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Our aim is to present a combined Exp-function ansatzmethod.Thismethod replaces the traditional assumptions ofmultisolitons by
a combination of the hyperbolic functions and triangle functions in Hirota bilinear forms of nonlinear evolution equation. Using
this method, we can obtain many new type analytical solutions of various nonlinear evolution equations including multisoliton
solutions as well as breath-like solitons solutions. These solutions will exhibit interesting dynamic diversity.

1. Introduction

Up to now, many kinds of integrable nonlinear partial
differential equations have been discovered, such as nonlinear
Schrodinger equation, KdV equation, Sine-Gordon equation,
KP, BKP, coupled KP, and Toda lattice and Toda molecule
equations. All of these equations can be transformed into
bilinear forms by some special transformations including
rational transformation, logarithmic transformation, and
bilogarithmic transformation [1]. Once we get the bilinear
forms of these equations, one can construct directly their
𝑁-soliton solutions following Hirota’s basic assumptions. In
addition, bilinear forms can be utilized to construct the other
kinds of solutions. Lou [2–6] has constructed many localized
structures by a variable separation method, and the author
of [1] has obtained determinants and pfaffians solutions
using the bilinear forms. Recently, Dai et al. [7] proposed
the three-wave method for nonlinear evolution equations
(NEE). Meanwhile, some fractional differential equations
and local fractional equations are studied extensively using
different methods [8–10]. Analytical solutions for nonlinear
partial differential equations are discussed systematically in
[11]. Motivated by the above considerations, we investigate
another ansatz and present “combined Exp-function ansatz
method” as follows.

Consider a (2 + 1)-dimensional nonlinear evolution
equation of the general form

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, . . .) = 0, (1)

where 𝐹 is a polynomial of 𝑢(𝑥, 𝑦, 𝑡) and its derivatives.
With the help of rational transformation, logarithmic trans-
formation, and bilogarithmic transformation, for a KdV-type
bilinear equation, it has just one dependent variable 𝑓. We
next consider a bilinear equation of the form

𝐺(𝐷
𝑡
, 𝐷
𝑥
, 𝐷
𝑦
, . . .) 𝑓 ⋅ 𝑓 = 0, (2)

where 𝐺 is a general polynomial in 𝐷
𝑡
,𝐷
𝑥
,𝐷
𝑦
, where the 𝐷-

operator is defined by
𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝐹 (𝑥, 𝑦, 𝑡)⋅𝐺 (𝑥, 𝑦, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥󸀠
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡󸀠
)

𝑛

× 𝐹 (𝑥, 𝑦, 𝑡) 𝐺 (𝑥
󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑦󸀠=𝑦,𝑡󸀠=𝑡

.

(3)

Traditionally, one obtains 𝑁-soliton solutions with the
assumption

𝑓 = ∑

𝜇=0,1

exp(

𝑁

∑

𝑖>𝑗

𝐴
𝑖𝑗
𝜇
𝑖
𝜇
𝑗
+

𝑛

∑

𝑖=1

𝜇
𝑖
𝜉
𝑖
) . (4)
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Here, instead of the above assumption, the function 𝑓 is
assumed in terms of cosh functions and cos functions

𝑓 =

𝑚

∑

𝑖=1

𝑎
𝑖
(exp (𝜉

𝑖
) + exp (−𝜉

𝑖
))

+

𝑛

∑

𝑗=1

𝑏
𝑖
(exp (𝑖𝜉

𝑗
) + exp (−𝑖𝜉

𝑗
)) ,

(5)

or equivalently

𝑓 = 2

𝑚

∑

𝑖=1

𝑎
𝑖
cosh (𝜉

𝑖
) + 2

𝑚

∑

𝑗=1

𝑏
𝑖
cos (𝜂

𝑗
) , (6)

where 𝜉
𝑖

= 𝑘
𝑖
𝑥 + 𝑙

𝑖
𝑦 + 𝑐

𝑖
𝑡 and 𝜂

𝑖
= 𝑑
𝑖
𝑥 + 𝑒

𝑖
𝑦 + 𝑓

𝑖
𝑡.

In (5), it is seen that real and complex variables coexist in
Exp-function; hence, this method is called combined Exp-
function ansatzmethod. To derive analytic expression,we can
take the following procedure in detail: inserting (5) into (2),
then equating the coefficients of the same kind terms to zero,
and subsequently solving the resulting algebraic equations to
determine the relationship between variables 𝑘

𝑖
, 𝑙
𝑖
. . . with

the help of symbolic computation software such as Maple.
In (5), cosh functions are responsible for energy localization,
but cosine functions take into account periodic effect in real
physical background. If cosh functions and cosine functions
coexist, the intensity of periodic effect depends on the scale
distance between the coefficients 𝑎

𝑖
and 𝑏

𝑗
. When all of

the coefficients of cosine functions 𝑏
𝑗
are equal to zero, (5)

corresponds to multisoliton of (1).

