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Motivated by Lounici andNickl’s work (2011), this paper considers the problemof estimation of a density𝑓 based on an independent
and identically distributed sample 𝑌

1
, . . . , 𝑌

𝑛
from 𝑔 = 𝑓 ∗ 𝜑. We show a wavelet optimal estimation for a density (function) over

Besov ball𝐵𝑠
𝑟,𝑞
(𝐿) and𝐿𝑝 risk (1 ≤ 𝑝 < ∞) in the presence of severely ill-posednoises. Awavelet linear estimation is firstly presented.

Then, we prove a lower bound, which shows our wavelet estimator optimal. In other words, nonlinear wavelet estimations are not
needed in that case. It turns out that our results extend some theorems of Pensky and Vidakovic (1999), as well as Fan and Koo
(2002).

1. Introduction and Preliminary

Wavelets have made great achievements in studying the
statistical model 𝑌 = 𝑋 + 𝜖, where 𝑋 stands for real-valued
random variable with unknown probability density 𝑓, and 𝜖
denotes an independent random noise (error) with density 𝜑.

In 1999, Pensky and Vidakovic [1] investigate Meyer
wavelet estimation over Sobolev spaces 𝑊𝑠

2
(R) and 𝐿2 risk

under moderately and severely ill-posed noises. Three years
later, Fan and Koo [2] extend those works from 𝑊𝑠

2
(R) to

Besov spaces 𝐵𝑠
𝑟,𝑞
(R) (1 ≤ 𝑟 ≤ 2). It should be pointed out

that, by using different method, Lounici and Nickl [3] study
wavelet optimal estimation over Besov spaces 𝐵𝑠

∞,∞
(R) and

𝐿∞ risk under both noises. In [4], we provide a wavelet
optimal estimation over 𝐵𝑠

𝑟,𝑞
(R) and 𝐿𝑝 risk (1 ≤ 𝑝 < ∞,

𝑟, 𝑞 ∈ [1,∞]) under moderately ill-posed noise. This current
paper deals with the same problem under the severely ill-
posed noises. It turns out that our result contains some
theorems of [1, 2] as special cases. Our discussion also shows
that nonlinear wavelet estimations are not needed for severely
ill-posed noise, which is totally different with moderately ill-
posed case.

Let 𝜙 and 𝜓 ∈ 𝐿2(R) be a scaling and mother wavelet
function, respectively.Then each𝑓 ∈ 𝐿2(R) has an expansion
(in 𝐿2 sense):

𝑓 = ∑
𝑘∈Z

𝛼
𝐽𝑘
𝜙
𝐽𝑘
+ ∑
𝑗≥𝐽

∑
𝑘∈Z

𝛽
𝑗𝑘
𝜓
𝑗𝑘
, (1)

with𝛼
𝑗𝑘
:= ⟨𝑓, 𝜙

𝑗𝑘
⟩ and𝛽

𝑗𝑘
:= ⟨𝑓, 𝜓

𝑗𝑘
⟩. Here and throughout,

we use the standard notation ℎ
𝑗𝑘
(𝑥) := 2𝑗/2ℎ(2𝑗𝑥 − 𝑘) in

wavelet analysis [5]. A class of important wavelets areMeyer’s,
whose Fourier transforms are 𝐶∞ and compactly supported
on {𝑡 : 2𝜋/3 ≤ |𝑡| ≤ 8𝜋/3} [5]. It is easy to see that ∀𝑎 ≥ 0,
∃𝐶

𝑎
> 0 such that |𝑥|𝑎|𝜙(𝑥)| ≤ 𝐶

𝑎
. In this paper, the Fourier

transform 𝑓 for 𝑓 ∈ 𝐿(R) is defined by

𝑓 (𝑡) := (𝐹𝑓) (𝑡) = ∫
R

𝑓 (𝑥) 𝑒
−𝑖𝑡𝑥𝑑𝑥. (2)

The classical method extends that definition to 𝐿2(R) func-
tions.
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The following two lemmas are fundamental in our discus-
sions. We use ‖𝑓‖

𝑝
to denote 𝐿𝑝(R) norm of 𝑓 ∈ 𝐿𝑝(R), and

‖𝜆‖
𝑝
do 𝑙𝑝(Z) norm of 𝜆 ∈ 𝑙𝑝(Z), where

𝑙𝑝 (Z) :=

{{{{
{{{{
{

{𝜆 = {𝜆
𝑘
} , ∑

𝑘∈Z

𝜆𝑘

𝑝

< ∞} , 1 ≤ 𝑝 < ∞,

{𝜆 = {𝜆
𝑘
} , sup

𝑘∈Z

𝜆𝑘
 < ∞} , 𝑝 = ∞.

(3)

Lemma 1 (see [6]). Let ℎ be a scaling or a wavelet function
with sup

𝑥∈R ∑
𝑘∈Z |ℎ(𝑥− 𝑘)| < ∞. Then, there exist 𝐶

2
≥ 𝐶

1
>

0 such that for 𝜆 = {𝜆
𝑘
} ∈ 𝑙𝑝(Z) with 1 ≤ 𝑝 ≤ ∞,

𝐶
1
2𝑗(1/2−1/𝑝)‖𝜆‖𝑝 ≤


∑
𝑘∈Z

𝜆
𝑘
ℎ
𝑗𝑘

𝑝

≤ 𝐶
2
2𝑗(1/2−1/𝑝)‖𝜆‖𝑝. (4)

One of the advantages of wavelet bases is that they can
characterize Besov spaces. To introduce those spaces [6], we
need the well-known Sobolev spaces with integer exponents

𝑊𝑚

𝑝
(R) := {𝑓 ∈ 𝐿𝑝 (R) , 𝑓

(𝑚) ∈ 𝐿𝑝 (R)} , (5)

with the Sobolev norm ‖𝑓‖
𝑊
𝑚

𝑝

:= ‖𝑓‖
𝑝
+‖𝑓(𝑚)‖

𝑝
.Then 𝐿𝑝(R)

can be considered as𝑊(0)

𝑝
(R). For 1 ≤ 𝑝, 𝑞 ≤ ∞ and 𝑠 = 𝑚+𝛼

with 𝛼 ∈ (0, 1], a Besov space is defined by

𝐵𝑠
𝑟,𝑞

(R) := {𝑓 ∈ 𝑊𝑚

𝑟
(R) ,

𝑡
−𝛼𝜔2

𝑟
(𝑓(𝑚), 𝑡)


∗

𝑞
< ∞} , (6)

with the norm ‖𝑓‖
𝑠𝑟𝑞

:= ‖𝑓‖
𝑊
𝑚

𝑟

+ ‖𝑡−𝛼𝜔2
𝑟
(𝑓(𝑚), 𝑡)‖

∗

𝑞
, where

𝜔2
𝑟
(𝑓, 𝑡) := sup

|ℎ|≤𝑡
‖𝑓(⋅ + 2ℎ) − 2𝑓(⋅ + ℎ) + 𝑓(⋅)‖

𝑟
denotes the

smoothness modulus of 𝑓 and

‖ℎ‖
∗

𝑞
=

{{{
{{{
{

(∫
∞

0

(
|ℎ (𝑡)|𝑞

𝑡
) 𝑑𝑡)

1/𝑞

, if 1 ≤ 𝑞 < ∞,

ess sup
𝑡∈R

|ℎ (𝑡)| , if 𝑞 = ∞.
(7)

Lemma 2 (see [6]). Let 𝜙 be a Meyer scaling function and 𝜓
be the corresponding wavelet. If 𝑓 ∈ 𝐿𝑟(R), 1 ≤ 𝑟 ≤ ∞,
𝛼
0𝑘

= ∫𝑓(𝑥)𝜙
0𝑘
(𝑥)𝑑𝑥, and 𝛽

𝑗𝑘
= ∫𝑓(𝑥)𝜓

𝑗𝑘
(𝑥)𝑑𝑥, then the

following assertions are equivalent:

(i) 𝑓 ∈ 𝐵𝑠
𝑟,𝑞
(R), 1 ≤ 𝑞 ≤ ∞;

(ii) {2𝑗𝑠‖𝑃
𝑗
𝑓 − 𝑓‖

𝑟
}
𝑗≥0

∈ 𝑙𝑞, where 𝑃
𝑗
𝑓 := ∑

𝑘∈Z 𝛼
𝑗𝑘
𝜙
𝑗𝑘
;

(iii) ‖𝛼
0𝑘
‖
𝑟
+ ‖{2𝑗(𝑠+1/2−1/𝑟)‖𝛽

𝑗⋅
‖
𝑟
}
𝑗≥0

‖
𝑞
< ∞.

