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Sparse representation of signals via an overcomplete dictionary has recently received much attention as it has produced promising
results in various applications. Since the nonnegativities of the signals and the dictionary are required in some applications,
for example, multispectral data analysis, the conventional dictionary learning methods imposed simply with nonnegativity may
become inapplicable. In this paper, we propose a novel method for learning a nonnegative, overcomplete dictionary for such a case.
This is accomplished by posing the sparse representation of nonnegative signals as a problem of nonnegative matrix factorization
(NMF) with a sparsity constraint. By employing the coordinate descent strategy for optimization and extending it to multivariable
case for processing in parallel, we develop a so-called parallel coordinate descent dictionary learning (PCDDL) algorithm, which
is structured by iteratively solving the two optimal problems, the learning process of the dictionary and the estimating process
of the coefficients for constructing the signals. Numerical experiments demonstrate that the proposed algorithm performs better
than the conventional nonnegative K-SVD (NN-KSVD) algorithm and several other algorithms for comparison. What is more, its
computational consumption is remarkably lower than that of the compared algorithms.

1. Introduction

Dictionary learning, building a dictionary consisting of
atoms or subspaces so that a class of signals can be effi-
ciently and sparsely represented in terms of the atoms, is an
important topic in machine learning, neuroscience, signal
processing, and so forth. Since in some applications the
nonnegativities of the signals and the dictionary are required,
for example, multispectral data analysis [1, 2], nonnegative
factorization for recognition [3, 4], and some other important
problems [5, 6], the so-called nonnegative dictionary learning
becomes necessary. In this paper, we mainly focus on this
topic.

In the model of sparse representation of signals, a basic
assumption is that using an overcomplete dictionary matrix
W ∈ R𝑚×𝑟 that contains 𝑟 atoms of size 𝑚 × 1 for columns,
{w
𝑖
}
𝑟

𝑖=1
, each column vector of a signal matrix Y ∈ R𝑚×𝑛 can

be represented as a linear combination of very few, which is

meant by the terminology of sparse, atoms w
𝑖
of dictionary

W. Here, the term “overcomplete” means 𝑚 < 𝑟. Y = WH or
Y ≈ WH satisfying ‖Y − WH‖

2
≤ 𝜀 are two ways to represent

Y. The corresponding matrix H ∈ R𝑟×𝑛 that contains the
representation coefficients of signalsY is called the coefficient
matrix. For dictionary W, it can be either generated by a
prespecified set of functions or learned by a given set of
training signals. In practices [7, 8], learning a dictionary has
proved to be critical to achieve superior results in the domains
of signal and image processing.

Naturally, the problem of finding a dictionary and its
sparse representation with the fewest number of atoms can
be modeled by using the ℓ

0-norm. Considering the fact
that the ℓ

0-norm optimization problem is generally NP-
hard, one frequently used heuristic is the ℓ

1-minimization
[9]. A series of studies has led to many dictionary learning
algorithms. Several classical algorithms include LARS [10],
K-SVD [11], ILS-DLA [12], ODL [13], and RLS-DLA [14].
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Although these algorithms are very efficient in general, they
are not always suitable for learning a nonnegative dictionary
fromnonnegative signals. For example, a nonnegative variant
of K-SVD, which is termed “NN-KSVD” [15], is not as
efficient asK-SVDbecause the negative elements generated in
a dictionary matrix are intentionally set to zero to guarantee
nonnegativity as the dictionary updates.

In recent years, nonnegative matrix factorization (NMF)
[2, 16] has been widely applied to data analyses having non-
negativity constraints since NMF can factorize a nonnegative
matrix into a product of two nonnegative factormatrices with
different properties. Intuitively, NMF is similar to sparse rep-
resentation of nonnegative signals to some extent. However,
the standard NMF algorithms [17] do not impose any con-
straints on the two factors, except for nonnegativity, which
is not sufficient to lead to a sparse enough representation.
In order to obtain a sparser representation, various sparsity
constrained NMF algorithms have been proposed. Hoyer
et al. [18–20] considered enforcing the sparsity of coefficient
matrix using ℓ

1-norm. Hoyer [21] also introduced a measure
of sparsity based on the ratio of the ℓ

1-norm of a vector to
the ℓ
2-norm. Some algorithms imposed sparsity constraints

by using ℓ
2-norm [5, 22, 23]. Peharz et al. [24, 25] presented

sparseNMF algorithms that constrain the ℓ
0-(pseudo-) norm

of the coefficient matrix. In addition, several approaches
based on other types of constraints, such as nonsmoothness
constraint [26], squared ℓ

1-norm penalization [27], and
mixed-norm [28], have been proposed recently.

Inspired by the sparsity constrained NMF, in this paper
we present a new method for learning a nonnegative over-
complete dictionary for sparse representation of nonnegative
signals. Differently from the optimization strategies used
in the conventional sparsity constrained NMF, this method
employs the coordinate descent strategy [29] and extends it
to multivariable case for optimizing multiple independent
variables in factors, thus resulting in the so-called parallel
coordinate descent strategy. We present the update rules
based on the new strategy and develop an algorithm, which is
termed as the parallel coordinate descent dictionary learning
(PCDDL) algorithm, to solve our objective problem.The pro-
posed algorithm is very efficient since the objective problem
has been cast as two sequential optimal problems of quadratic
functions not involving the complicated calculations inherent
to factorization. Through experimental evaluations, we have
observed that the proposed algorithm achieves the best rate
of atom recovery compared with the conventional algorithms
[15, 18, 21, 25]. In addition, its performance is robust even if
noise is quite heavy. Furthermore, the computation cost of
our algorithm is much lower than that of other algorithms
because it does not involve the complicated calculations.

