
(𝑡, 𝑥(𝑡)) >

0 for 1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑡 ≥ 𝑇.

Remark 3. Let 𝑎
𝑛
(𝑡) = ⋅ ⋅ ⋅ = 𝑎

1
(𝑡) = 1, and let T be the

set of integers. Then, Lemmas 1 and 2 are Lemma 1.8.10 and
Theorem 1.8.11 of [26], respectively.

Lemma 4. Assume that (5) holds. Furthermore, suppose that

∫
∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫
∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫
∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢 = ∞.

(6)

If 𝑥(𝑡) is an eventually positive solution of (2), then there exists
𝑇 ≥ 𝑡
0
sufficiently large such that

(1) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑇;

(2) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑇 and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Proof. Pick 𝑡
1
≥ 𝑡
0
so that 𝑥(𝑡) > 0 on [𝑡

1
,∞)T. It follows

from (2) that

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) = −𝑝 (𝑡) 𝑥

𝛽

(𝑡) < 0 for 𝑡 ≥ 𝑡
1
. (7)

By Lemma 2, we see that there exists an integer 0 ≤ 𝑚 ≤ 𝑛

with𝑚+𝑛 even such that (−1)𝑚+𝑖𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

1
and

𝑚 ≤ 𝑖 ≤ 𝑛, and 𝑥(𝑡) is eventually monotone.
We claim that lim

𝑡→∞
𝑥(𝑡) ̸= 0 implies𝑚 = 𝑛. If not, then

𝑆
𝑛−1

(𝑡, 𝑥(𝑡)) < 0(𝑡 ≥ 𝑡
1
) and 𝑆

𝑛−2
(𝑡, 𝑥(𝑡)) > 0 (𝑡 ≥ 𝑡

1
), and

there exist 𝑡
2
≥ 𝑡
1
and a constant 𝑐 > 0 such that 𝑥(𝑡) ≥ 𝑐 on

[𝑡
2
,∞)T. Integrating (2) from 𝑡 into∞, we get that for 𝑡 ≥ 𝑡

2

−𝑎
𝑛
(𝑡) [𝑆
Δ

𝑛−1
(𝑡, 𝑥 (𝑡))]

𝛼

= −𝑆
𝑛
(𝑡, 𝑥 (𝑡)) ≤ −𝑐

𝛽

∫
∞

𝑡

𝑝 (V) ΔV.

(8)

Thus,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≤ −𝑐
𝛽/𝛼

× ∫
∞

𝑡

[
1

𝑎
𝑛
(𝑠)

∫
∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠 for 𝑡 ≥ 𝑡
2
.

(9)

Again, integrating the above inequality from 𝑡
2
into 𝑡, we

obtain that for 𝑡 ≥ 𝑡
2

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡))

≤ 𝑆
𝑛−2

(𝑡
2
, 𝑥 (𝑡
2
))

− 𝑐
𝛽/𝛼

∫
𝑡

𝑡2

1

𝑎
𝑛−1

(𝑢)
{∫
∞

𝑢

[
1

𝑎
𝑛
(𝑠)

× ∫
∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢.

(10)

It follows from (6) that lim
𝑡→∞

𝑆
𝑛−2

(𝑡, 𝑥(𝑡)) = −∞, which
is a contradiction to 𝑆

𝑛−2
(𝑡, 𝑥(𝑡)) > 0 (𝑡 ≥ 𝑡

1
). The proof is

completed.

Lemma 5. Assume that 𝑥(𝑡) is an eventually positive solution
of (2) such that 𝑆Δ

𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑇 ≥ 𝑡

0
and 𝑆
𝑖
(𝑡, 𝑥(𝑡)) >

0 for 𝑡 ≥ 𝑇 and 0 ≤ 𝑖 ≤ 𝑛. Then,

𝑆
𝑖
(𝑡, 𝑥 (𝑡)) ≥ 𝑆

1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑖+1
(𝑡, 𝑇)

𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑡 ≥ 𝑇,
(11)

and there exist 𝑇
1
> 𝑇 and a constant 𝑐 > 0 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑇) for 𝑡 ≥ 𝑇

1
, (12)
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where

𝐵
𝑖
(𝑡, 𝑇) =

{{{{

{{{{

{

∫
𝑡

𝑇

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠, if 𝑖 = 𝑛,

∫
𝑡

𝑇

𝐵
𝑖+1

(𝑠, 𝑇)

𝑎
𝑖
(𝑠)

Δ𝑠, if 1 ≤ 𝑖 ≤ 𝑛 − 1.

