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This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude,
epicentral distance, and epicenter depth) and two geological conditions (i.e., shearwave velocity and standard penetration test value)
as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison
results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based
on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural
network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak
ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study
develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method.
This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an
insight into this type of nonlinear problem, and the proposedmethodmay be applicable to other areas of interest around the world.

1. Introduction

Seismic design values play an important role in constructing
buildings to comply with regional safety standards that con-
sider the effects of strong groundmotions. Taiwan is an island
located in the circum-Pacific seismic zone, sometimes called
the Ring of Fire. Because earthquakes occur frequently in
this area, this factor must be taken into account in structural
analysis and design. After a few times of revisions and adjust-
ments, the current building code in Taiwan classifies the
entire island into two zones: the earthquake area coefficient
of horizontal acceleration is 0.33 g for Zone A and 0.23 g for
Zone B [1, 2]. These design values can be used to calculate
earthquake force and should be examined as often as possible
to determine their fit with actual conditions, either from a
practical viewpoint or academic viewpoint.

There exist various types of earthquake problems; a
typical case study for estimating peak ground acceleration
(PGA) and a detailed review of recent efforts in predictions
can be seen in the previous literatures [3, 4].Thepresent study

focuses on the topic of using seismic recorded parameters and
site soil conditions to evaluate the potential damage resulting
from ground strong motions. The conventional methods of
using seismic parameters to evaluate the potential damage
of earthquakes are primarily based on vibration analysis and
regression analysis. However, the first method often involves
very tedious calculations, and the second method must
assume a function in advance [5, 6].Therefore, recently devel-
oped techniques in the field of computational intelligence,
including neural networks and genetic algorithms, may be
a better alternative for solving earthquake-related problems
around the world because of their simplicity and effectiveness
[7–18]. For more specific areas in Taiwan, the seismic key
element, that is, PGA, can be estimated using neural network
models trained on a series of historical seismic recorded data
[19, 20]. An improved model that uses a combination of
genetic algorithms and neural networks can also be found
to be useful for solving the problem of checking the seismic
design values [21, 22]. Previous studies have shown that
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the seismic parameters of local magnitude (ML), epicentral
distance (Di), and focal depth (De) in the learned model
can achieve acceptable performance in estimating the PGA
in various engineering projects and identifying potentially
hazardous zones.

Regardless of whether the hypocenter is located under
the sea or under the ground surface, seismic waves generally
propagate through various strata to the ground surface, and
their characteristics can be recorded by precision instruments
installed in checking stations. Therefore, the geological con-
ditions of site may have a significant effect on the ground
motion caused by the earthquake. Previous studies dealing
with this problem in several regions have shown that the
seismic ground acceleration and response spectrumvarywith
the site soil conditions [23, 24]. In the case of predicting the
PGA, the site geological conditions may be used as an input
with the three basic seismic parameters (ML, Di, and De) in
the neural network model. For example, the constant values
1, 3, and 5 representing rocky soil, stiff soil, and soft soil,
respectively, can be used to develop a neural network model
[25]. However, this model seems to perform poorly because
the classification of site conditions is too rough and the input
constants may be insensitive to the model. A better use of
site conditions, including the thickness and mean frequency
of shear waves, in the neural network model is more robust
than classical models [26]. Studies on this topic have revealed
that different parameters of site conditions in the input layer
may influence the performance of the neural network model
in predicting the PGA.

This study proposes a new set of input parameters in the
neural networkmodel for estimating the PGA for 86 checking
stations spread across the island of Taiwan. Further to say
is that three seismic parameters including local magnitude,
epicentral distance, and focal depth collected from a series
of historical checking records and two site soil test results
including standard penetration test value (SPT-N) and shear
wave velocity (𝑉s) are taken for training, validating, and test-
ing the model. This study also develops a new weight-based
neural network model with spatial relationship to estimate
PGA at 24 unchecked sites, and the result may represent a
new earthquake response at each of the subdivision zones.
This study compares estimations with design values in the
building code to identify potentially hazardous zones. Finally,
this study develops an equation for linking the horizontal
peak ground acceleration (PGA

𝐻
) and focal distance (𝐷

𝑓
)

in accordance with neural network estimates. The method
adopted in this study and the obtained results may be useful
in relevant engineering fields andmight be applicable to other
areas of interest around the world.