The remaining part of the paper is organized as follows. In
Section 2, we formulate the nonnegative dictionary learning
problem. In Section 3, we describe the proposed PCDDL
algorithm for nonnegative dictionary learning. In Section 4,
we report the results of numerical experiments using PCDDL
and compare these results with those of several other algo-
rithms. These experiments involve two groups of synthetic
datasets and two preliminary applications involving image

processing. Finally, in Section 5, we draw our conclusions and
discuss related research topics for the future.

2. Problem Formulation

Given a vector y ∈ R𝑚, whose components are a group of
signals, we are now concerned with its sparse representation
over an overcomplete dictionary W ∈ R𝑚×𝑟, each column
of which is referred to an atom. That is, we attempt to find
a linear combination of only few atoms, which can be close to
y in value. To avoid trivial solutions,W is restricted to the set
C, which is defined as

C ≜ {W = [w
1
, . . . ,w

𝑛
] : w𝑇
𝑗
w
𝑗

= 1, ∀𝑗 = 1, . . . , 𝑛} . (1)

For a training set of 𝑛 signals Y = {y
1
, . . . , y

𝑛
}, dictionary

learning can be formulated as the following optimization
problem:

min
W∈C,H

1

𝑛

𝑛

∑

𝑖=1

F
𝑖
(h
𝑖
,W) , (2)

whereH = {h
1
, . . . , h

𝑛
} and

F
𝑖
(h
𝑖
,W) =

1

2





y
𝑖
− Wh

𝑖






2

2
+ 𝑃 (h

𝑖
, 𝜆) . (3)

Here 𝑃(h
𝑖
, 𝜆) is a penalty function with 𝜆 > 0, which

is a tuning parameter controlling the tradeoff between the
approximation error (1/2)‖y

𝑖
− Wh

𝑖
‖
2

2
and the penalty func-

tion 𝑃(h
𝑖
, 𝜆).

Naturally, the problem of learning a dictionary W and
finding a sparse representation h

𝑖
can be modeled by using

the ℓ
0-norm, defining 𝑃(h

𝑖
, 𝜆) as the ℓ

0-norm of h
𝑖
; namely,

𝑃(h
𝑖
, 𝜆) = 𝜆‖h

𝑖
‖
0
. However, the resulting optimization

problem is usually NP-hard. Considering this difficulty, one
frequently used heuristic is the ℓ

1-norm; that is, 𝑃(h
𝑖
, 𝜆) =

𝜆‖h
𝑖
‖
1
[9].

With the use of the ℓ
1
-norm, the dictionary learning

problem is expressed as follows:

min
W∈C,H

1

𝑛

𝑛

∑

𝑖=1

{

1

2





y
𝑖
− Wh

𝑖






2

2
+ 𝜆





h
𝑖




1

} . (4)

Noted that it is allowed to take different values of 𝜆 for
different penalty functions𝑃(h

𝑖
, 𝜆). For the sake of simplicity,

however, we assume here that the same 𝜆 is applied to every
penalty function. Thus, (4) can be also rewritten as a matrix
factorization problem with a sparsity penalty,

min
W∈C,H

1

2

‖Y − WH‖
2

𝐹
+ 𝜆‖H‖

1,1
, (5)

where ‖H‖
1,1

denotes the ℓ
1
-norm of thematrixH, that is, the

sum of the ℓ
1-norm of each column vector of the matrixH.

Furthermore, if Y is nonnegative and factors W and H
are both limited to be nonnegative, then the process is called
nonnegative dictionary learning, which can be formulated as,

min
W∈C,H

1

2

‖Y − WH‖
2

𝐹
+ 𝜆‖H‖

1,1

subject to W ⪰ 0, H ⪰ 0.

(6)
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To solve the problem in (6), a natural strategy is to
optimize between W and H alternatively. That is, minimize
one while keeping the other fixed. The NN-KSVD algorithm
[18] and some NMF algorithms including NNSC, NMFSC,
and NMFℓ

0-H, just solve the problem in such a way.

3. The Proposed Method

3.1. Parallel Coordinate Descent Dictionary Learning
(PCDDL). To solve the objective problem (6), we first
employ alternating update strategy, that is, updating one of
two factors while fixing the other. In the optimization of
each factor, we propose optimizing each component in the
factor one by one by generalizing the coordinate descent
strategy [29], rather than optimizing the whole factor at a
time as in the standard NMF algorithms [17]. Furthermore,
we found that (6) can be separated into column-wise or
row-wise subproblems, and each subproblem can just be
solved alternately and explicitly by utilizing the properties of
solving extreme value problem of a quadratic function, so
that the whole problem can be solved efficiently.

We here derive the update rules for H and W of (6). In
terms of the definition and properties of the Frobenius norm,
for a matrix A ∈ R𝑚×𝑛, ‖A‖

2

𝐹
= Tr(AA𝑇) = Tr(A𝑇A).