(13)

Proof. Since 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 (𝑡 ≥ 𝑇), it follows that 𝑆

𝑛
(𝑡, 𝑥(𝑡))

is strictly decreasing on [𝑇,∞)T. Then, for 𝑡 ≥ 𝑇,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≥ 𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) − 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇))

= ∫
𝑡

𝑇

[
𝑆
𝑛
(𝑠, 𝑥 (𝑠))

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠

≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑛
(𝑡, 𝑇)

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) ≥ 𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) − 𝑆
𝑛−2

(𝑇, 𝑥 (𝑇))

= ∫
𝑡

𝑇

𝑆
𝑛−1

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−1

(𝑠)
Δ𝑠

≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑛−1
(𝑡, 𝑇)

...

𝑆
1
(𝑡, 𝑥 (𝑡)) ≥ 𝑆

1
(𝑡, 𝑥 (𝑡)) − 𝑆

1
(𝑇, 𝑥 (𝑇))

= ∫
𝑡

𝑇

𝑆
2
(𝑠, 𝑥 (𝑠))

𝑎
2
(𝑠)

Δ𝑠 ≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

2
(𝑡, 𝑇)

𝑆
0
(𝑡, 𝑥 (𝑡)) ≥ 𝑥 (𝑡) − 𝑥 (𝑇)

= ∫
𝑡

𝑇

𝑆
1
(𝑠, 𝑥 (𝑠))

𝑎
1
(𝑠)

Δ𝑠 ≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

1
(𝑡, 𝑇) .

(14)

On the other hand, we have that for 𝑡 ≥ 𝑇,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) = ∫
𝑡

𝑇

[
𝑆
𝑛
(𝑠, 𝑥 (𝑠))

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 + 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇))

≤ 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇)) + 𝑆
1/𝛼

𝑛
(𝑇, 𝑥 (𝑇)) 𝐵

𝑛
(𝑡, 𝑇) .

(15)

Thus, there exist 𝑇
1
> 𝑇 and a constant 𝑏

1
> 0 such that

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
1
𝐵
𝑛
(𝑡, 𝑇) for 𝑡 ≥ 𝑇

1
. (16)

Again,

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) = 𝑆
𝑛−2

(𝑇
1
, 𝑥 (𝑇
1
)) + ∫

𝑡

𝑇1

𝑆
𝑛−1

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−1

(𝑠)
Δ𝑠

≤ 𝑆
𝑛−2

(𝑇
1
, 𝑥 (𝑇
1
)) + 𝑏
1
∫
𝑡

𝑇

𝐵
𝑛
(𝑠, 𝑇)

𝑎
𝑛−1

(𝑠)
Δ𝑠.

(17)

Thus, there exists a constant 𝑏
2
> 0 such that

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
2
∫
𝑡

𝑇

𝐵
𝑛
(𝑠, 𝑇)

𝑎
𝑛−1

(𝑠)
Δ𝑠

= 𝑏
2
𝐵
𝑛−1

(𝑡, 𝑇) for 𝑡 ≥ 𝑇
1
.

(18)

Again,

𝑆
𝑛−3

(𝑡, 𝑥 (𝑡)) = 𝑆
𝑛−3

(𝑇
1
, 𝑥 (𝑇
1
)) + ∫

𝑡

𝑇1

𝑆
𝑛−2

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−2

(𝑠)
Δ𝑠

≤ 𝑆
𝑛−3

(𝑇
1
, 𝑥 (𝑇
1
)) + 𝑏
2
∫
𝑡

𝑇

𝐵
𝑛−1

(𝑠, 𝑇)

𝑎
𝑛−2

(𝑠)
Δ𝑠.