In each case,

𝑓
𝑠𝑟𝑞 ∼

𝛼0⋅
𝑟 +

{2
𝑗(𝑠+1/2−1/𝑟)𝛽𝑗⋅

𝑟}𝑗≥0
𝑞
. (8)

Here and after, 𝐴 ≲ 𝐵 denotes 𝐴 ≤ 𝐶𝐵 for some constant
𝐶 > 0; 𝐴 ≳ 𝐵means 𝐵 ≲ 𝐴; 𝐴 ∼ 𝐵 stands for both 𝐴 ≲ 𝐵 and
𝐵 ≲ 𝐴, 𝛼

0⋅
does for the sequence of {𝛼

0𝑘
, 𝑘 ∈ Z}.

At the end of this subsection, we make some assumptions
on noise density 𝜑, which will be dealt with in this current
paper. For 𝛼 > 0, 𝑐 > 0, 𝛽 ∈ R,

(C1) |𝜑(𝑡)| ≤ 𝐶(1 + |𝑡|2)−𝛽/2𝑒−𝑐|𝑡|
𝛼

(a.e.);

(C2) |𝜑(𝑡)| ≤ 𝐶(1 + |𝑡|2)−𝛽/2𝑒−𝑐|𝑡|
𝛼

(a.e.);

(C3) |𝜑(𝑡)| ≥ 𝐶(1 + |𝑡|2)−𝛽/2𝑒−𝑐|𝑡|
𝛼

(a.e.).

Clearly, the classical Cauchy densities satisfy (C1)–(C3) with
𝛼 = 𝑐 = 1 and 𝛽 = 0, and the Gaussian density does satisfy
(C1)–(C3)with𝛼 = 2, 𝑐 = 1/2, and𝛽 = 0. It should be pointed
out that those above conditions (C1)–(C3) are a little different
with [2].

In the next section, we define a wavelet linear estimator
and provide an upper bound estimation over Besov spaces
𝐵𝑠
𝑟,𝑞
(R) and 𝐿𝑝 risk under the condition (C3); the third part

gives a lower bound estimation which shows the result of
Section 2 optimal; some concluding remarks are discussed in
the last part.

2. Upper Bound

To introduce the main theorem of this section, we assume
that𝑌

1
, 𝑌

2
, . . . , 𝑌

𝑛
are independent and identically distributed

(i.i.d) random variables of𝑌 = 𝑋+𝜖, the density 𝜑 of random
noise 𝜖 satisfies condition (C3), and 𝜙 stands for the Meyer
scaling function. As in [1], define

(K
𝑗
𝜙) (𝑦) :=

1

2𝜋
∫
R

𝑒𝑖𝑡𝑦
𝜙 (𝑡)

𝜑 (−2𝑗𝑡)
𝑑𝑡,

�̂�
𝑗𝑘
:=

1

𝑛

𝑛

∑
𝑖=1

(K
𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
) ,

(9)

as well as a linear wavelet estimator

𝑓𝐿
𝑛
:= ∑

|𝑘|≤𝐾
𝑛

�̂�
𝑗𝑘
𝜙
𝑗𝑘
, (10)

(the positive integer𝐾
𝑛
will be given later on).Then �̂�

𝑗⋅
∈ 𝑙∞,

𝑓𝐿
𝑛
is well defined, and 𝐸𝑓𝐿

𝑛
= ∑

|𝑘|≤𝐾
𝑛

𝛼
𝑗𝑘
𝜙
𝑗𝑘
.

We use supp 𝑓 to stand for the support of 𝑓 and | supp 𝑓|
to do its length. Moreover, for 𝐿 > 0, denote

𝐵𝑠
𝑟,𝑞

(𝐿)

:= {𝑓 ∈ 𝐵𝑠
𝑟,𝑞

(R) , 𝑓≥0, ∫
R

𝑓 (𝑥) 𝑑𝑥=1 and 𝑓
𝑠𝑟𝑞≤𝐿} ,

𝐵𝑠
𝑟,𝑞

(𝐿,𝑀)={𝑓 ∈ 𝐵𝑠
𝑟,𝑞

(𝐿) ,
supp 𝑓

≤𝑀 for some 𝑀>0} .

(11)

It is reasonable to assume 𝐿 > 1 for 𝑟 = 1, since ‖𝑓‖
𝑠1𝑞

≥

‖𝑓‖
1
= 1 in that case.
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Theorem 3. Let 𝜑 satisfy (C3) and 𝜙 be the Meyer scaling
function. If 𝑝 ∈ [1,∞), 𝑞, 𝑟 ∈ [1,∞], ‖𝑥2𝑓‖

𝜇
≤ 𝐴 (𝜇 ≥ 1, 𝐴 >

0), then, with 𝐾
𝑛
∼ 𝑒(ln 𝑛)

𝜃

(0 < 𝜃 < 1), (3/8𝜋)((ln 𝑛)/4𝑐)1/𝛼 <

2𝑗 ≤ (3/4𝜋)((ln 𝑛)/4𝑐)1/𝛼, 𝑠 := 𝑠 − (1/𝑟 − 1/𝑝)
+
, and 𝑥

+
=

max{𝑥, 0},

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿,𝑀)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲ (ln 𝑛)−(𝑠



/𝛼)𝑝. (12)

In particular, 𝑓 ∈ 𝐵𝑠
𝑟,𝑞
(𝐿,𝑀) can be replaced by 𝑓 ∈ 𝐵𝑠

𝑟,𝑞
(𝐿),

when 𝑟 ≤ 𝑝.