Tr(⋅) denotes the trace of a square matrix. Thus, the objective
function (6) can be decomposed as follows:

𝐽 =

1

2

𝑛

∑

𝑗=1

Y𝑇
𝑗:
Y
:𝑗

−

𝑛

∑

𝑗=1

[Y𝑇W]
𝑗:

H
:𝑗

+

1

2

𝑛

∑

𝑗=1

H𝑇
𝑗:
W𝑇WH

:𝑗
+ 𝜆

𝑟

∑

𝑖=1

𝑛

∑

𝑗=1






H
𝑖𝑗






,

(7)

where [Y𝑇W]
𝑗:
denotes the 𝑗th row of the multiplication

of matrices Y𝑇 and W. Since the elements of H have
nonnegativity, the absolute value operation in (7) can be
omitted. If we fixW in (7), then (7) is amultivariable objective
function ofH

𝑖𝑗
(𝑖 = 1, . . . , 𝑟; 𝑗 = 1, . . . , 𝑛). First, let us explain

the coordinate descent strategy for a single variable. For (7),
we consider optimizing only a single variableH

𝑘𝑗
, while fixing

the other components in H. Thus, we obtain a quadratic
function with regard toH

𝑘𝑗
as follows:

𝐽H𝑘𝑗 =

1

2

[W𝑇W]
𝑘𝑘

H2
𝑘𝑗

+ H
𝑘𝑗

(

𝑟

∑

𝑙=1,𝑙 ̸= 𝑘

[W𝑇W]
𝑘𝑙

H
𝑙𝑗

− [W𝑇Y]
𝑘𝑗

+ 𝜆) ,

(8)

where [W𝑇W]
𝑘𝑘

denotes the entry in the 𝑘th row and the
𝑘th column of the multiplication of matrices W𝑇 and W.
[W𝑇W]

𝑘𝑘
is always positive because it is a diagonal element

of Gram matrix W𝑇W (no zero vectors exist in W here,
also). Thus, when H

𝑘𝑗
= ([W𝑇Y]

𝑘𝑗
− ∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
[W𝑇W]

𝑘𝑙
H
𝑙𝑗

−

𝜆)/[W𝑇W]
𝑘𝑘

, 𝐽H𝑘𝑗 reaches the minimum. Considering the
nonnegativity of factor H, H

𝑘𝑗
is set to 0 when it is negative.

Note that, when updating H
𝑘𝑗
, the process involves only the

elements H
𝑙𝑗,𝑙 ̸= 𝑘

of the 𝑗th column in H. That is, the optimal
value for a given entry of H does not depend on the other
components of the same row containing the entry.Hence, one
can optimize all elements of one row in H at the same time.
This can be viewed as optimizing the elements in parallel, that
is, parallel coordinate descent strategy for multiple variables.
Thus, the update rule forH of (7) is given as follows:

H∗
𝑘:

= argmin
H𝑘:≥0

‖Y − WH‖
2

𝐹

= max(0,

W𝑇
𝑘:
Y − ∑

𝑟

𝑙=1,𝑙 ̸= 𝑘
W𝑇
𝑘:
W
:𝑙
H
𝑙:

− 𝜆

W𝑇
𝑘:
W
:𝑘

)

= max(0,

W𝑇
𝑘:
R
𝑘

− 𝜆





W
:𝑘






2

2

) ,

(9)

where R
𝑘

= Y − ∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
W
:𝑙
H
𝑙:
.

Similar to the derivation of the update rule forH, one can
also obtain the corresponding update rule forW. If fixingH in
(7), then (7) is a multivariable objective function ofW

𝑖𝑗
(𝑖 =

1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑟). For (7), we now consider optimizing
only one variable W

𝑖𝑘
, while fixing the other components in

W.We first select the items related toW
𝑖𝑘
from (7) and obtain

a quadratic function with regard toW
𝑖𝑘
as follows:

𝐽W𝑖𝑘 =

1

2

[HH𝑇]
𝑘𝑘

W2
𝑖𝑘

+ W
𝑖𝑘

(

𝑟

∑

𝑙=1,𝑙 ̸= 𝑘

W
𝑖𝑙
[HH𝑇]

𝑙𝑘

− [YH𝑇]
𝑖𝑘

) .

(10)

One can find that (10) is very similar to (8). In terms
of the properties of a single variable quadratic problem,
𝐽W𝑖𝑘 obtains the minimum when W

𝑖𝑘
= ([YH𝑇]

𝑖𝑘
−

∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
W
𝑖𝑙
[HH𝑇]

𝑙𝑘
)/[HH𝑇]

𝑘𝑘
. Considering the nonnegativ-

ity of factorW, W
𝑖𝑘
is set to 0 when it is negative. Similar to

the update rule forH, W in (7) can update by column. Thus,
the update rule forW of (7) is expressed as follows:

W∗
:𝑘

= argmin
W:𝑘≥0

‖Y − WH‖
2

𝐹

= max(0,

YH𝑇
:𝑘

− ∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
W
:𝑙
H
𝑙:
H𝑇
:𝑘

H
𝑘:
H𝑇
:𝑘

)

= max(0,

R
𝑘
H𝑇
:𝑘





H
𝑘:






2

2

) .