2. Research Area and Geological Condition

Based on a report from the Seismological Center of Cen-
tral Weather Bureau, there are approximately 18000 strong
ground motions per year in Taiwan and approximately 1000
of these strong ground motions can be felt by humans.
According to themost recent report from theCentralGeolog-
ical Survey, there are 33 active faults in the Taiwan area, and

these faults may create a place for releasing energy during an
earthquake. A total of 99 recorded earthquakes have caused
destructive results in the period from 1901 to 2009. This
reveals the frequent occurrence of large-scale earthquakes on
this island [27, 28].Therefore, it is essential to check the effects
of strong ground motions at construction sites to reduce the
risk of future damage.

Most antiearthquake designs are based on the earthquake
level and a recurrence period of 475 years, which is equivalent
to approximately 10% of probability during 50 years of
structural usage. In addition, if the design adopts a seismic
isolation system, then over 2% of probability during 50 years
of usage is considered in the building code. Therefore, the
coefficient of horizontal spectral acceleration for a construc-
tion site design is determined from the above-mentioned
potential damage. The analysis of potential damage must
consider local magnitude, hypocenter, epicenter depth of
past earthquakes, and activity of faults potential within
approximately 200 km of the construction site. Because using
the horizontal PGA in this potential damage analysis can
become very complicated, a zone division is required to
facilitate earthquake design work.

As indicated previously, the earthquake area coefficients
of horizontal acceleration for Zone A and Zone B are 0.33 g
and 0.23 g, respectively, where 1 g = 981 gal (cm/s2), for
calculating earthquake force. These values can be used as a
basis to check the present neural network estimation in 24
seismic subdivision zones for the whole island of Taiwan.
Figure 1 shows a sketch of the present research area, where
Zone A has 17 subdivision zones (A1–A17) and Zone B has
seven subdivision zones (B1–B7). For each subdivision zone,
seismic data sets from two to four checking stations around
the zone recorded from the year 1994 to the year 2011 were
used for analysis.

A typical earthquake record as seen in Table 1 includes
several items, such as date and time, exact location in
longitude and latitude, intensity, local magnitude, epicenter
depth, epicentral distance, and PGA in different directions.
However, the main seismic parameters for analysis in this
study are local magnitude on the Richter scale, epicenter
depth, epicentral distance, and PGA in vertical (V), North-
South (N-S), and East-West (E-W) directions, respectively.
Taiwan includes threemajor regions of geological conditions:
(1) centralmountain range region, (2) western foothill region,
and (3) eastern coastal range region. From a plate tectonics
viewpoint, the first region consists primarily of sedimentary
rock; the second region consists primarily of sandstone and
shale; the third region is a part of the island arc of the
Philippine sea plate, which consists of igneous rock and
sedimentary rock [29]. The western foothill range region is
generally softer than the other two regions because of its
geologically loose structure. Hence, ground motion in this
region may be more sensitive to site effects and should be
considered more carefully in engineering design.

Figure 2 shows a typical example of a stratum boring
test result provided by the National Center for Research
on Earthquake Engineering (NCREE) in Taiwan. The test
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Figure 1: Sketch of the research area and seismic subdivision zone. (http://www.unc.edu/depts/diplomat/item/2010/0912/comm/norris
quemoymatsu.html).

result includes three parameters: the SPT-N value (number of
times), 𝑉s (S-wave, m/s), and 𝑉p (P-wave, m/s). The present
neural networkmodel considers the standard penetration test
value because it may be used to reflect the hardness of soil
and the resistant of liquefaction. For a seismic body wave, the
primary wave (sometimes referred to as the pressure wave)
propagates very quickly and only lasts for a short time. Thus,
it causes relatively insignificant structural damage and is not
considered in this study. On the other hand, the shear wave,
or secondary wave, propagates more slowly than the P-wave,
and it may cause greater structural damage. Therefore, this
study considers this factor in developing a neural network
model.