Proof. When 𝑟 ≤ 𝑝, 𝑠 := 𝑠−(1/𝑟−1/𝑝)
+
= 𝑠−1/𝑟+1/𝑝. Since

𝑙𝑟 is continuously embedded to 𝑙𝑝, Lemma 2 implies𝐵𝑠
𝑟,𝑞
(R) ⊆

𝐵𝑠


𝑝,𝑞
(R). Hence,

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲ sup
𝑓∈𝐵
𝑠


𝑝,𝑞
(𝐿)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
. (13)

When 𝑟 > 𝑝, one obtains that, for some 𝐶 > 0, 𝐵𝑠
𝑟,𝑞
(𝐿,𝑀) ⊆

𝐵𝑠
𝑝,𝑞
(𝐶𝐿,𝑀) and

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿,𝑀)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲ sup
𝑓∈𝐵
𝑠

𝑝,𝑞
(𝐶𝐿,𝑀)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
. (14)

In fact, 𝑓 ∈ 𝐵𝑠
𝑟,𝑞
(𝐿,𝑀) and Hölder inequality imply that

‖𝑓‖𝑝
𝑝
= ∫ |𝑓(𝑥)|𝑝𝑑𝑥 ≲ ‖𝑓(𝑥)‖𝑝

𝑟
due to | supp 𝑓| ≤ 𝑀. By

the definition of Besov norm, ‖𝑓‖
𝑠𝑝𝑞

≤ 𝐶‖𝑓‖
𝑠𝑟𝑞
. According to

(13) and (14), it is sufficient to prove

sup
𝑓∈𝐵
𝑠

𝑝,𝑞
(𝐿)

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲ (ln 𝑛)−(𝑠/𝛼)𝑝, (15)

for the conclusion of Theorem 3.
Recall that 𝑓𝐿

𝑛
= ∑

|𝑘|≤𝐾
𝑛

�̂�
𝑗𝑘
𝜙
𝑗𝑘
and 𝐸𝑓𝐿

𝑛
= ∑

|𝑘|≤𝐾
𝑛

𝛼
𝑗𝑘
𝜙
𝑗𝑘
.

Then

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲𝐸

𝑓
𝐿

𝑛
− 𝐸𝑓𝐿

𝑛


𝑝

𝑝
+



∑
|𝑘|>𝐾

𝑛

𝛼
𝑗𝑘
𝜙
𝑗𝑘



𝑝

𝑝

+
𝑃𝑗𝑓 − 𝑓


𝑝

𝑝
.

(16)

By 𝑓 ∈ 𝐵𝑠
𝑝,𝑞
(𝐿) and Lemma 2,

𝑃𝑗𝑓 − 𝑓
𝑝 ≲ 2−𝑗𝑠. (17)

To estimate the middle term of (16), one observes that
𝛼
𝑗𝑘

= ∫
R
𝜙
𝑗𝑘
(𝑥)𝑓(𝑥)𝑑𝑥, |𝑘2𝛼

𝑗𝑘
| ≤ ∫

R
|2𝑗𝑥 − 𝑘 −

2𝑗𝑥|2|𝜙
𝑗𝑘
(𝑥)|𝑓(𝑥)𝑑𝑥 ≲ ∫

R
|2𝑗𝑥 − 𝑘|2|𝜙

𝑗𝑘
(𝑥)|𝑓(𝑥)𝑑𝑥 +

∫
R
|2𝑗𝑥|2|𝜙

𝑗𝑘
(𝑥)|𝑓(𝑥)𝑑𝑥. Since 𝜙 is the Meyer scaling func-

tion, sup
𝑥∈R|𝑥|

2|𝜙(𝑥)| < ∞ and

∫
R

2
𝑗𝑥 − 𝑘


2 𝜙𝑗𝑘 (𝑥)

 𝑓 (𝑥) 𝑑𝑥 ≤ 2𝑗/2sup
𝑥∈R

|𝑥|
2 𝜙 (𝑥)

 .

(18)

On the other hand, ∫
R
|2𝑗𝑥|2|𝜙

𝑗𝑘
(𝑥)|𝑓(𝑥)𝑑𝑥 ≤ 22𝑗‖𝑥2𝑓‖

𝜇
×

‖𝜙
𝑗𝑘
‖
𝜇

≲ 2𝑗(5/2−1/𝜇



)‖𝑥2𝑓‖
𝜇
with 1/𝜇 + 1/𝜇 = 1. Therefore

|𝑘2𝛼
𝑗𝑘
| ≲ 2𝑗/2 + 2𝑗(5/2−1/𝜇



) ≲ 2𝑗(5/2) and ∑
|𝑘|>𝐾

𝑛

|𝛼
𝑗𝑘
|𝑝 ≲

∑
|𝑘|>𝐾

𝑛

𝑘−2𝑝2𝑗(5/2)𝑝 ≲ 𝐾1−2𝑝

𝑛
2𝑗(5/2)𝑝. This with Lemma 1 leads

to



∑
|𝑘|>𝐾

𝑛

𝛼
𝑗𝑘
𝜙
𝑗𝑘



𝑝

𝑝

≲ 2𝑗(𝑝/2−1) ∑
|𝑘|>𝐾

𝑛

𝛼𝑗𝑘

𝑝

≤ 2𝑗(3𝑝−1)𝐾1−2𝑝

𝑛
.

(19)

Now, it remains to consider 𝐸‖𝑓𝐿
𝑛
− 𝐸𝑓𝐿

𝑛
‖
𝑝

𝑝
: Using 𝑓𝐿

𝑛
−

𝐸𝑓𝐿
𝑛
= ∑

|𝑘|≤𝐾
𝑛

(�̂�
𝑗𝑘
− 𝛼

𝑗𝑘
)𝜙

𝑗𝑘
and Lemma 1, one knows

𝐸
𝑓

𝐿

𝑛
− 𝐸𝑓𝐿

𝑛


𝑝

𝑝
≲ 2𝑗(𝑝/2−1) ∑

|𝑘|≤𝐾
𝑛

𝐸
�̂�𝑗𝑘 − 𝛼

𝑗𝑘


𝑝

. (20)

Clearly, �̂�
𝑗𝑘
− 𝛼

𝑗𝑘
= (1/𝑛)∑

𝑛

𝑖=1
[(K

𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
) − 𝐸(K

𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
)].

Define 𝑋
𝑖,𝑘

:= (K
𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
) − 𝐸(K

𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
). Then 𝐸𝑋

𝑖,𝑘
=

0 and �̂�
𝑗𝑘

− 𝛼
𝑗𝑘

= (1/𝑛)∑
𝑛

𝑖=1
𝑋
𝑖,𝑘
. To apply Rosen-

thal’s inequality (Proposition 10.2, [6]), one estimates |𝑋
𝑖,𝑘
|

and 𝐸|𝑋
𝑖,𝑘
|𝑝: note that |(K

𝑗
𝜙)

𝑗𝑘
(𝑌

𝑖
)| = 2𝑗/2|(1/2𝜋) ×

∫
R
𝑒𝑖𝑡(2
𝑗

𝑌
𝑖
−𝑘)(𝜙(𝑡)/𝜑(−2𝑗𝑡))𝑑𝑡| ≲ 2𝑗/2 ∫

R
(1 + |2𝑗𝑡|2)𝛽/2𝑒𝑐|2

𝑗

𝑡|
𝛼

×

|𝜙(𝑡)|𝑑𝑡 ≲ 2𝑗(𝛽+1/2)𝑒𝑐((4𝜋/3)2
𝑗

)
𝛼

due to (C3) and supp 𝜙 ⊆
[−(4/3)𝜋, (4/3)𝜋]. Then

𝑋𝑖,𝑘

 ≲ 2𝑗(𝛽+1/2)𝑒𝑐((4𝜋/3)2
𝑗

)
𝛼

,

𝐸
𝑋𝑖,𝑘


𝑝

≲ 2𝑗(𝛽+1/2)𝑝𝑒𝑐𝑝((4𝜋/3)2
𝑗

)
𝛼

.

(21)

Because𝑋
𝑖,𝑘
are i.i.d, the Rosenthal’s inequality tells that

𝐸
�̂�𝑗𝑘 − 𝛼

𝑗𝑘


𝑝

≲
{
{
{

𝑛−𝑝 [𝑛𝐸
𝑋𝑖,𝑘


𝑝

+ 𝑛𝑝/2(𝐸
𝑋𝑖,𝑘


2

)
𝑝/2

] , 𝑝 > 2,

𝑛−𝑝/2(𝐸
𝑋𝑖,𝑘


2

)
𝑝/2

, 0 < 𝑝 ≤ 2.