(11)

In addition, for preventing dictionary W from having arbi-
trarily large values, each column of W is normalized to the
unit ℓ

2-norm when dictionary W is updating. Note that the
way of maintaining the nonnegativity of two factor matrices
in PCDDL is obviously different from that of NN-KSVD.The
former can guarantee that the obtained nonnegative solutions
are the optimal relative to each column-wise or row-wise
updating, but the latter cannot.
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Require: Data Matrix Y ∈ R𝑚×𝑛
+

, initial matricesW ∈ R𝑚×𝑟
+

,H ∈ R𝑟×𝑛
+

, and 𝜆;
(1) while stopping criterion not satisfied do
(2) Computing P = YH𝑇 and Q = HH𝑇;
(3) for 𝑘 = 1 to 𝑟 do

(4) W
:𝑘

← max (0,

P
:𝑘

− ∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
W
:𝑙
Q
𝑙𝑘

Q
𝑘𝑘

)

(5) NormalizingW
:𝑘

←

W
:𝑘





W
:𝑘




2

(6) end for
(7) Computing U = W𝑇Y and V = W𝑇W;
(8) for 𝑘 = 1 to 𝑟 do

(9) H
𝑘:

← max (0,

U
𝑘:

− ∑
𝑟

𝑙=1,𝑙 ̸= 𝑘
V
𝑘𝑙
H
𝑙:

− 𝜆

V
𝑘𝑘

)

(10) end for
(11) Using the fixed 𝜆 or adaptively tuning 𝜆 according to the change of the sparsity ofH;
(12) end while

Algorithm 1: PCDDL.

Remark 1. According to the above derivation, it can be
observed that our objective function (7) can be cast as two
sequential optimal problems of quadratic functions, each
of which can be alternately optimized in parallel by the
generalized coordinate descent strategy.

Remark 2. The sparsity of H can be flexibly controlled by
tuning the regularization parameter 𝜆.

Remark 3. The method is suitable not only for the case of
overdetermined dictionary matrices (𝑚 > 𝑟) but also for the
case of underdetermined dictionary matrices (𝑚 < 𝑟), even
though these matrices have different physical meanings in
different applications.

3.2. Choice of Parameter 𝜆 and Summary of Algorithm. In
the step of updating H with a fixed W, the parameter 𝜆 >

0 can be adjusted for controlling the tradeoff between the
approximation error (1/2)‖Y − WH‖

2

𝐹
and the sparsity of

coefficient matrix H and plays an important role in the
proposed algorithm. To steer the solution toward a global,
optimal solution, the parameter 𝜆 can be determined by two
kinds of ways, off-line calibrating and adaptive tuning.

For the first way, one can repeat an experiment with
different 𝜆 and determine what value for 𝜆 is the optimal
according to the output results.

For the secondway, we give an easy-to-use rule as follows.
First, 𝜆 should be less than ‖W𝑇

𝑘:
R
𝑘
‖
∞

in terms of (9);
otherwise H

𝑘:
will become a zero vector. We may initialize

𝜆 with a very small value, for example, 0.001, which can
generally satisfy the above condition. Next, we alternately
update H and W in terms of (9) and (11) and adjust 𝜆

according to the rule defined as follows:

𝜆
(𝑘+1)

=

{
{

{
{

{

𝜆
(𝑘)

+ 0.001 if 𝑆 (H(𝑘−1)) − 𝑆 (H(𝑘)) < 10
−3

,

𝑆 (H(𝑘)) − 𝑆
∗

> 10
−3

𝜆
(𝑘) otherwise,

(12)

where 𝑆(H) is a sparsity measure, defined as ‖H‖
0
/(𝑟 × 𝑛),

which calculates the ratio of the number of nonzero elements
and the number of all elements inH. 𝜆(𝑘) and 𝑆(H(𝑘)) denote
the value of 𝜆 and the sparsity of H in the 𝑘th iteration,
respectively. 𝑆∗ denotes the expected or a prior sparsity ofH.
The rule means that if the sparsity ofH varies very slowly and
is far from the expected one, one may appropriately increase
the stepsize of 𝜆; otherwise, keep the current 𝜆. Experiments
show that the values of 𝜆 obtained by the two ways are very
close. If 𝜆 is self-tuned for adapting to signal, however, more
iterations are usually needed for convergence.

According to the analysis above, the proposed PCDDL
algorithm for nonnegative dictionary learning is summarized
in Algorithm 1.

3.3. Convergence Analysis of PCDDLAlgorithm. Thestandard
NMF algorithms [17] belong to two-block convex optimiza-
tion scheme since each factor can be viewed as a block,
and optimizing one of two factors while fixing the other
is separately convex. Grippo and Sciandrone analyzed the
convergence of the two-block convex optimization problems
in [30]. They demonstrated that under the condition of
continuously differentiable objective function, a two-block
convex optimization algorithm does not require each sub-
problem to have a unique solution for convergence, and any
limit point of the sequence of optimal solutions of two-
block subproblems is a stationary point. Obviously, PCDDL
is such a two-block convex optimization algorithm, so that
we can make analysis of its convergence by using the facts
in [30]. During iterations, PCDDL can obtain a sequence of
the limit points that can guarantee the reduction of objective
function. Additionally, in terms of the definition of ℓ

1-norm,
the penalty term ‖H‖

1,1
in (6) can be decomposed into

∑
𝑟

𝑖=1
∑
𝑛

𝑗=1
H
𝑖𝑗
since H ⪰ 0. Thus, under the conditions of

𝜆 > 0, the objective function (6) is differentiable with respect
to W and H, respectively. The existence of limit points and
the differentiability of the objective function in (6) imply
that the assumptions of Grippo and Sciandrone’s Corollary
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[30] are satisfied, so that we can establish that the two-block
minimization processes of PCDDL converge.