3. Development and Performance of Neural
Network Model

Neural network models have been applied to various engi-
neering fields because they can be used to generate the
required functions for parameter prediction and pattern
recognition [30–33]. In this multilayered (input layer, hidden
layer, and output layer) neural network, the output of each
layer becomes the input of the next layer, and a specific
learning law updates the weights of each layer connection
in accordance with the errors from the network output. The

equation for each layer may be written as

𝑌
𝑗
= Φ (∑𝑊

𝑖𝑗
𝑋
𝑖
− 𝜃
𝑗
) , (1)

where 𝑌
𝑗
is the output of neuron 𝑗, 𝑊

𝑖𝑗
represents the

connection weight from neuron 𝑖 to neuron 𝑗,𝑋
𝑖
is the input

signal generated for neuron 𝑖, 𝜃
𝑗
is the bias term associated

with neuron 𝑗, and Φ(𝑥) = 1/(1 + 𝑒−𝑥) is the frequently used
nonlinear activation function. More detailed descriptions of
the algorithms and equations for neural networks can be
found in the extensive literature on the subject, including the
above cited references; thus, no further description will be
given.

Theperformance of a neural networkmodel can generally
be evaluated by using the coefficient of correlation (𝑅),
defined as follows:

𝑅 =
∑
𝑚

𝑖=1
(𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦)

√∑
𝑚

𝑖=1
(𝑥
𝑖
− 𝑥)
2
∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦)
2

, (2)

where 𝑥
𝑖
and 𝑥 are the recorded value and its average value,

respectively, 𝑦
𝑖
and 𝑦 are the estimated value and its average

value, respectively, and𝑚 denotes the number of data points
in the analysis. In addition, an error evaluation function is
required to calculate the difference between the actual record
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Table 1: Typical seismic data sets at subdivision zone A7 (checking station CS25).

Year, Date and
Time

Latitude
(degree)

Longitude
(degree) Intensity Magnitude

(ML)
Depth (Di)

(km)
Distance (De)

(km)
PGA (V)
(gal)

PGA (N-S)
(gal)

PGA (E-W)
(gal)