(22)

This with (21) implies that, for 𝑝 ≥ 2, 𝐸|�̂�
𝑗𝑘

− 𝛼
𝑗𝑘
|𝑝 ≲

𝑛1−𝑝2𝑗(𝛽+1/2)𝑝𝑒𝑐𝑝((4𝜋/3)2
𝑗

)
𝛼

𝐼{𝑝 > 2} + 𝑛−𝑝/22𝑗(𝛽+1/2)𝑝 ×

𝑒𝑐𝑝((4𝜋/3)2
𝑗

)
𝛼

≲ 𝑛−𝑝/22𝑗(𝛽+1/2)𝑝𝑒𝑐𝑝((4𝜋/3)2
𝑗

)
𝛼

. Moveover, (20)
reduces to

𝐸
𝑓

𝐿

𝑛
− 𝐸𝑓𝐿

𝑛


𝑝

𝑝
≲ 𝐾

𝑛
𝑛−𝑝/22𝑗(𝛽+1)𝑝−𝑗𝑒𝑐𝑝((4𝜋/3)2

𝑗

)
𝛼

. (23)

Then it follows from (16)–(19) and (23) that

𝐸
𝑓

𝐿

𝑛
− 𝑓


𝑝

𝑝
≲ 2−𝑗𝑝𝑠 + 2𝑗(3𝑝−1)𝐾1−2𝑝

𝑛

+ 𝐾
𝑛
𝑛−𝑝/22𝑗(𝛽+1)𝑝−𝑗𝑒𝑐𝑝((4𝜋/3)2

𝑗

)
𝛼

.

(24)
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By the choices 𝐾
𝑛
∼ 𝑒(ln 𝑛)

𝜃

and (3/8𝜋)((ln 𝑛)/4𝑐)1/𝛼 < 2𝑗 ≤

(3/4𝜋)((ln 𝑛)/4𝑐)1/𝛼 (stated in Theorem 3), one receives that
2−𝑗𝑝𝑠 ≲ (ln 𝑛)−(𝑠/𝛼)𝑝,

2𝑗(3𝑝−1)𝐾1−2𝑝

𝑛

≲ (ln 𝑛)(3𝑝−1)/𝛼𝑒−(2𝑝−1)(ln 𝑛)
𝜃

= 𝑜 ((ln 𝑛)−(𝑠/𝛼)𝑝) ,

𝐾
𝑛
𝑛−𝑝/22𝑗(𝛽+1)𝑝−𝑗𝑒𝑐𝑝((4𝜋/3)2

𝑗

)
𝛼

≲ 𝑒(ln 𝑛)
𝜃

𝑛−𝑝/2(ln 𝑛)((𝛽+1)𝑝−1)/𝛼𝑛𝑝/4

= 𝑜 ((ln 𝑛)−(𝑠/𝛼)𝑝) .

(25)

Finally, the desired conclusion (15) follows.

Remark 4. Note that the choices of 𝑗 and𝐾
𝑛
donot depend on

the unknown parameters 𝑠, 𝑟, and 𝑞. Then our linear wavelet
estimator 𝑓𝐿

𝑛
over Besov space 𝐵𝑠

𝑟,𝑞
is adaptive or imple-

mentable. The same conclusion holds for 𝐿∞ and 𝐿2 estima-
tions; seeTheorem 2 in [3] andCorollary 1 in [1]. On the other
hand, when 𝑝 = 2 and 1 ≤ 𝑟 ≤ 2, our Theorem 3 reduces to
Theorem 4 in [2]; from the proof of Theorem 3, we find that,
for 𝑝 > 1, the assumption ‖𝑥2𝑓(𝑥)‖

𝜇
≤ 𝐴 can be replaced

by ‖𝑥𝑓(𝑥)‖
∞

≤ 𝐴, which is the same as in [1]. Therefore, for
𝑝 = 𝑟 = 𝑞 = 2, Theorem 3 of [1] follows directly from our
Theorem 3.

3. Lower Bound

In this part, we will provide a lower bound estimation, which
shows Theorem 3 to be the best possible in some sense.
The following lemmas are needed in the proof of our main
theorem of this section.

Lemma 5. Let ℎ
𝜂
(𝑥) := 𝜂𝑝(𝜂𝑥) with 𝑝(𝑥) = 1/𝜋(1 + 𝑥2),

𝜂 > 0, and 𝑟, 𝑞 ≥ 1. Then for 𝐿 > 0 (𝐿 > 2 when 𝑟 = 1), there
exists 𝜂

0
> 0 such that ℎ

0
:= ℎ

𝜂
0

∈ 𝐵𝑠
𝑟,𝑞
(𝐿/2). If 𝜓 is the Meyer

wavelet function and |𝜆
𝑘
| ≤ 𝑑2−𝑗/2 (𝑘 = 1, 2, . . . , 2𝑗), then, for

some small 𝑑 > 0,


2
𝑗

∑
𝑘=1

𝜆
𝑘
𝜓
𝑗𝑘
(𝑥)



≤ ℎ
0
(𝑥) . (26)

Proof. It is easy to see that (1+𝑥2)−1 ∈ 𝑊𝑚

𝑟
(R) (for 𝑟 ≥ 1) and

ℎ
𝜂
∈ 𝐵𝑠

𝑟,𝑞
(R) (𝑠 < 𝑚) by the definition of Besov space. Since

ℎ𝜂
𝑠𝑟𝑞 = 𝜂1−1/𝑟

𝑝
𝑟 + 𝜂1+⌊𝑠⌋−1/𝑟

𝑝
(⌊𝑠⌋)𝑟

+ 𝜂1+𝑠−1/𝑟


𝜔2
𝑟
(𝑝(⌊𝑠⌋), 𝑡)

𝑡𝑠−⌊𝑠⌋



∗

𝑞

,
(27)

where ⌊𝑠⌋ denotes the largest integer no more than 𝑠, ‖ℎ
0
‖
𝑠𝑟𝑞

can be made small enough by choosing small 𝜂
0
> 0, when

𝑟 > 1. Clearly, 𝐿 > 2 is needed, when 𝑟 = 1.

If |𝜆
𝑘
| ≤ 𝑑2−𝑗/2 (𝑘 = 1, 2, . . . , 2𝑗), then | ∑

2
𝑗

𝑘=1
𝜆
𝑘
𝜓
𝑗𝑘
(𝑥)| ≤

𝑑∑
2
𝑗

𝑘=1
|𝜓(2𝑗𝑥−𝑘)| ≲ 𝑑∑

2
𝑗

𝑘=1
(1+ |2𝑗𝑥−𝑘|2)−1 because𝜓 is the

Meyer function. Note that ∑2
𝑗

𝑘=1
(1 + |2𝑗𝑥 − 𝑘|2)−1 = ∑

2
𝑗

𝑘=1
(1 +

22𝑗|𝑥−2−𝑗𝑘|2)−1 ≤ 2−2𝑗∑
2
𝑗

𝑘=1
(|𝑥|2−1)−1 = 2−𝑗(𝑥2−1)−1.Then

for some small 𝑑 > 0 and |𝑥| ≥ 2,


2
𝑗

∑
𝑘=1

𝜆
𝑘
𝜓
𝑗𝑘
(𝑥)



≤ 2−𝑗ℎ
0
(𝑥) . (28)

Hence, (26) holds for |𝑥| ≥ 2. On the other hand, when |𝑥| <

2, ℎ
0
(𝑥) ≳ 1 and | ∑

2
𝑗

𝑘=1
𝜆
𝑘
𝜓
𝑗𝑘
(𝑥)| ≤ 𝑑∑

2
𝑗

𝑘=1
|𝜓(2𝑗𝑥 − 𝑘)| ≤

𝑑 sup
𝑥
∑
𝑘∈Z |𝜓(𝑥 − 𝑘)| ≤ 𝐶𝑑 ≤ ℎ

0
(𝑥). Therefore, (26) is

true, when 𝑑 > 0 small enough. This completes the proof of
Lemma 5.