4. Numerical Experiments

In this section, first we present the results of two experiments
using PCDDL with synthetic signals. The aims of these
experiments are (1) to test whether the PCDDL algorithm
can recover the true dictionary, which is used to generate the
test data; and (2) to compare the results with those of other
algorithms, such as NNSC (online available: http://www.cs
.helsinki.fi/u/phoyer/) [18], NN-KSVD (online available:
http://www.cs.technion.ac.il/∼elad/) [15], NMFSC (online
available: http://www.cs.helsinki.fi/u/phoyer/) [21], and
NMFℓ

0-H (online available: http://www.spsc.tugraz.at/tools/
nmf-l0-sparseness-constraints) [25]. Next, we apply PCDDL
to a conventional digital image processing problem, image
denoising, to verify the applicability of the proposed
algorithm in a real-world environment. Finally, we carry out
an experiment of learning a global-based representation on
a face dataset in order to demonstrate the practicality of the
proposed algorithm for further large-scale data analysis. In
the experiments, all programs were coded in Matlab and
were run within Matlab 7.8 (R2009a) on a PC with a 3.2GHz
Intel Core i5 CPU and 4G of memory.

4.1. Recovery Experiment of Random Dictionary. To eval-
uate the learning capacity of the proposed algorithm for
a nonnegative dictionary, we conducted an experiment of
recovering a random dictionary from synthetic observation
signals generated from the random dictionary. By comparing
the recovery rate of the dictionary, adaptability, runtime,
and so forth, we assess the algorithms under consideration
(see above). The processes are as follows. We generated a
stochastic nonnegative matrix of size 20 × 50 with i.i.d.
uniformly distributed entries, as described in [11]. Each vector
was normalized to unit ℓ

2-norm. The stochastic nonnegative
matrix was referred to as the true dictionary W, which was
not used in the learning but was used only for evaluation.
We then synthesized 1500 test signals Y of dimension 20,
each of which was produced by a linear combination of
three different atoms in the true dictionary, with three corre-
sponding coefficients in random and independent positions.
We executed NNSC, NMFSC, NN-KSVD, NMFℓ

0-H, and
PCDDL on the test signals. For the five algorithms, the
initialized dictionary matrices of size 20 × 50 were composed
of the randomly selected parts of the test signals. For
NNSC, NMFSC, and PCDDL, the corresponding coefficient
matrices were initialized with i.i.d. uniformly distributed
random nonnegative entries. NN-KSVD and NMFℓ

0-H do
not require a specified coefficientmatrix, as they can generate
the corresponding coefficient matrix by sparse coding.

Next, we compared the learned dictionaries with the
true dictionary. These comparisons were done by sweeping
through the columns of the true and the learned dictionar-
ies and finding the closest column (in ℓ

2-norm distance)
between the two dictionaries. A distance of less than 0.01
was considered a success. The experiment is similar to the

one conducted in [11], except for the nonnegative condition.
Obviously, the five iterative algorithms described above have
different convergence properties. To provide fair limits on
the number of the respective iterations, we executed these
algorithms with the same iterations as many times as possible
and determined respective iteration number in terms of the
results shown in Figures 1, 2, and 3. NNSC and NMFSC,
respectively, took about 3000 iterations to reach convergence,
while NMFℓ

0-H took only dozens of iterations. In addition,
we also considered the runtime of each algorithm as showed
in Figure 2. Thus, we set the maximum numbers of iterations
for NNSC, NMFSC, NN-KSVD, NMFℓ

0-H, and PCDDL to
3000, 3000, 300, 30, and 500, respectively. Certainly, the
iteration of any algorithm can be terminated in advance if it
has learned 100% of the atoms before reaching the maximum
number of iterations.

Besides the noiseless condition, we also made exper-
iments in which the uniformly distributed positive noise
of varying signal-to-noise ratios (SNRs) was corrupted to
the test signals in order to evaluate the performance and
robustness of antinoise. All trials were repeated 15 times with
different initialized dictionaries. Figure 4 shows the results
of the experiment for noise levels of 10, 20, and 30 dB and
for the noiseless case. Obviously, NMFSC and NN-KSVD
performed worst, especially under lower SNR conditions.
NMFℓ

0-H performed better than NNSC, NMFSC, and NN-
KSVD under various conditions. The proposed PCDDL
performedbest on dictionary learning, although it performed
only slightly better than NMFℓ

0-H under various conditions.
The average runtime of each trial for these algorithms was
35 s, 146 s, 244 s, 24 s, and 4 s, respectively. Obviously, PCDDL
has a remarkable advantage in computational consumption.
Note that, in the experiment, NN-KSVD and NMFℓ

0-H
required a specified, exact number of nonzero elements in
the coefficient matrix (3/50 = 0.06 for the case) as shown in
Figure 3, and NMFSC was executed with a sparsity factor of
0.8 on the coefficients. For NNSC and PCDDL, the sparsity
of the coefficient matrices was adjusted via the regularization
parameters 𝜆. In the experiment, the corresponding parame-
ters 𝜆 were set to 0.2 in both the cases, which was calibrated
off-line through several trials. The two parameters 𝜆 were
fixed during iterations in order to reduce the number of
iterations and computational cost.