1996 0305 1452 23.93∘ 122.36∘ 2 6.4 6.0 192.4 2.0 6.3 6.4
1996 0305 1732 23.90∘ 122.30∘ 2 5.96 10.8 186.2 1.7 4.2 5.6
1996 0905 2342 22.00∘ 121.37∘ 2 7.07 14.8 218.2 2.8 7.4 6.3
1998 0717 0451 23.50∘ 120.66∘ 4 6.2 2.8 37.1 30.3 52.5 63.6
1999 0603 1611 24.40∘ 122.49∘ 2 6.18 61.7 215.2 4.6 7.5 6.7
1999 0920 1747 23.85∘ 120.82∘ 5 7.3 8.0 35.1 111.5 82.7 101.5
1999 0920 1751 24.09∘ 121.04∘ 2 5.97 6.2 66.2 5.0 7.5 7.3
1999 0920 1757 23.91∘ 121.04∘ 3 6.44 7.7 59.2 15.6 24.2 18.1
1999 0920 1803 23.80∘ 120.86∘ 5 6.6 9.8 39.0 60.8 68.0 97.4
1999 0920 1816 23.86∘ 121.04∘ 4 6.66 12.5 57.9 54.1 67.1 57.5
1999 0920 2146 23.58∘ 120.86∘ 4 6.59 8.6 44.9 51.0 50.2 47.4
1999 0921 0803 23.64∘ 120.63∘ 4 4.85 15.7 22.4 27.8 10.9 9.1
1999 0922 0049 23.76∘ 121.03∘ 4 6.2 17.4 56.5 25.8 26.1 35.9
1999 0925 2352 23.85∘ 121.00∘ 5 6.8 12.1 53.9 65.2 76.8 84.5
1999 1022 0218 23.52∘ 120.42∘ 5 6.4 16.6 30.8 104.9 167.7 87.9
1999 1022 0310 23.53∘ 120.43∘ 4 6 16.7 28.9 44.4 36.1 48.5
1999 1101 1753 23.36∘ 121.73∘ 3 6.9 31.3 135.9 9.7 18.4 16.4
2000 0610 1823 23.90∘ 121.11∘ 5 6.7 16.2 65.4 78.3 95.3 79.8
2000 0728 2028 23.41∘ 120.93∘ 3 6.1 7.3 62.6 5.0 12.1 10.5
2001 0613 1317 24.38∘ 122.61∘ 3 6.25 64.4 226.1 5.1 5.9 8.4
2001 0614 0235 24.42∘ 121.93∘ 3 6.3 17.3 163.0 3.8 7.2 9.0
2001 1218 0403 23.87∘ 122.65∘ 2 6.7 12.0 221.6 3.9 4.1 5.3
2002 0212 0327 23.74∘ 121.72∘ 3 6.2 30.0 127.0 9.4 19.3 18.9
2002 0331 0652 24.14∘ 122.19∘ 3 6.8 13.8 178.6 10.2 17.0 18.5
2002 0916 0003 25.10∘ 122.39∘ 2 6.8 175.7 242.0 2.1 6.7 6.3
2003 0610 0840 23.50∘ 121.70∘ 3 6.48 32.3 128.6 13.0 22.1 20.2
2004 0519 0704 22.71∘ 121.37∘ 3 6.03 27.1 150.2 4.4 7.9 8.4
2005 0121 1428 24.56∘ 122.53∘ 2 5.94 92.1 225.1 1.3 4.2 2.4
2006 0309 1207 23.64∘ 120.56∘ 5 5.09 9.9 18.1 79.74 102.80 132.70
2006 0401 1802 22.88∘ 121.08∘ 2 6.23 7.2 117.8 4.10 5.52 6.34
2006 0405 0330 24.49∘ 122.76∘ 2 5.8 99.5 244.3 0.98 1.84 3.78
2006 0416 0640 22.86∘ 121.30∘ 2 6.04 17.9 133.6 2.14 4.46 7.10
2006 0728 1540 23.97∘ 122.66∘ 2 6.02 28.0 222.8 1.36 2.58 4.06
2006 1226 2026 21.69∘ 120.56∘ 3 6.96 44.1 233.1 9.08 15.84 15.58
2006 1226 2034 21.97∘ 120.42∘ 4 6.99 50.2 201.7 31.32 28.30 18.70
2007 0125 1859 22.63∘ 122.03∘ 2 6.24 25.8 204.0 1.30 4.48 3.84
2007 0723 2140 23.72∘ 121.64∘ 2 5.77 38.63 118.27 6.34 7.02 7.64
2007 0809 0855 22.65∘ 121.08∘ 2 5.68 5.51 140.79 0.88 2.04 4.48
2007 0907 0151 24.28∘ 122.25∘ 3 6.63 54.01 188.53 9.34 15.96 20.06
2008 0305 0131 23.21∘ 120.70∘ 2 5.22 11.32 67.93 5.92 7.24 4.78
2008 1202 1116 23.34∘ 121.49∘ 2 5.68 31.67 113.57 2.66 4.18 4.7
2008 1208 0518 23.85∘ 122.20∘ 3 5.88 35.05 174.37 1.86 4.5 9.9
2009 0417 2037 23.92∘ 121.68∘ 2 5.33 43.43 122.56 2.26 3.72 7.22
2009 0720 0900 23.69∘ 120.96∘ 3 5.35 14.29 49.3 8.78 5.04 5.78
2009 0726 1410 23.43∘ 121.32∘ 2 5.38 12.52 93.73 2.02 3.66 2.98
2009 1004 0136 23.65∘ 121.58∘ 3 6.09 29.15 112.5 6.24 11.4 9.54
2010 1108 2101 23.21∘ 120.40∘ 3 5.16 17.46 65.05 7.14 9.76 13
2010 1121 2031 23.85∘ 121.69∘ 4 6.14 46.87 122.39 9.16 15.84 26.06
2011 0430 1635 24.65∘ 121.81∘ 2 5.81 75.02 164.74 1.36 2.14 3.94
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Figure 2: A typical example of geological test result (checking station CS25, A7).