The next lemma extends an estimate in the proof of
Theorem 1 in [3].

Lemma 6. Let𝜓 be theMeyer wavelet function, ℎ
0
(𝑥), defined

as in Lemma 5. If 𝜑 satisfies (C1), (C2), and 𝜔
𝑘
∈ {0, 1}, then

∫
R

(ℎ
0
∗ 𝜑)

−1

(𝑦)(
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)

2

(𝑦) 𝑑𝑦

≲ 2−2𝑗𝛽𝑒−2𝑐((2𝜋/3)2
𝑗

)
𝛼
2
𝑗

∑
𝑘=1

𝜔2
𝑘
.

(29)

Proof. As shown in proof ofTheorem 1 of [3], one finds easily
that (ℎ

0
∗ 𝜑)(𝑦) ≳ (1 + 𝑦2)−1 and therefore

∫
R

(ℎ
0
∗ 𝜑)

−1

(𝑦)(
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)

2

(𝑦) 𝑑𝑦

≲ ∫
R

(1 + 𝑦2)(
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)

2

(𝑦) 𝑑𝑦.

(30)

By Parseval identity, (C1) and supp 𝜓
𝑗𝑘

⊆ {𝑦, |𝑦| ≥ (2𝜋/

3)2𝑗}, ∫
R
(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘

∗ 𝜑)2(𝑦)𝑑𝑦 = (1/2𝜋) ∫
|𝑡|≥(2𝜋/3)2

𝑗
×

|∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
(𝑡)|2|𝜑(𝑡)|2𝑑𝑡 ≲ 2−2𝛽𝑗𝑒−2𝑐((2𝜋/3)2

𝑗

)
𝛼

∫
|𝑡|≥(2𝜋/3)2

𝑗
×

|∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
(𝑡)|2𝑑𝑡. Moreover, the orthonormality of 𝜓

𝑗𝑘

concludes that

∫
R

(
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)

2

(𝑦) 𝑑𝑦 ≲ 𝐶2−2𝛽𝑗𝑒−2𝑐((2𝜋/3)2
𝑗

)
𝛼
2
𝑗

∑
𝑘=1

𝜔2
𝑘
.

(31)

To estimate ∫
R
𝑦2(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)2(𝑦)𝑑𝑦, one proves an

inequality:

𝐼 := ∫
R



2
𝑗

∑
𝑘=1

𝜔
𝑘

𝑑

𝑑𝑡
𝜓
𝑗𝑘
(𝑡)



2

𝑑𝑡 ≤ 𝐶
2
𝑗

∑
𝑘=1

𝜔2
𝑘
. (32)
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Note that ∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
0𝑘
(𝑥), 𝑥∑2

𝑗

𝑘=1
𝜔
𝑘
𝜓
0𝑘
(𝑥) ∈ 𝐿(R), and

∑
2
𝑗

𝑘=1
𝜔
𝑘
(𝑑/𝑑𝑡)𝜓

𝑗𝑘
(𝑡) = 2−(3/2)𝑗[(𝑑/𝑑𝑡)𝐹(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
0𝑘
)](2−𝑗𝑡).

Then ∫
R
[(𝑑/𝑑𝑡)𝐹(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
0𝑘
)]2(𝑡)𝑑𝑡 = ∫

R
|𝑖𝑥|2| ∑

2
𝑗

𝑘=1
𝜔
𝑘
×

𝜓
0𝑘
(𝑥)|2𝑑𝑥 = ∑

2
𝑗

𝑘=1
∑
2
𝑗

𝑘

=1
𝜔
𝑘
𝜔
𝑘
 ∫

R
(𝑥 + 𝑘)2𝜓(𝑥)𝜓[𝑥 − (𝑘 −

𝑘)]𝑑𝑥 and

𝐼 = 2−2𝑗
2
𝑗

∑
𝑘=1

2
𝑗

∑
𝑘

=1

𝜔
𝑘
𝜔
𝑘
 ∫

R

(𝑥 + 𝑘)
2𝜓 (𝑥) 𝜓 [𝑥 − (𝑘 − 𝑘)] 𝑑𝑥.

(33)

Since ⟨𝜓(𝑥), 𝜓(𝑥−𝑘)⟩ = 𝛿
𝑘,0
,∑2
𝑗

𝑘=1
∑
2
𝑗

𝑘

=1
𝜔
𝑘
𝜔
𝑘
𝑘2∫

R
𝜓(𝑥)𝜓(𝑥+

𝑘 − 𝑘)𝑑𝑥 = ∑
2
𝑗

𝑘=1
𝜔2
𝑘
𝑘2 ≤ 22𝑗∑

2
𝑗

𝑘=1
𝜔2
𝑘
; On the other hand, the

boundedness of ∫
R
𝑥2𝜓(𝑥)𝜓(𝑥+𝑙)𝑑𝑥 and ∫

R
𝑥𝜓(𝑥)𝜓(𝑥+𝑙)𝑑𝑥

implies that



2
𝑗

∑
𝑘=1

2
𝑗

∑
𝑘

=1

𝜔
𝑘
𝜔
𝑘
 ∫

R

𝑥2𝜓 (𝑥) 𝜓 (𝑥 + 𝑘 − 𝑘) 𝑑𝑥



≲
2
𝑗

∑
𝑘=1

2
𝑗

∑
𝑘

=1

𝜔
𝑘
𝜔
𝑘
 ≲ 2𝑗

2
𝑗

∑
𝑘=1

𝜔2
𝑘
,

(34)

as well as | ∑2
𝑗

𝑘=1
∑
2
𝑗

𝑘

=1
𝜔
𝑘
𝜔
𝑘
𝑘 ∫

R
𝑥𝜓(𝑥)𝜓(𝑥 + 𝑘 − 𝑘)𝑑𝑥| ≲

22𝑗∑
2
𝑗

𝑘=1
𝜔2
𝑘
. Hence, 𝐼 ≲ ∑

2
𝑗

𝑘=1
𝜔2
𝑘
, which reaches (32).

Define 𝑞(𝑡) := 𝐹(∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)(𝑡). Then 𝑞, 𝑞 ∈ 𝐿(R)

and 𝑞 is locally absolutely continuous. Therefore, 𝑞 (𝑦) =

𝑖𝑦𝑞(𝑦) = 𝑖𝑦(∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)(−𝑦) and

∫
R

𝑦2(
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)

2

(𝑦) 𝑑𝑦 = ∫
R

𝑞
 (𝑦)


2

𝑑𝑦

= 2𝜋∫
R

𝑞

(𝑡)


2

𝑑𝑡.