4.2. Recovery Experiment of Decimal Digits Dictionary. To
further investigate the potential practicality of the proposed
PCDDL algorithm, we considered the 10 decimal digits
dataset from [15]. The dataset is composed of 90 images of
size 8× 8, representing 10 decimal digits with various position
shifts. Note that a mistake exists in the original dataset, in
which some atoms are duplicated. In the original dataset, for
example, the atoms of the first column are the same as the
ones of the fifth column. Before the experiment, we corrected
the problem by making all the atoms different.

Before beginning the experiment, we first generated 3000
training signals of size 64 × 1, each of which is a random
linear combination of 5 different atoms with random positive
coefficients. That is, there are uniformly 5 nonzero elements
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Figure 1: Evolution of the rate of atom recovery versus the iteration number of five algorithms. (a) It shows 3000 iterations. (b) It is a close-up
view of the former 200 iterations for (a).
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Figure 2: Evolution of the rate of atom recovery versus the
runtime of five algorithms. These algorithms run 3000 iterations,
respectively. PCDDL achieved the best rate of recovery in the least
time.

in each vector of the corresponding coefficient matrix. In
order to learn original dictionary, the training signals were
input into the five algorithms, NNSC, NMFSC, NN-KSVD,
NMFℓ

0-H, and PCDDL. We also added the uniformly dis-
tributed positive noise of varying SNR to the training signals
in order to evaluate the robustness of antinoise.The obtained
results are shown in Figure 5.

As the results of the experiments in the above subsection,
PCDDL performed better than the other four algorithms at
three noise levels and in the noiseless case. The results of
NN-KSVD were not as good as described in [15], because
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Figure 3: Evolution of the sparsity of the coefficient matrix versus
the iteration number of five algorithms.

we corrected the above-mentioned mistake in the original
dataset (i.e., removed duplicated atoms). The duplicated
atoms in the original dataset led to the better, but wrong,
result in [15] compared with the results of our experiment.
Surprisingly, NNSC performed worst in this experiment,
and it could almost not learn any correct atoms no matter
how the parameters had been chosen. In a typical run, the
average runtime of each trial was 412 s, 473 s, 822 s, 136 s
and 23 s, respectively. This fact further shows that PCDDL
has a remarkable advantage in computational consumption.
In Figure 6, we give an example of the experiment under
noiseless conditions, in which the four algorithms except
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Figure 4: Results of a synthetic experiment with a dictionary of
size 20 × 50. For each of the tested algorithms and for each noise
level, 15 trials were performed. Averaged values of learned atoms and
corresponding deviation values are displayed.
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Figure 5: Results of a synthetic experiment with a decimal digits
dictionary of size 64 × 90. For each of the tested algorithms and for
each noise level, 10 trials were performed. Averaged values of learned
atoms and corresponding deviation values are displayed.

NNSC recovered 77, 72, 86, and 89 atoms of 90 atoms,
respectively.The result for NNSC was not showed in Figure 6
since it could almost not learn any correct atoms. Figure 6(a)
shows the dataset revised by us. Figure 6(f) shows the result
obtained by PCDDL, where only one digit 8 could not be
recovered correctly. Certainly, PCDDL can either recover
100% of the atoms in considerable cases.

4.3. Image Denoising of Nature Images. Image denoising
problem is important, not only because of the obvious
applications that it serves. Being the simplest possible inverse
problem, it provides a convenient platform through which
image processing ideas and techniques can be assessed. In
this sense, we intend to apply nonnegative dictionary learning
to image denoising problem. Using redundant representa-
tions and sparsity as driving forces for denoising of signals
constitutes significant progress [31, 32]. In these studies, a
typical noise model is Y = X + V, where X ∈ R𝑚×𝑛

is the clean image, V ∈ R𝑚×𝑛 is assumed to be white
Gaussian noise with a fixed standard deviation 𝜎 (the case of
nonuniform𝜎 is dealt with in [33]), andY ∈ R𝑚×𝑛 is the noisy
observed image. Here, the noise is assumed to be uniformly
distributed with nonnegative values, instead of zero-mean
white and homogeneous Gaussian noise, since this paper
is for studying the sparse representation of nonnegative
signals. For solving the denoising problem, we adopted the
algorithm presented in [31], which is based on a sparse and
redundant representation model on small image patches. In
the procedure, the original dictionary learning algorithm is
replaced with our proposed PCDDL.

In this set of experiments, the dictionaries used were of
size 64 × 256, which were designed to handle image patches
of size 8 × 8 pixels. All reported results are presented as an
average of three experiments, having different realizations of
the noise. Some standard test images including Barbara (512
× 512), House (256 × 256), Boats (512 × 512), Lena (512 ×

512), and Peppers (256 × 256) were used in the experiment.
We added noise of various levels to the test images. We
used two quality measures, the peak SNR (PSNR) and the
structural similarity (SSIM), to assess the denoised images.
Let X and X̂ denote the ideal image and the deteriorated
image, respectively. We calculate the PSNR value of X̂ by
PSNR(X̂) = 10 ⋅ log

10
(1/(X − X̂)

2

). For SSIM, its value range
is between 0 and 1, and its value equals 1 if X = X̂. For more
information about the SSIM index, please refer to references
in [34].