(19)

Thus, there exists a constant 𝑏
3
> 0 such that

𝑆
𝑛−3

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
3
∫
𝑡

𝑇

𝐵
𝑛−1

(𝑠, 𝑇)

𝑎
𝑛−2

(𝑠)
Δ𝑠

= 𝑏
3
𝐵
𝑛−2

(𝑡, 𝑇) for 𝑡 ≥ 𝑇
1
.

(20)

The rest of the proof is by induction. The proof is completed.

Lemma 6 (see [2]). Let 𝑓 : R → R be continuously differen-
tiable and suppose that𝑔 : T → R is delta differentiable.Then,
𝑓 ∘ 𝑔 is delta differentiable and the formula

(𝑓 ∘ 𝑔)
Δ

(𝑡) = 𝑔
Δ

(𝑡) ∫
1

0

𝑓


(ℎ𝑔 (𝑡) + (1 − ℎ) 𝑔
𝜎

(𝑡)) 𝑑ℎ. (21)

Lemma 7 (see [27]). If 𝐴, 𝐵 are nonnegative and 𝜆 > 1, then

𝐴
𝜆

− 𝜆𝐴𝐵
𝜆−1

+ (𝜆 − 1) 𝐵
𝜆

≥ 0. (22)

Now, we state and prove our main results.

Theorem 8. Suppose that (5) and (6) hold. If there exists a
positive nondecreasing delta differentiable function 𝜃 such that
for all sufficiently large 𝑇 ∈ [𝑡

0
,∞)T and for any positive

constants 𝑐
1
, 𝑐
2
, there is a 𝑇

1
> 𝑇 such that

lim sup
𝑡→∞

∫
𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ

(𝑠)

𝐵𝛼
1
(𝑠, 𝑇)

𝛿
1
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
)]Δ𝑠 = ∞,

(23)

where

𝛿
1
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) =

{{

{{

{

𝑐
1
, if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
𝛼−𝛽

1
(𝑡, 𝑇) , if 𝛼 > 𝛽,

(24)

and 𝐵
1
(𝑡, 𝑇) is as in Lemma 5. Then, every solution of (2) is

either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.
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Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Consider

𝑤 (𝑡) = 𝜃 (𝑡)
𝑆
𝑛
(𝑡, 𝑥 (𝑡))

𝑥𝛽 (𝑡)
for 𝑡 ≥ 𝑡

2
. (25)

It follows from Lemma 6 that

(𝑥
𝛽

)
Δ

(𝑡) = 𝛽𝑥
Δ

(𝑡) ∫
1

0

(ℎ𝑥 (𝑡) + (1 − ℎ) 𝑥(𝑡)
𝜎

)
𝛽−1

𝑑ℎ > 0

for 𝑡 ≥ 𝑡
2
.

(26)

Then,

𝑤
Δ

= [
𝜃

𝑥𝛽
]

Δ

𝑆
𝜎

𝑛
(⋅, 𝑥) +

𝜃

𝑥𝛽
𝑆
Δ

𝑛
(⋅, 𝑥)

= [

[

𝜃
Δ

(𝑥𝛽)
𝜎
−

𝜃(𝑥
𝛽

)
Δ

𝑥𝛽(𝑥𝛽)
𝜎

]

]

𝑆
𝜎

𝑛
(⋅, 𝑥) − 𝜃𝑝

≤
𝜃
Δ

𝑥𝛽
𝑆
𝑛
(⋅, 𝑥) − 𝜃𝑝.