(35)

Clearly, 𝑞(𝑡) = ∑
2
𝑗

𝑘=1
𝜔
𝑘
[𝜓

𝑗𝑘
(𝑡)𝜑(𝑡) + 𝜑(𝑡)(𝑑/𝑑𝑡)𝜓

𝑗𝑘
(𝑡)] and

∫
R
|𝑞(𝑡)|2𝑑𝑡 ≤ 2[∫

R
|𝜑(𝑡) ∑

2
𝑗

𝑘=1
𝜔
𝑘
(𝑑/𝑑𝑡)𝜓

𝑗𝑘
(𝑡)|2𝑑𝑡+∫

R
|𝜑(𝑡)×

∑
2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
(𝑡)|2𝑑𝑡] ≲ 2−2𝑗𝛽𝑒−2𝑐((2𝜋/3)2

𝑗

)
𝛼

[∫
R
| ∑

2
𝑗

𝑘=1
𝜔
𝑘
(𝑑/𝑑𝑡) ×

𝜓
𝑗𝑘
(𝑡)|2𝑑𝑡+2 ∫

R
| ∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
(𝑡)|2𝑑𝑡] thanks to (C1), (C2), and

supp 𝜓
𝑗𝑘
⊆ {𝑦,

𝑦
 ≥

2𝜋

3
2𝑗} . (36)

Moreover, ∫
R
|𝑞(𝑡)|2𝑑𝑡 ≤ 𝐶2−2𝑗𝛽𝑒−2𝑐((2𝜋/3)2

𝑗

)
𝛼

∑
2
𝑗

𝑘=1
𝜔2
𝑘

because of (32) and the orthonormality of𝜓
𝑗𝑘
.This with (35),

(31), and (30) leads to the desired conclusion of Lemma 6.
Two more classical theorems play important roles in our

discussions. We list the first one as Lemma 7, which can be
found in [7].

Lemma 7 (Varshamov-Gilbert). Let Ω = {𝜔 = (𝜔
1
, . . . , 𝜔

𝑚
),

𝜔
𝑘

∈ {0, 1}} with 𝑚 ≥ 8. Then there exists a subset

{𝜔(0), . . . , 𝜔(𝑀)} of Ω such that 𝑀 ≥ 2𝑚/8, 𝜔(0) = (0, . . . , 0),
and for 𝑗, 𝑙 = 0, 1, . . . ,𝑀, 𝑗 ̸= 𝑙,

𝑚

∑
𝑘=1


𝜔
(𝑗)

𝑘
− 𝜔(𝑙)

𝑘


≥
𝑚

8
. (37)

Given two probability measures 𝑃 and𝑄 on ameasurable
space (X,F), the Kullback divergence of 𝑃 and 𝑄 is defined
by

𝐾 (𝑃,𝑄) :=
{
{
{

∫ ln( 𝑑𝑃

𝑑𝑄
)𝑑𝑃, if 𝑃 ≪ 𝑄,

+∞, otherwise.
(38)

Here, 𝑃 ≪ 𝑄 stands for 𝑃 absolutely continuous with respect
to 𝑄. In that case, 𝐾(𝑃,𝑄) = ∫ ln(𝑓

𝑃
(𝑥)/𝑓

𝑄
(𝑥))𝑓

𝑃
(𝑥)𝑑𝑥,

where the function 𝑓
𝑃
(𝑥) denotes the density function of 𝑃.

The second classical theorem is taken from [8].

Lemma 8 (Fano). Let (X,F, 𝑃
𝑘
) be probability measurable

spaces and 𝐴
𝑘
∈ F, 𝑘 = 0, 1, . . . , 𝑚. If 𝐴

𝑘
∩ 𝐴V = 0 for 𝑘 ̸= V,

then

sup
0≤𝑘≤𝑚

𝑃
𝑘
(𝐴𝑐

𝑘
) ≥ min {1

2
, 𝐶

0
√𝑚𝑒−K𝑚} , (39)

where K
𝑚
:= inf

0≤V≤𝑚(1/𝑚)∑
𝑘 ̸= V 𝐾(𝑃𝑘, 𝑃V), 𝐶0 = 𝑒−3𝑒

−1

, and
𝐴𝑐 denotes the complement of a set 𝐴.

Now, we are in the position to state the main theorem in
this section.

Theorem 9. Let 𝜑 satisfy (C1) and (C2), and let 𝑓
𝑛
(⋅) :=

𝑓
𝑛
(𝑌

1
, 𝑌

2
, . . . , 𝑌

𝑛
, ⋅) be an estimator of 𝑓 ∈ 𝐵𝑠

𝑟,𝑞
(𝐿). Then for

𝑠 > 0, 𝑝 ∈ [1,∞), 𝑞, 𝑟 ∈ [1,∞], and 𝑠 ≥ 1/𝑟, there exists
𝐶 > 0 independent of 𝑓

𝑛
such that with 𝑠 := 𝑠 − (1/𝑟 − 1/𝑝)

+
,

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)

𝐸
𝑓𝑛 − 𝑓


𝑝

𝑝
≥ 𝐶(ln 𝑛)−(𝑠



/𝛼)𝑝. (40)

Proof. Assume that 𝜓 is the Meyer wavelet function, then
𝜓
𝑗𝑘
∈ 𝐵𝑠

𝑟,𝑞
(R). By Lemma 2,



2−𝑗(𝑠+1/2)
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘

𝐵𝑠
𝑟,𝑞

≲ 2−𝑗(𝑠+1/2)2𝑗(𝑠−1/𝑟+1/2)

× (
2
𝑗

∑
𝑘=1

𝜔𝑘

𝑟

)

1/𝑟

≤ 1,

(41)

for 𝜔
𝑘
∈ {0, 1}. Furthermore, with the function ℎ

0
defined

in Lemma 5, there exists 𝑐
1

> 0 such that ℎ
𝜔

:= ℎ
0
+

𝑐
1
2−𝑗(𝑠+1/2)∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘

≥ 0 and ‖ℎ
𝜔
‖
𝑠𝑟𝑞

≤ 𝐿 due to that
Lemma. Define

Λ :=
{
{
{

ℎ
𝜔
= ℎ

0
+ 𝑐

1
2−𝑗(𝑠+1/2)

2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
, 𝜔

𝑘
∈ {0, 1}

}
}
}

. (42)
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Then ∫ ℎ
𝜔
(𝑥)𝑑𝑥 = 1 because ∫𝜓(𝑥)𝑑𝑥 = 0 and ∫ ℎ

0
(𝑥)𝑑𝑥 =

1.
By Lemma 7, one finds Λ := {ℎ

𝜔
(0) , ℎ

𝜔
(1) , . . . , ℎ

𝜔
(𝑀)} ⊆ Λ

with 𝑀 ≥ 22
𝑗

/8 and ℎ
𝜔
(0) = ℎ

0
such that for 𝜔 ̸= 𝜔 and ℎ

𝜔
,

ℎ
𝜔
 ∈ Λ, ∑2

𝑗

𝑘=1
|𝜔

𝑘
− 𝜔

𝑘
| ≥ 2𝑗/8. It is easy to see that

ℎ𝜔 − ℎ
𝜔


𝑝 = 𝑐
1
2−𝑗(𝑠+1/2)



2
𝑗

∑
𝑘=1

(𝜔
𝑘
− 𝜔

𝑘
)𝜓

𝑗𝑘

𝑝

. (43)

This with Lemma 1 leads to ‖ℎ
𝜔
− ℎ

𝜔
‖
𝑝

≳ 𝑐
1
2−𝑗(𝑠+1/2) ×

2𝑗(1/2−1/𝑝)(∑
2
𝑗

𝑘=1
|𝜔

𝑘
− 𝜔

𝑘
|)1/𝑝 ≳ 𝑐

1
2−𝑗𝑠, and therefore

𝜃
𝑗
:= min

ℎ
𝜔

̸= ℎ
𝜔
∈Λ


ℎ𝜔 − ℎ
𝜔


𝑝 ≳ 𝑐
1
2−𝑗𝑠. (44)

Define 𝐴
𝜔
:= {‖𝑓

𝑛
− ℎ

𝜔
‖
𝑝
< 𝜃

𝑗
/2} for ℎ

𝜔
∈ Λ. Then 𝐴

𝜔
∩

𝐴
𝜔
 = 0, when 𝜔 ̸= 𝜔. Clearly, ℎ

𝜔
∗ 𝜑 is a density function

because both ℎ
𝜔
and 𝜑 are density functions. Let 𝑃𝑛

ℎ
𝜔
∗𝜑

be the
probability measure on the Lebesgue space (R𝑛,L) with the
density∏𝑛

𝑖=1
(ℎ
𝜔
∗ 𝜑)(𝑦

𝑖
). Then Lemma 8 tells that

sup
ℎ
𝜔
∈Λ


𝑃𝑛
ℎ
𝜔
∗𝜑

{
𝑓𝑛 − ℎ

𝜔

𝑝 >
𝜃
𝑗

2
} ≥ min {1

2
, 𝐶

0
𝑀1/2𝑒−K𝑀} .