In the experiment, we focused on tests with higher
noise levels, because it may be more critical. We chose
the conventional Wavelets denoising algorithm [35] and the
known nonlocal means (NL-means) algorithm [36] as the
compared objects. Additionally, we also chose the NMFℓ

0-H
because of its better performance in previous experiments.
It is notable that NMFℓ

0-H is very time-consuming for
the dictionary learning procedure, as described in the two
experiments above. Table 1 summarizes the results of the
denoising experiment. We concluded that the denoising
algorithm using the PCDDL dictionary achieved highly com-
petitive PSNR and SSIM performance outcomes compared
to that of Wavelets, NL-means, and NMFℓ

0-H algorithms.
When comparing PSNR, the denoising algorithm using the
PCDDL dictionary outperformed NL-means in the range
of about 0.7 dB∼2 dB and performed much better than the
Wavelets and NMFℓ

0-H algorithms. When comparing the
SSIM index, the denoising algorithm using the PCDDL
dictionary returned results comparable to that of the NL-
means algorithm. Subjective quality comparisons for two
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Table 1: PSNR (dB) and SSIM results for different algorithms. In each cell, four groups of denoising results are shown. Top row, Wavelets;
second row, NL-means; third row, NMFℓ

0-H; bottom row, PCDDL.

Input PSNR Lena Barbara Boat House Pepper Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
32.91 0.8775 29.61 0.8633 30.28 0.8093 33.05 0.8669 31.20 0.8881 31.41 0.8610

29.97 37.76 0.9370 36.62 0.9583 35.55 0.9205 38.17 0.9357 36.02 0.9485 36.82 0.9400
29.23 0.9224 33.15 0.9538 35.95 0.9451 33.68 0.9519 35.76 0.9568 33.55 0.9460
39.39 0.9491 38.69 0.9641 38.08 0.9445 40.10 0.9580 38.63 0.9577 38.98 0.9547

20.12

28.52 0.7982 25.03 0.7168 26.63 0.6988 28.03 0.7856 26.24 0.7902 26.89 0.7579
33.45 0.8756 31.74 0.8914 31.04 0.8148 34.06 0.8729 32.06 0.8929 32.47 0.8695
29.61 0.8680 30.82 0.9056 29.17 0.8232 33.93 0.8846 28.22 0.8788 30.35 0.8720
34.39 0.8791 32.58 0.8870 32.24 0.8376 34.32 0.8714 32.70 0.8839 33.25 0.8718

14.09

25.74 0.7312 22.71 0.6044 24.23 0.6101 24.90 0.7220 23.15 0.7021 24.15 0.6740
30.14 0.8039 27.52 0.7867 27.69 0.7145 30.44 0.8087 28.52 0.8235 28.86 0.7875
27.68 0.7870 24.63 0.7411 24.10 0.6578 27.64 0.8170 22.87 0.7604 25.38 0.7527
31.24 0.7953 28.71 0.7700 28.80 0.7137 31.21 0.7981 29.27 0.7933 29.85 0.7741

8.82

23.47 0.6712 21.07 0.5249 22.32 0.5384 22.51 0.6666 20.56 0.6164 21.99 0.6035
27.18 0.6876 24.32 0.6402 24.99 0.5938 26.60 0.6767 24.97 0.7114 25.61 0.6619
21.58 0.6677 19.60 0.5175 20.38 0.5190 21.41 0.6746 19.31 0.6232 20.46 0.6004
28.38 0.6727 25.26 0.5986 26.08 0.5693 28.37 0.6917 26.27 0.6643 26.87 0.6393

(a) True dictionary (b) Training data (a part) (c) NMFSC 77

(d) NN-KSVD 72 (e) NMFℓ0-H 86 (f) PCDDL 89

Figure 6: (a) True dictionary composed of 90 atoms. (b) Part of the total training data. (c)–(f) Learned dictionaries fromNMFSC,NN-KSVD,
NMFℓ

0-H, and PCDDL algorithms. The numbers of learned atoms are 77, 72, 86, and 89, respectively. Note that these resulting dictionaries
have been realigned to facilitate comparison with the original dictionary.

typical test images (Boat and House) are shown in Figures 7
and 8. The PCDDL dictionary learned from the noisy House
image in Figure 8 is illustrated in Figure 9.

4.4. Human Face Image Analysis. In this subsection,
we describe our experiment on learning a global-based
representation [21] using a face dataset. The learning process

can be considered to be one kind of principal component
analysis. We used the ORL dataset of faces (online available:
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedata-
base.html). Since the ORL dataset includes 400 facial
images of size 92 × 112 pixels, the dataset can be considered
to be large scale. Using the dataset, we can evaluate the
computational performances of the PCDDL and the other
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Original image

(a)

Noisy image
(14.11 dB, 0.3185)

(b)

Denoised image using
NL-means (27.72 dB, 0.7144)

(c)

Denoised image using PCDDL
dictionary (28.83 dB, 0.7139)

(d)

Figure 7: Example of denoising results for the image “Boat” with a noise level of 14.11 dB. In brackets, the former items denote PSNR values,
and the latter items denote the SSIM index.