(27)

From (11) and (27), we get

𝑤
Δ

(𝑡) ≤
𝜃
Δ

(𝑡)

𝐵𝛼
1
(𝑡, 𝑡
2
)
𝑥
𝛼−𝛽

(𝑡) − 𝜃 (𝑡) 𝑝 (𝑡) for 𝑡 ≥ 𝑡
2
. (28)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

𝑥
𝛼−𝛽

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (29)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐

2
> 0 such that

𝑥
𝛼−𝛽

(𝑡) ≤ 𝑐
2
𝐵
𝛼−𝛽

1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (30)

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (31)

Thus,

𝑥
𝛼−𝛽

(𝑡) ≤ 𝑐
1
= 𝑥
𝛼−𝛽

(𝑡
2
) for 𝑡 ≥ 𝑡

2
. (32)

From (27)–(32), we obtain

𝑤
Δ

(𝑡) ≤
𝜃
Δ

(𝑡)

𝐵𝛼
1
(𝑡, 𝑡
2
)
𝛿
1
(𝑡, 𝑡
2
, 𝑐
1
, 𝑐
2
) − 𝜃 (𝑡) 𝑝 (𝑡) for 𝑡 ≥ 𝑡

3
.

(33)

Integrating the above inequality from 𝑡
3
into 𝑡, we have

∫
𝑡

𝑡3

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ

(𝑠)

𝐵𝛼
1
(𝑠, 𝑡
2
)
𝛿
1
(𝑠, 𝑡
2
, 𝑐
1
, 𝑐
2
)] Δ𝑠 ≤ 𝑤 (𝑡

3
) < ∞,

(34)

which gives a contradiction to (23). The proof is completed.

Theorem 9. Suppose that (5) and (6) hold. If there exists a
positive nondecreasing delta differentiable function 𝜃 such that
for all sufficiently large 𝑇 ∈ [𝑡

0
,∞)T and for any positive

constants 𝑐
1
, 𝑐
2
, there is a 𝑇

1
> 𝑇 such that

lim sup
𝑡→∞

∫
𝑡

𝑇1

[

[

𝜃 (𝑠) 𝑝 (𝑠)

−
(𝛼/𝛽)

𝛼

(𝜃
Δ

(𝑠))
𝛼+1

𝑎
𝛼

1
(𝑠)

(𝛼 + 1)
𝛼+1

(𝐵
2
(𝑠, 𝑇) 𝜃 (𝑠) 𝛿

2
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
))
𝛼

]

]

Δ𝑠

= ∞,

(35)

where

𝛿
2
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) =

{{

{{

{

𝑐
1

if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
(𝛽/𝛼)−1

1
(𝜎 (𝑡) , 𝑇) , if 𝛼 > 𝛽,

(36)

and 𝐵
1
(𝑡, 𝑇), 𝐵

2
(𝑡, 𝑇) are as in Lemma 5. Then, every solution

of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Note that

(𝑥
𝛽

)
Δ

= 𝛽𝑥
Δ

∫
1

0

(ℎ𝑥 + (1 − ℎ) 𝑥
𝜎

)
𝛽−1

𝑑ℎ

= 𝛽𝑥
Δ

∫
1

0

(ℎ𝑥 + (1 − ℎ) 𝑥
𝜎

)
𝛽

ℎ𝑥 + (1 − ℎ) 𝑥𝜎
𝑑ℎ

≥ 𝛽𝑥
Δ
𝑥
𝛽

𝑥𝜎
.

(37)

From (11), we have

(𝑥
𝛽

)
Δ

𝑥𝛽
≥ 𝛽

𝑥
Δ

𝑥𝜎
≥ 𝛽

𝑆
1/𝛼

𝑛
(⋅, 𝑥) 𝐵

2
(⋅, 𝑡
2
)

𝑎
1
𝑥𝜎

≥ 𝛽
(𝑆
𝜎

𝑛
(⋅, 𝑥))

1/𝛼

𝐵
2
(⋅, 𝑡
2
)

𝑎
1
𝑥𝜎

= 𝛽
(𝑤
𝜎

)
1/𝛼

𝑎
1
(𝜃𝜎)
1/𝛼

(𝑥
𝜎

)
(𝛽/𝛼)−1

𝐵
2
(⋅, 𝑡
2
) .