Table 2: Performance (𝑅2) of NN models with different neurons in
the hidden layer.

Models\neurons 1 2 3 4 5 6 7
NN1 0.770 0.736 0.843 0.820 0.852 0.733 0.790
NN2 0.873 0.853 0.900 0.854 0.759 0.713 0.668
NN3 0.873 0.834 0.918 0.835 0.812 0.745 0.707
NN4 0.821 0.764 0.811 0.777 0.789 0.753 0.743

Table 3: Comparison of NNmodels in different computation stages
(𝑅2).

NNModel NN2 NN3
Direction V N-S E-W V N-S E-W
Training 0.905 0.905 0.901 0.903 0.911 0.893
Validation 0.898 0.931 0.909 0.873 0.894 0.867
Testing 0.938 0.947 0.942 0.916 0.921 0.928
Average 0.920 0.901

values and neural network estimations. This study uses the
root-mean-square error (RMSE), defined as

RMSE = √
∑
𝑁

𝑛
(𝑇
𝑛
− 𝑌
𝑛
)
2

𝑁
,

(3)

where𝑁 is the number of learning cases,𝑇
𝑛
is the target value

for case 𝑛, and𝑌
𝑛
is the output value for case 𝑛.This study uses

these equations to evaluate the performance of the proposed
neural network model and check its effectiveness.

This study considers four neural network models of dif-
ferent input parameters with different neurons in the hidden

layer. Figure 3 shows the structure of these models. The data
sets of seismic parameters and soil test results require a nor-
malization procedure before neural network computation.
The data sets are then divided into three groups randomly,
with 70% used for training, 20% used for validation, and
10% used to test the neural network models. To prevent
performing too much work in computation for choosing the
number of neurons in the hidden layer, this study initially
takes three randomly subdivision zones to check the effect of
neuron numbers in the hidden layer: northern part (Taipei
city, B3), central part (Taichung city, A4), and southern part
(Kaohsiung city, B5). Table 2 shows the averaged calculation
results, indicating that using three neurons in the hidden
layer can achieve relatively better coefficients of correlation
in these comparison cases, particularly for NN2 and NN3
models. Though the result shown here is only for the chosen
three stations, this should provide a basic check, and further
details for all checking stations will be discussed later.

For error analysis, this study randomly chooses four
checking stations from subdivision zones B3, A4, and B5.
Figure 4 shows the convergent tendency in neural network
computation, indicating that the root-mean-square errors
in three directions are reasonable for these example cases.
The errors ranged between 10−2 and 10−5 and should have
a similar tendency for other checking stations. Thus, the
present setup of 1000 epochs using the neural network
toolbox inMATLAB should be sufficient to cover all checking
stations and achieve acceptable accuracy.

Now by taking data sets from all checking stations, the
computational result of NN2 and NN3 models, with three
neurons in the hidden layer, is shown in Table 3. Training,
validation, and testing stages show that the averaged square
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Figure 3: Four neural network models with various input parameters and neurons in the hidden layer.

of correlation coefficient of the NN2 model (𝑅2 = 0.920) is
higher than that of the NN3 model (𝑅2 = 0.901). In other
words, the NN2 model, which uses three seismic parameters
(ML, Di, and De) and two soil test results (𝑉s, SPT-N) in the
input layer, can obtain the best PGA estimation among the
cases in this study. Therefore, this neural network model is
employed for further PGA predictions in all 24 subdivision
zones, and the following section discusses the calculation
results.