(45)

According to Lemma 5, ℎ
𝜔
(𝑥) ≲ ℎ

0
(𝑥) and 𝑃𝑛

ℎ
𝜔
∗𝜑

≪

𝑃𝑛
ℎ
0
∗𝜑
. Moreover, 𝐾(𝑃𝑛

ℎ
𝜔
∗𝜑
, 𝑃𝑛

ℎ
0
∗𝜑
) = ∫

R⋉
[ln(Π𝑛

𝑖=1
(ℎ
𝜔
∗ 𝜑)(𝑦

𝑖
)/

Π𝑛

𝑖=1
(ℎ
0

∗ 𝜑)(𝑦
𝑖
))]Π𝑛

𝑖=1
(ℎ
𝜔

∗ 𝜑)(𝑦
𝑖
)𝑑𝑦

1
𝑑𝑦

2
⋅ ⋅ ⋅ 𝑑𝑦

𝑛
=

𝑛 ∫
R
ln((ℎ

𝜔
∗ 𝜑)(𝑦)/(ℎ

0
∗ 𝜑)(𝑦))(ℎ

𝜔
∗ 𝜑)(𝑦)𝑑𝑦 = 𝑛 ∫

R
ln[1 +

𝑐
1
2−𝑗(𝑠+1/2)(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘

∗ 𝜑)(ℎ
0
∗ 𝜑)−1](ℎ

𝜔
∗ 𝜑)(𝑦)𝑑𝑦. Since

ℎ
𝜔
∗ 𝜑/ℎ

0
∗ 𝜑 > 0, 𝑐

1
2−𝑗(𝑠+1/2)(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑)(ℎ

0
∗ 𝜑)−1 =

(ℎ
𝜔
∗ 𝜑 − ℎ

0
∗ 𝜑)/ℎ

0
∗ 𝜑 > −1. Combining this with

ln(1 + 𝑥) ≤ 𝑥(𝑥 > −1), one knows

𝐾(𝑃𝑛
ℎ
𝜔
∗𝜑
, 𝑃𝑛

ℎ
0
∗𝜑
) ≤ 𝑛𝑐

1
2−𝑗(𝑠+1/2)

× ∫
R

(ℎ
0
∗ 𝜑)

−1

(𝑦)

× (
2
𝑗

∑
𝑘=1

𝜔
𝑘
𝜓
𝑗𝑘
∗ 𝜑) (𝑦)

× (ℎ
𝜔
∗ 𝜑) (𝑦) 𝑑𝑦.

(46)

Because ∫
R
(𝜓

𝑗𝑘
∗ 𝜑)(𝑦)𝑑𝑦 = 𝐹(𝜓

𝑗𝑘
∗ 𝜑)(0) = 𝜓

𝑗𝑘
(0)𝜑(0) =

0, the above inequality reduces to 𝐾(𝑃𝑛
ℎ
𝜔
∗𝜑
, 𝑃𝑛

ℎ
0
∗𝜑
) ≤

𝑐2
1
𝑛2−2𝑗(𝑠+1/2) ∫[(∑

2
𝑗

𝑘=1
𝜔
𝑘
𝜓
𝑗𝑘

∗ 𝜑)2(𝑦)][(ℎ
0
∗ 𝜑)(𝑦)]−1𝑑𝑦 ≲

𝑐2
1
𝑛2−2𝑗(𝑠+1/2+𝛽)exp{−2𝑐((2𝜋/3)2𝑗)𝛼} ∑2

𝑗

𝑘=1
𝜔2
𝑘
≤ 𝑐2

1
𝑛 2−2𝑗(𝑠+𝛽)×

exp{−2𝑐((2𝜋/3)2𝑗)𝛼} thanks to Lemma 6. Hence,

K
𝑀

:= inf
0≤V≤𝑚

1

𝑚
∑
𝑘 ̸= V

𝐾(𝑃
𝑘
, 𝑃V)

≲ 𝑐2
1
𝑛2−2𝑗(𝑠+𝛽) exp{−2𝑐(2𝜋

3
2𝑗)

𝛼

} .

(47)

Note that𝑀 ≥ 22
𝑗

/8 and take 𝑗 such that

𝑐−1(
2𝜋

3
)
−𝛼

ln 𝑛 < 2𝑗𝛼 ≤ 2𝛼𝑐−1(
2𝜋

3
)
−𝛼

ln 𝑛. (48)

Then 𝑀1/2𝑒−K𝑀 ≥ exp{((ln 2)/16)(3/2𝜋)𝑐−1/𝛼(ln 𝑛)1/𝛼}
exp{−𝐶𝑐2

1
𝑛−1[𝑐−1/𝛼(3/2𝜋)(ln 𝑛)1/𝛼]−2(𝑠+𝛽)} ≳ 1 (choose 𝑐

1
> 0

small enough). Furthermore, (45) reduces to

sup
ℎ
𝜔
∈Λ


𝑃𝑛
ℎ
𝜔
∗𝜑

{
𝑓𝑛 − ℎ

𝜔

𝑝 >
𝜃
𝑗

2
} ≳ 1. (49)

Hence, sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)
𝐸‖𝑓

𝑛
− 𝑓‖𝑝

𝑝
≥ sup

ℎ
𝜔
∈Λ
𝐸‖𝑓𝑛 − ℎ

𝜔
‖𝑝
𝑝

≥

sup
ℎ
𝜔
∈Λ
𝑃𝑛
ℎ
𝜔
∗𝜑
{‖𝑓

𝑛
− ℎ

𝜔
‖
𝑝

> 𝜃
𝑗
/2}(𝜃

𝑗
/2)𝑝 ≳ 𝜃

𝑝

𝑗
. This with

(44) and (48) leads to

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)

𝐸
𝑓𝑛 − 𝑓


𝑝

𝑝
≳ (ln 𝑛)−𝑠𝑝/𝛼, (50)

which is the desired conclusion of Theorem 9, when 𝑟 ≥ 𝑝
(𝑠 = 𝑠 in that case).

When 𝑟 < 𝑝, 𝑠 = 𝑠 − (1/𝑟 − 1/𝑝)
+
= 𝑠 − 1/𝑟 + 1/𝑝, it

remains to show

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)

𝐸
𝑓𝑛 − 𝑓


𝑝

𝑝
≥ 𝐶(ln 𝑛)−((𝑠−1/𝑟+1/𝑝)/𝛼)𝑝. (51)

Similar to the proof of (50), one takes small 𝑐
2
> 0 such that

ℎ
𝑘
(𝑥) := ℎ

0
(𝑥) + 𝑐

2
2−𝑗(𝑠−1/𝑟+1/2)𝜓

𝑗𝑘
(𝑥) (𝑘 = 1, . . . , 2𝑗)

(52)

satisfies ℎ
𝑘
(𝑥) ≥ 0, ℎ

𝑘
∈ 𝐵𝑠

𝑟,𝑞
(𝐿) and ∫ ℎ

𝑘
(𝑥)𝑑𝑥 = 1.