(38)
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Then it follows from (27) that for 𝑡 ≥ 𝑡
2
,

𝑤
Δ

= [
𝜃

𝑥𝛽
]

Δ

𝑆
𝜎

𝑛
(⋅, 𝑥) +

𝜃

𝑥𝛽
𝑆
Δ

𝑛
(⋅, 𝑥)

= [

[

𝜃
Δ

(𝑥𝛽)
𝜎
−

𝜃(𝑥
𝛽

)
Δ

𝑥𝛽(𝑥𝛽)
𝜎

]

]

𝑆
𝜎

𝑛
(⋅, 𝑥) − 𝜃𝑝

≤ 𝜃
Δ
𝑤
𝜎

𝜃𝜎
− 𝛽

𝐵
2
(⋅, 𝑡
2
) 𝜃

𝑎
1

(𝑤
𝜎

)
1+(1/𝛼)

(𝜃𝜎)
1+(1/𝛼)

(𝑥
𝜎

)
(𝛽/𝛼)−1

− 𝜃𝑝.

(39)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

(𝑥
𝜎

)
(𝛽/𝛼)−1

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (40)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (41)

Thus,

(𝑥
𝜎

)
(𝛽/𝛼)−1

(𝑡) ≥ 𝑐
2
𝐵
(𝛽/𝛼)−1

1
(𝜎 (𝑡) , 𝑡

2
) , (42)

with 𝑐
2
= 𝑐
(𝛽/𝛼)−1.

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (43)

Thus,

(𝑥
𝜎

)
(𝛽/𝛼)−1

(𝑡) ≥ 𝑐
1
= 𝑥
(𝛽/𝛼)−1

(𝑡
2
) . (44)

From (39)–(44), we obtain that for 𝑡 ≥ 𝑡
3
,

𝑤
Δ

≤
𝑤
𝜎

𝜃𝜎
𝜃
Δ

−
𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)

𝑎
1

(𝑤
𝜎

)
1+(1/𝛼)

(𝜃𝜎)
1+(1/𝛼)

− 𝜃𝑝

= −
𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)

𝑎
1

× {
(𝑤
𝜎

)
1+(1/𝛼)

(𝜃𝜎)
1+(1/𝛼)

−
𝑤
𝜎

𝜃𝜎
𝑎
1
𝜃
Δ

𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)
} − 𝜃𝑝.

(45)

Let

𝐴 =
𝑤
𝜎

𝜃𝜎
, 𝐵 = [

𝛼𝑎
1
𝜃
Δ

(𝛼 + 1) 𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)
]

𝛼

,

(46)

with 𝜆 = 1 + 1/𝛼. By Lemma 7, we have

𝑤
Δ

≤
(𝛼/𝛽)

𝛼

(𝜃
Δ

)
𝛼+1

𝑎
𝛼

1

(𝛼 + 1)
𝛼+1

(𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
))
𝛼
− 𝜃𝑝. (47)

Integrating the above inequality from 𝑡
3
into 𝑡, it follows that

∫
𝑡

𝑡3

[

[

𝜃 (𝑠) 𝑝 (𝑠)

−
(𝛼/𝛽)

𝛼

(𝜃
Δ

(𝑠))
𝛼+1

𝑎
𝛼

1
(𝑠)

(𝛼 + 1)
𝛼+1

(𝐵
2
(𝑠, 𝑡
2
) 𝜃 (𝑠) 𝛿

2
(𝑠, 𝑡
2
, 𝑐
1
, 𝑐
2
))
𝛼

]

]

Δ𝑠

≤ 𝑤 (𝑡
3
) < ∞,

(48)

which gives a contradiction to (35). The proof is completed.

Remark 10. The trick used in the proofs of Theorems 8 and 9
is from [16].