4. Evaluation of Seismic Design Value in
Subdivision Zone

The performance analysis above indicates that the neural
networkmodelNN2with five inputting parameters (i.e., local
magnitude, epicentral distance, epicenter depth, shear wave
velocity, and standard penetration test value) offers reliable
and generalizable results in predicting the PGA. To further
check this model, Figure 5 shows the relationship between

the actual seismic record and neural network estimation for
all three directions and for all data sets from 86 checking
stations. Note that a total of 3414 data points are plotted
in the figure for all directions. The 𝑅2 value ranges from
0.772 up to 0.8209, indicating a high correlation between the
two data sets. The root-mean-square error is on the order of
10
−2, which is sufficiently small to demonstrate the ability of

developing neural network. These results provide confidence
for predicting the PGA in unchecked sites.

It is possible to interpolate peak ground acceleration from
discrete array stations for generating a better shaking map
after an earthquake [34]. In this study, calculating the PGA
in the 24 subdivision zones requires a spatial relationship to
determine a new location to represent each subdivision zone.
This can be done by using coordinates for checking stations
near each of the subdivision zones. A straightforwardmethod
of calculating the PGA in each new site is to distribute
neural network estimations from nearby checking stations.
A weighting factor is assigned to each checking station in
accordance with the distance between two locations. The
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Figure 4: Examples of error convergent tendency in neural computing (RMSE versus epochs).

weight (𝑊
𝑖
) of each checking station to the unchecked site

can be defined as follows:

𝑊
𝑖
=

(∑
𝑛

𝑗=1
𝑑
𝑗
) /𝑑
𝑖

∑
𝑛

𝑘=1
[(∑
𝑛

𝑗=1
𝑑
𝑗
) /𝑑
𝑘
]

; 𝑖 = 1, 2, 3, . . . , 𝑛, (4)

where 𝑑
𝑖
, 𝑑
𝑗
, and 𝑑

𝑘
are the distances between the unchecked

site and known checking stations. The estimation result for
the new location can be obtained after summing the neural
network estimation for all checking stations around this new
location. This simple method is denoted as “Model 1” in this
study.

Alternatively, a better way to estimate the PGA at an
unchecked site is to take a new set of the seismic data (same
local magnitude and epicenter depth, but new epicentral
distance for each of the seismic records) and a new set of
geological conditions (weight-based soil test result) from
known checking stations nearby.Then, insert the data set in a
neural network model developed for each known checking
station. By summing the results with weighting factors in
accordance with the distances between the unchecked sites
to the known stations, the final estimation is obtained for
the unchecked site. This method is denoted as “Model 2.”
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Figure 5: Relationship between actual seismic record and neural network estimation.

The descriptions may be written as the following equation
[35, 36]:

NNucs =
𝑛

∑

𝑖=1

(NN2
𝑖
)𝑊
𝑖
, (5)

where NNucs is the final PGA estimation for the unchecked
site, NN2

𝑖
is the estimation using preferred neural network

model as discussed in the previous section for each checking
station, 𝑛 is the number of checking stations, and 𝑊

𝑖
is the

same as defined in (4).
Figure 6 shows the PGA prediction for all 24 subdivision

zones in different directions for both models. The vertical
PGA is smaller than the average of the other two directions.
These calculation results do not differ significantly between

the twomodels, except at subdivision zones A8, A13, andA15,
and particularly in vertical direction. The main difference
between Model 1 and Model 2 is that Model 1 uses the
estimation results from nearby checking stations directly,
whereas Model 2 considers a new epicentral distance to
obtain the PGA result for each subdivision zone. Therefore,
the epicentral distance may be varied by subdivision zone
area, graphic condition, and mean location of checking
stations. This can cause somewhat different PGA predictions
in the twomodels. In general,Model 2 ismore reasonable and
preferable because it has a spatial relationship to the proposed
neural network model.

To check reliability of the above estimation result,
Figure 7 shows a comparison of the neural network-predicted
PGA and the result of available microtremor measurements
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Figure 6: PGA predictions in the 24 seismic subdivision zones from
two models.

[37]. Note that measurement result in the vertical direction
is not available from the previous literature. The proposed
neural network model, which considers seismic parameters
and site geological conditions, achieves better prediction
results than previous studies.Thismay be because the present
study uses more updated seismic records to develop the
neural network model. The present study also uses soil test
results as the input parameters, whichmay bemore related to
onsite microtremor measurements. Thus, the results of this
study can increase the confidence of predicting the PGA at
unchecked sites.