Clearly, ‖ℎ
𝑘
− ℎ

0
‖
𝑝

= 𝑐
2
2−𝑗(𝑠−1/𝑟+1/2)2𝑗(1/2−1/𝑝)‖𝜓‖

𝑝
and

‖ℎ
𝑘
− ℎ

𝑘
‖
𝑝
= 𝑐

2
2−𝑗(𝑠−1/𝑟+1/𝑝)‖𝜓(⋅) − 𝜓(⋅ − (𝑘 − 𝑘))‖

𝑝
for 1 ≤

𝑘 ̸= 𝑘 ≤ 2𝑗. Since 𝜓 is the Meyer wavelet function,
inf

𝑘 ̸= 0
‖𝜓(⋅) − 𝜓(⋅ − 𝑘)‖

𝑝
> 0 and

𝛿
𝑗
:= min

0≤𝑘 ̸= 𝑘

≤2
𝑗

ℎ𝑘 − ℎ
𝑘


𝑝 ≳ 𝑐
2
2−𝑗(𝑠−1/𝑟+1/𝑝). (53)

Define 𝐴
𝑘
:= {‖𝑓

𝑛
− ℎ

𝑘
‖
𝑝
< 𝛿

𝑗
/2} (𝑘 = 0, 1, . . . , 2𝑗). Then

𝐴
𝑘
∩ 𝐴V = 0 (𝑘 ̸= V) and

sup
𝑘=0,1,...,2

𝑗

𝑃𝑛
ℎ
𝑘
∗𝜑

{
𝑓𝑛 − ℎ

𝑘

𝑝 ≥
𝛿
𝑗

2
} ≥ min {1

2
, 𝐶

0
2𝑗/2𝑒−K2𝑗} ,

(54)

due to Lemma 8. Similar (even simpler) arguments to the
estimation of K

𝑀
show K

2
𝑗 ≲ 𝑐2

2
𝑛2−2𝑗(𝑠−1/𝑟+𝛽+1/2)𝑒−2𝑐((2𝜋/3)2

𝑗

)
𝛼

.
Taking 𝑗 as in (48), one receives that

K
2
𝑗 ≤ 𝐶𝑐2

2
𝑛−1[𝑐−1(

2𝜋

3
)
−𝛼

ln 𝑛]
−(2(𝑠−1/𝑟+𝛽+1/2))/𝛼

, (55)

and 2𝑗/2𝑒−K2𝑗 ≥ [𝑐−1(2𝜋/3)−𝛼 ln 𝑛]1/2𝛼 exp{−𝐶𝑐2
2
[𝑐−1(2𝜋/

3)−𝛼 ln 𝑛]−(2(𝑠−1/𝑟+𝛽+1/2))/𝛼𝑛−1} ≥ 1 by choosing small 𝑐
2
> 0.

Thus (54) reduces to

sup
𝑘=0,1,...,2

𝑗

𝑃𝑛
ℎ
𝑘
∗𝜑

{
𝑓𝑛 − ℎ

𝑘

𝑝 ≥
𝛿
𝑗

2
} ≳ 1. (56)
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Moreover, sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)
𝐸𝑛
𝑓∗𝜑

‖𝑓
𝑛
− 𝑓‖𝑝

𝑝
≥ sup

𝑘=0,1,...,2
𝑗𝐸𝑛

ℎ
𝑘
∗𝜑
‖𝑓

𝑛
−

ℎ
𝑘
‖𝑝
𝑝

≥ sup
𝑘=0,1,...,2

𝑗𝑃𝑛
ℎ
𝑘
∗𝜑
{‖𝑓

𝑛
− ℎ

𝑘
‖
𝑝
≥ 𝛿

𝑗
/2}(𝛿

𝑗
/2)𝑝 ≳ 𝛿

𝑝

𝑗
.

This with (53) and (48) leads to (51).This completes the proof
of Theorem 9.

Remark 10. ByTheorems 9 and 3, the linear wavelet estimator
𝑓𝐿
𝑛
is optimal for a density in Besov spaces with severely ill-

posed noise.Therefore, we do not need to consider nonlinear
wavelet estimations in that case. This contrasts sharply
with moderately ill-posed noise case under which nonlinear
wavelet estimation improves the linear one [2, 4].

Remark 11. When 𝑝 = 2 and 1 ≤ 𝑟 ≤ 2, our Theorem 9 is
better than Theorem 6 in [2], because (ln 𝑛)−𝑠



/𝛼 > (ln 𝑛)−𝑠/𝛼.
Moreover, Theorems 9 and 3 lead toTheorem 3 in that paper
for 𝑝 = 2 and 1 ≤ 𝑟 ≤ 2. In addition, our conditions (C1) and
(C2) are a little weaker than the assumptions in [2].

4. Concluding Remarks

This paper provides an 𝐿𝑝 (1 ≤ 𝑝 < ∞) risk upper bound for
a linear wavelet estimator 𝑓𝐿

𝑛
(Theorem 3), which turns out

to be optimal (Theorem 9). Therefore, nonlinear estimations
are not needed under severely ill-posed noises. Although we
assume𝑝 < ∞ inTheorem 9, the proof of that theorem shows
that, for 𝑝 = ∞,

sup
𝑓∈𝐵
𝑠

𝑟,𝑞
(𝐿)

𝐸
𝑓𝑛 − 𝑓

∞ ≥ 𝐶(ln 𝑛)−(𝑠−1/𝑟)/𝛼. (57)

In particular, when 𝑟 = 𝑞 = ∞, this above estimation reduces
to partial result of Theorem 1 in [3].

Note that our model assumes the noise to be severely ill-
posed; that is, the density 𝜑 of noise 𝜖 satisfies |𝜑(𝑡)| ∼ (1 +

|𝑡|2)−𝛽/2𝑒−𝑐|𝑡|
𝛼

(a.e.).Then it is reasonable to choose theMeyer
scaling function as 𝜙 because the compact supportness of 𝜙
makes K

𝑗
𝜙 well defined, where

(K
𝑗
𝜙) (𝑦) :=

1

2𝜋
∫
R

𝑒𝑖𝑡𝑦
𝜙 (𝑡)

𝜑 (−2𝑗𝑡)
𝑑𝑡. (58)

Compare with the proof of Theorem 1 in [3], the argu-
ments of Theorem 9 are more complicated in the sense
that we use Varshmov-Gilbert Lemma (Lemma 7). It is
reasonable because we deal with unmatched estimation
sup

𝑓∈𝐵
𝑠

𝑟,𝑞
(R)𝐸‖𝑓𝑛 − 𝑓‖𝑝

𝑝
(𝑝 and 𝑟may not be equal), while they

do the matched case sup
𝑓∈𝐵
𝑠

∞,∞
(R)𝐸‖𝑓𝑛 − 𝑓‖

∞
.

Although the Shannon function 𝜙𝑆(𝑡) = sin𝜋𝑡/𝜋𝑡 is
much simpler than the Meyer’s, it cannot be used in our dis-
cussion because the Shannon’s does not belong to 𝐿(R), while
our theorems cover the case for 𝑝 = 1.

Finally, it should be pointed out that we assume the inde-
pendence of observations 𝑌

1
, 𝑌

2
, . . . , 𝑌

𝑛
in this paper. How-

ever, some dependent data are more important (of course,
more complicated) in practice. We will investigate that case
in future.
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