Theorem11. Suppose that (5) and (6) hold. If for all sufficiently
large 𝑇 ∈ [𝑡

0
,∞)T,

∫
∞

𝑇

𝑝 (𝑢) [∫
𝑢

𝑇

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

Δ𝑢 = ∞, (49)

then every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Then, for 𝑡 ≥ 𝑡

2
,

𝑥 (𝑡) = 𝑥 (𝑡
2
) + ∫
𝑡

𝑡2

𝑆
1
(𝑠, 𝑥 (𝑠))

𝑎
1
(𝑠)

Δ𝑠

≥ 𝑆
1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫
𝑡

𝑡2

Δ𝑠

𝑎
1
(𝑠)

.

(50)

It follows from (2) that

−𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) ≥ 𝑝 (𝑡) [𝑆

1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫
𝑡

𝑡2

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

. (51)

Integrating the above inequality from 𝑡
2
into∞, we have

𝑆
𝑛
(𝑡
2
, 𝑥 (𝑡
2
)) ≥ 𝑆

𝛽

1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫
∞

𝑡2

𝑝 (𝑢) [∫
𝑢

𝑡2

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

Δ𝑢,

(52)

which gives a contradiction to (49). The proof is completed.

Theorem 12. Suppose that (5) and (6) hold. If for all suffi-
ciently large 𝑇 ∈ [𝑡

0
,∞)T,

lim sup
𝑡→∞

𝐵
𝛼

1
(𝑡, 𝑇) 𝛿

3
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) ∫
∞

𝑡

𝑝 (𝑠) Δ𝑠 > 1, (53)
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where

𝛿
3
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
)

=

{{{{{{{

{{{{{{{

{

𝑐
1
, 𝑐
1
is any positive constant,

if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
𝛽−𝛼

1
(𝑡, 𝑇) , 𝑐

2
is any positive constant,

if 𝛼 > 𝛽,

(54)

and 𝐵
1
(𝑡, 𝑇) is as in Lemma 5, then every solution of (2) is

either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞). Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Then, it follows

from (2) and (11) that for 𝑡 ≥ 𝑡
2
,

∫
∞

𝑡

𝑝 (𝑠) 𝑥
𝛽

(𝑠) Δ𝑠 ≤ 𝑆
𝑛
(𝑡, 𝑥 (𝑡)) ≤ [

𝑥 (𝑡)

𝐵
1
(𝑡, 𝑡
2
)
]

𝛼

. (55)

Using the fact that 𝑥(𝑡) is strictly increasing on [𝑡
2
,∞)T, we

obtain

𝑥
𝛽

(𝑡) ∫
∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ [
𝑥 (𝑡)

𝐵
1
(𝑡, 𝑡
2
)
]

𝛼

. (56)

Thus,

𝐵
𝛼

1
(𝑡, 𝑡
2
) 𝑥
𝛽−𝛼

(𝑡) ∫
∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ 1. (57)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

𝑥
𝛽−𝛼

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (58)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (59)

Thus,

𝑥
𝛽−𝛼

(𝑡) ≥ 𝑐
2
𝐵
𝛽−𝛼

1
(𝑡, 𝑡
2
) , (60)

with 𝑐
2
= 𝑐
𝛽−𝛼.

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (61)

Thus,

𝑥
𝛽−𝛼

(𝑡) ≥ 𝑐
1
= 𝑥
𝛽−𝛼

(𝑡
2
) . (62)

From (57)–(62), we obtain that for 𝑡 ≥ 𝑡
3
,

𝐵
𝛼

1
(𝑡, 𝑡
2
) 𝛿
3
(𝑡, 𝑡
2
, 𝑐
1
, 𝑐
2
) ∫
∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ 1, (63)

which gives a contradiction to (53). The proof is completed.

3. Examples

In this section, we give some examples to illustrate our main
results.

Example 1. Consider the following higher order dynamic
equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) + 𝑡

𝛾

𝑥
𝛽

(𝑡) = 0, (64)

on an arbitrary time scale T with supT = ∞, where 𝑛 ≥ 2,
𝛼, 𝛽 and 𝑆

𝑘
(𝑡, 𝑥(𝑡)) (0 ≤ 𝑘 ≤ 𝑛) are as in (2) with 𝑎

𝑛
(𝑡) =

𝑡
𝛼−1

, 𝑎
𝑛−1

(𝑡) = ⋅ ⋅ ⋅ = 𝑎
1
(𝑡) = 𝑡, and 𝛾 > −1. Then, every

solution of (64) is either oscillatory or tends to zero.