Figure 8 shows the horizontal PGA calculated from N-S
and E-W directions for each subdivision zone. This figure
shows data for four locations: Yunlin county (A7), Nantou
county (A8), Chiayi county (A9), andChiayi city (A10).These
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Figure 7: Predicted PGA results versus PGA results from microt-
remor measurements.

Present study
Kerh et al. (2008)
Kerh et al. (2009)

Design value (zone A)
Design value (zone B)

0

0.15

0.3

0.45

0.6

0.75

PG
A

 (g
)

Subdivision zone

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17 B1 B2 B3 B4 B5 B6 B7

Figure 8: Comparison of predicted horizontal PGA and seismic
design values.

locations exhibit a higher neural network estimation than
that of the seismic design value in Zone A (0.33 g). These
locations are somewhat different from previous studies. To
help display the results more clearly, Figure 9 shows that
these four identified potential hazardous subdivision zones
are located in the Central and Southern parts of Taiwan.
The predictions suggest that these areas deserve more study
to prevent unnecessary loss because of unpredictable strong
ground motions. For Zone B, the neural network PGA
predictions in the seven subdivision zones all comply with
design standard (0.23 g); that is, no predicted PGA exceeds
the design value.

This study uses checking stations and soil test results
taken from the same places. In addition, more recent
earthquake records (up to 2011) are included to develop
the proposed neural network model. Therefore, the results
obtained in this study should be more reliable than those of
the previous literatures. Now, by taking all neural network
estimations for each of the 24 subdivision zones, and by
defining the distance between hypocenter of an earthquake to
the checking station as the focal distance (which represents
two important earthquake parameters, i.e., the focal depth
and the epicentral distance). Besides, a local magnitude of
earthquake may be directly related to the element of peak
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Figure 9: Location of identified potential hazardous subdivision
zones.

ground acceleration. Hence, a derived result with one single
variable for prediction is possible and shown in Figure 10.
From the relationship between horizontal PGA and focal
distance for all subdivision zones, this study develops the
equation PGA

𝐻
= 3.5899D

𝑓

−0.755 with a high square value
of correlation coefficient 𝑅2 = 0.8273 using a curve fitting
method. This mathematical equation is more reliable than
those in previous studies and can be used to represent seismic
characteristics in Taiwan region more reasonably.

5. Conclusion

Previous studies have shown that using three seismic param-
eters (i.e., local magnitude on Richter scale, epicentral dis-
tance, and epicenter depth) in the input layer of a neural
network model can efficiently predict PGA, which is the key
parameter for evaluating earthquake response in a construc-
tion site. However, geological conditions may have an influ-
ence on earthquake wave propagation, causing significant
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Figure 10: Curve fitting model for horizontal PGA and focal
distance.

variation in the level of structural damage. Therefore, it is
worthwhile to include suitable soil test results as inputs when
developing a neural network model.

In addition to these three seismic parameters, this study
adopts two soil test results (i.e., shear wave velocity and
standard penetration test value) to develop a neural network
model for 86 checking stations across the island of Taiwan.
Results show that themodel with three neurons in the hidden
layer achieved relatively better performance based on the
correlation of coefficient and the mean square error. This
study also develops a simple distributing method and a
weight-based neural network model to predict the PGA in
24 subdivision zones.

These results show that four locations have higher PGAs
than that of the seismic design value and thus require more
caution as potentially hazardous areas. This study uses a
curve fitting method to develop a mathematical equation
PGA
𝐻
= 3.5899D

𝑓

−0.755 with a sufficiently high square
value of correlation coefficient 𝑅2 = 0.8273. This equation
might represent seismic characteristics in Taiwan region
more reliably and reasonably than previous similar equations.
The geological conditions of an unchecked site might not be
suitable for characterizing nearby checking stations. How-
ever, the method presented in this study provides a good way
to model this type of nonlinear seismic problem and might
be applicable to other areas of interest around the world.
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