Original image

(a)

Noisy image
(20.12 dB, 0.5026)

(b)

Denoised image using
NL-means (34.08 dB, 0.8729)

(c)

Denoised image using PCDDL
dictionary (34.37 dB, 0.8713)

(d)

Figure 8: Example of the denoising results for the image “House” with the noise level of 20.12 dB. In brackets, the former items denote PSNR
values, and the latter items denote the SSIM index.

compared algorithms. To assess the experiment fairly, we
drove the compared algorithms to obtain the corresponding
coefficient matrices and forced them to reach as comparable
level of sparsity as possible (based on ℓ

0-norm). By using the
Hoyer’s sparsity measure for a vector x ∈ R𝑛, defined as

Sparsity (x) =

√𝑛 − ‖x‖
1
/‖x‖
2

√𝑛 − 1

∈ [0, 1] , (13)

we compared the average sparsity of all column vectors in
these coefficient matrices. Additionally, we computed the
respective relative errors defined below and counted the
respective runtime

Relative Error =

‖Y − WH‖
𝐹

‖Y‖
𝐹

. (14)

In the experiment, we performed a global-based feature
learning of rank 𝑟 = 36 and constrained the coefficient
matrices to have a sparsity of about 0.08; that is, each
facial image was required to be represented with three facial
features (36 × 0.08 ≈ 3). Besides NMFSC and NMFℓ

0-H,
we chose another sparse NMF algorithm (denoted as SNMF)
[20] as the compared objective. Note that NN-KSVD was
not included in this experiment, since it has exceedingly

Figure 9: The PCDDL dictionary has a size of 64 × 256, which was
learned from the noisy House image in Figure 8.

high computational consumption. Each of these algorithms
required some initialization parameters and a limit on the
number of its iterations. For SNMF, we allowed 3000 iter-
ations; and for the parameter 𝛼, which is used to adjust
sparsity, we chose 100. For NMFSC, we only constrained the
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(a) SNMF (b) NMFSC (c) NMFℓ0-H (d) PCDDL

Figure 10: Globally featured faces learned by SNMF, NMFSC, NMFℓ
0-H, and PCDDL.

sparsity of coefficient factor H to 0.9 in terms of (13) and
executed at most 3000 iterations, which was necessary for
convergence. For NMFℓ

0-H, we set the maximum number
of nonzero elements of vectors in factor H to 3 (3/36 ≈

0.0833, close to 0.08) and allowed 30 iterations, considering
the high computational consumption of NMFℓ

0-H. For the
proposed PCDDL, we allowed at most 200 iterations, and 𝜆

was set to 10, that is, calibrated through several trials. All four
algorithmswere run three times with the same initial random
matrices (for NMFℓ

0-H, it was not necessary to initialize
coefficientH). The averaged results are reported in Table 2.

Through Table 2, it can be observed that SNMF seems
to be incapable of obtaining an actual sparse representation,
despite the fact that it is designed to enhance sparsity by intro-
ducing the ℓ

1-norm. The other three algorithms obtained
similar results and produced much sparser solutions, that is,
more global-based representations. NMFSC and NMFℓ

0-H
produced lower relative errors but took much more runtime
than PCDDL. The runtime of NMFSC and NMFℓ

0-H was
about 14 and 23 times longer than that of PCDDL. In view
of its high efficiency, PCDDL is more suitable for large-scale
data analysis. In Figure 10, we show an illustration of the
global-based features learned by the four algorithms in a
typical run.

5. Conclusion

In this paper, we presented a novel and efficient method for
learning nonnegative dictionaries for sparse representation
of nonnegative signals. In this method, we generalized the
coordinate descent strategy for optimization for being able
to be applied to a multivariable case, so that it can process
in a parallel way. By this strategy we developed an efficient
algorithm, which has been named as the parallel coordinate
descent dictionary learning (i.e., PCDDL) algorithm. The
algorithm updates the dictionary in a column-wise manner
and the coefficient matrix in a row-wise manner. In each
column-wise or row-wise updating, PCDDL optimizes a
series of optimal problems sequentially, each of which is
an optimization of a quadratic function. Furthermore, such
optimization problems can be solved explicitly, so that the

Table 2: Comparisons of 𝑆 (H)-based sparsity, Hoyer’s sparsity
(based on (13)), relative error (based on (14)), and runtime for SNMF,
NMFSC, NMFℓ

0-H, and PCDDL.

Algorithm 𝑆 (H) Sparsity Relative error Time (s)
SNMF 96.65 0.4314 0.9904 940
NMFSC 8.00 0.9490 0.2520 415
NMFℓ

0-H 8.33 0.8957 0.1852 662
PCDDL 8.00 0.9447 0.2925 28

algorithm can be processed very precisely and quickly from
a global perspective according to the properties of the
univariate quadratic problem. For this reason, the proposed
algorithm can efficiently solve the nonnegative dictionary
learning problem with very high accuracy.

Results of experiments on dictionary recovery showed
that PCDDL can correctly learn a nonnegative, overcomplete
dictionary, regardless of wether the objective signals are
synthetic data or are natural images. Additionally, further
experiments supported the potential application of PCDDL
in the field of image processing, such as image denoising,
image classification, and large-scale data processing due to its
low computational consumption. We are currently working
on applying this method to some practical problems in image
processing, for example, large-scale image classification. The
results from these ongoing studies will be presented in the
future.
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