Proof. Note that

∫
∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫
∞

𝑡0

[
1

𝑠𝛼−1
]
1/𝛼

Δ𝑠 = ∞,

∫
∞

𝑡0

Δ𝑠

𝑎
𝑖
(𝑠)

= ∫
∞

𝑡0

Δ𝑠

𝑠
= ∞ for 1 ≤ 𝑖 ≤ 𝑛 − 1,

∫
∞

𝑡0

𝑝 (𝑠) Δ𝑠 = ∫
∞

𝑡0

𝑠
𝛾

Δ𝑠 = ∞,

(65)

by Example 5.60 in [4]. Pick 𝑡
1
> 𝑡
0
such that

∫
𝑡1

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫
𝑡1

𝑢

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 }Δ𝑢 > 0. (66)

Then,

∫
∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫
∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫
∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢

≥ [∫
∞

𝑡1

𝑝 (V) ΔV]
1/𝛼

× ∫
𝑡1

𝑡0

1

𝑎
𝑛−1

(𝑢)
(∫
𝑡1

𝑢

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠)Δ𝑢 = ∞.

(67)
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Let 𝑇 ∈ [𝑡
0
,∞)T, sufficiently large, and 𝑢

1
> 𝑇 such that

∫
𝑢1

𝑇

(1/𝑎
1
(𝑠))Δ𝑠 > 1, then

∫
∞

𝑇

𝑝 (𝑢) [∫
𝑢

𝑇

1

𝑎
1
(𝑠)

Δ𝑠]

𝛽

Δ𝑢

≥ ∫
∞

𝑢1

𝑝 (𝑢) [∫
𝑢

𝑇

1

𝑎
1
(𝑠)

Δ𝑠]

𝛽

Δ𝑢

≥ ∫
∞

𝑢1

𝑝 (𝑢) Δ𝑢 = ∞.

(68)

Thus, conditions (5), (6), and (49) are satisfied. By
Theorem 11, every solution of (64) is either oscillatory
or tends to zero.

Example 2. Consider the following higher order dynamic
equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) +

1

𝑡1+𝛾
𝑥
𝛽

(𝑡) = 0, (69)

on an arbitrary time scale T with sup T = ∞, where 𝑛 ≥ 2,
𝑆
𝑘
(𝑡, 𝑥(𝑡)) (0 ≤ 𝑘 ≤ 𝑛) are as in (2) with 𝑎

𝑛
(𝑡) = 1, 𝑎

𝑛−1
(𝑡) =

𝑡
1/𝛼

, 𝑎
𝑛−2

(𝑡) = ⋅ ⋅ ⋅ = 𝑎
1
(𝑡) = 𝑡, 0 < 𝛾 < min{1, 𝛽}, and 𝛼, 𝛽 are

the quotient of odd positive integers with 𝛼 ≥ 1. Then, every
solution of (69) is either oscillatory or tends to zero.

Proof. Note that

∫
∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫
∞

𝑡0

Δ𝑠 = ∞,

∫
∞

𝑡0

1

𝑎
𝑛−1

(𝑠)
Δ𝑠 = ∫

∞

𝑡0

1

𝑠1/𝛼
Δ𝑠 = ∞,

∫
∞

𝑡0

1

𝑎
𝑖
(𝑠)

Δ𝑠 = ∫
∞

𝑡0

1

𝑠
Δ𝑠 = ∞ for 1 ≤ 𝑖 ≤ 𝑛 − 2.

(70)

Pick 𝑡
1
> 𝑡
0
such that ∫𝑡1

𝑡0

(Δ𝑢/𝑢
1/𝛼

) > 0, then

∫
∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫
∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫
∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢

= ∫
∞

𝑡0

1

𝑢1/𝛼
{∫
∞

𝑢

[∫
∞

𝑠

1

V𝛾+1
ΔV]
1/𝛼

Δ𝑠}Δ𝑢

≥
1

𝛾
∫
∞

𝑡0

1

𝑢1/𝛼

{

{

{

∫
∞

𝑢

[∫
∞

𝑠

(V𝛾)
Δ

V𝛾(V𝛾)𝜎
ΔV]

1/𝛼

Δ𝑠
}

}

}

Δ𝑢

=
1

𝛾
∫
∞

𝑡0

1

𝑢1/𝛼
[∫
∞

𝑢

(
1

𝑠𝛾
)
1/𝛼

Δ𝑠]Δ𝑢

≥
1

𝛾
∫
𝑡1

𝑡0

1

𝑢1/𝛼
[∫
∞

𝑡1

(
1

𝑠𝛾
)
1/𝛼

Δ𝑠]Δ𝑢

=
1

𝛾
[∫
∞

𝑡1

(
1

𝑠𝛾
)
1/𝛼

Δ𝑠]∫
𝑡1

𝑡0

Δ𝑢

𝑢1/𝛼

= ∞.

(71)

Let𝑀 = max{𝑐
1
, 1, 𝑐
2
}with 𝑐

1
, 𝑐
2
being positive constants,

𝜌 = min{𝛼, 𝛽}, and 𝛾 < 𝜏 < min{1, 𝛽}. Pick 𝑇
1
> 𝑇 > 0 such

that

1

𝑡𝛾
≥

2

𝑡𝜏
≥

2𝑀

[(1/2)
𝑛+(1/𝛼)

(𝑡 − 2𝑛−1𝑇)]
𝜌

for 𝑡 ≥ 𝑇
1
. (72)

Let 𝜃(𝑡) = 𝑡, then

𝐵
1
(𝑡, 𝑇)

= ∫
𝑡

𝑇

1

𝑎
1
(𝑢
1
)

× [∫
𝑢1

𝑇

1

𝑎
2
(𝑢
2
)

× [⋅ ⋅ ⋅ [∫
𝑢𝑛−2

𝑇

1

𝑎
𝑛−1

(𝑢
𝑛−1

)
[∫
𝑢𝑛−1

𝑇

Δ𝑢
𝑛
]

1/𝛼

×Δ𝑢
𝑛−1

] ⋅ ⋅ ⋅ ] Δ𝑢
2
]Δ𝑢
1

= ∫
𝑡

2
𝑛−1
𝑇

1

𝑢
1

× [∫
𝑢1

2
𝑛−2
𝑇

1

𝑢
2

[⋅ ⋅ ⋅ [∫
𝑢𝑛−2

2𝑇

[
1

𝑢
𝑛−1

∫
𝑢𝑛−1

𝑇

Δ𝑢
𝑛
]

1/𝛼

× Δ𝑢
𝑛−1

] ⋅ ⋅ ⋅ ] Δ𝑢
2
]Δ𝑢
1

≥ (
1

2
)
𝑛+(1/𝛼)

(𝑡 − 2
𝑛−1

𝑇) ,

∫
𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ

(𝑠)

𝐵𝛼
1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇)]Δ𝑠

= ∫
𝑡

𝑇1

[
1

𝑠𝛾
−

1

𝐵𝛼
1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
)] Δ𝑠

≥ ∫
𝑡

𝑇1

[

[

2

𝑡𝜏
−

𝑀

[(1/2)
𝑛+(1/𝛼)

(𝑡 − 2𝑛−1𝑇)]
𝜌

]

]

Δ𝑠

≥ ∫
𝑡

𝑇1

1

𝑡𝜏
Δ𝑠.

(73)

Thus,

lim sup
𝑡→∞

∫
𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ

(𝑠)

𝐵𝛼
1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
)]Δ𝑠 = ∞.

(74)

So conditions (5), (6), and (23) are satisfied. Then, by
Theorem 8, every solution of (69) is either oscillatory or tends
to zero.
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