2. Application to (2 + 1)-Dimensional
NLEE Equation

In this section, firstly, we study the (2 + 1)-dimensional
nonlinear evolution equation

𝑢
𝑥𝑥𝑥𝑦

+ 3𝑢
𝑦
𝑢
𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑦

+ 2𝑢
𝑦𝑡

= 0. (7)

In [12], Bekir has studied its Painlevé property. By the
independent variable transformation 𝑢 = 2(ln𝜑)

𝑥𝑥
, (7) is

reduced to Hirota bilinear form

(𝐷
𝑦
𝐷
𝑡
+ 𝐷
3

𝑥
𝐷
𝑦
) 𝜑 ⋅ 𝜑 = 0. (8)

Firstly, we obtain𝑁-solitonwith the aid of Hirotamethod. To
get one-soliton solution, we assume that

𝜙 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
. (9)

Inserting (9) into (8), then one-soliton solution can be
derived as

𝑢 (𝑥, 𝑡) =
2𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−𝑘
3

1
𝑡

1 + 𝑒𝑘1𝑥+𝑙1𝑦−𝑘
3

1
𝑡
. (10)

For the two-soliton solutions, substituting

𝜙 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
+ 𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡+𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡

(11)

into (8) and solving for the phase shift 𝑎
12
, one can find

the two-soliton solutions explicitly. The higher level soliton
solutions can be obtained in a parallel manner. Next, we
will show how the combined Exp-function ansatz method is
used to construct new exact solution of nonlinear evolution
equation. In fact, the basic procedure is similar to 𝑁-soliton
procedure. For simplification, we only present the case for the
parameters 𝑚 = 2 and 𝑛 = 1 in (5) to explain our method.
That is, we assume in the following form that

𝜑 = cosh (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡) + cos (𝑘

2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
cosh (𝑘

3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡) .

(12)

Substituting (12) into (8), we have

𝑐
1
= −𝑘
3

3
(−1 + 3𝑙

2

3
− 6𝑙
2

3
𝑎
2

3
+ 3𝑙
4

3
𝑎
2

3
) ,

𝑐
2
= 𝑘
3

3
𝑙
3
(1 − 𝑎

2

3
) (𝑙
2

3
− 2𝑙
2

3
𝑎
2

3
+ 𝑎
4

3
𝑙
2

3
− 3) ,

𝑐
3
= 𝑘
3

3
(−1 + 3𝑙

2

3
− 6𝑙
2

3
𝑎
2

3
+ 3𝑎
4

3
𝑙
2

3
) ,

𝑘
1
= −𝑘
3
, 𝑘

2
= 𝑙
3
𝑘
3
(1 − 𝑎

2

3
) ,

𝑙
2
= 1, 𝑙

1
= 𝑙
3
,

(13)

where 𝑙
3
, 𝑎
3
, and 𝑘

3
are free parameters. This case leads to a

breath-kink solitary solution

𝑢 (𝑥, 𝑡) = (2 (𝑘
1
sin (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡)

− 𝑘
2
sin (𝑘
2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
𝑘
3
sin (𝑘
3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡)))

× ( cosh (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡) + cos (𝑘

2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
cosh (𝑘

3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡))
−1

.

(14)

The dynamics of this family of solutions will breathe period-
ically in the process of propagation of the soliton resulting
from cosine function. In order to explain the university of
our method, next, we continue to consider the (2 + 1)-
dimensional AKNS equation

4𝑢
𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑦

+ 8𝑢
𝑥
𝑢
𝑥𝑦

+ 4𝑢
𝑦
𝑢
𝑥𝑥

= 0. (15)

Taking the transformation 𝑢 = (ln𝜑)
𝑥
, (15) leads to

multibilinear form

(4𝐷
𝑥
𝐷
𝑡
+ 𝐷
3

𝑥
𝐷
𝑦
) 𝜑 ⋅ 𝜑 = 0,

𝐷
𝑥
(ln𝑓)

𝑥𝑥
⋅ (ln𝑓)

𝑥𝑦
= 0.

(16)

According to the one-soliton assumption, the one-soliton
solution of (2 + 1)-dimensional AKNS equation is derived as

𝑢 (𝑥, 𝑡) =
𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡

1 + 𝑒𝑘1𝑥+𝑙1𝑦−(1/4)𝑙1𝑘1
2
𝑡

. (17)
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For the two-soliton solutions which can be obtained follow-
ing the assumption in (16)

𝜑 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
+ 𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡+𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
,

(18)

we have

𝑎
12

=

(𝑘
1
− 𝑘
2
) (𝑙
2
𝑘
2

1
+ 2𝑙
1
𝑘
1
𝑘
2
− 2𝑙
2
𝑘
1
𝑘
2
− 𝑙
1
𝑘
2

2
)

(𝑘
1
+ 𝑘
2
) (𝑙
2
𝑘
2

1
+ 2𝑙
1
𝑘
1
𝑘
2
+ 2𝑙
2
𝑘
1
𝑘
2
+ 𝑙
1
𝑘
2

2
)
. (19)

In addition,

𝑙
1
𝑘
2
− 𝑙
2
𝑘
1
= 0. (20)

Thus, we found the two-soliton solutions explicitly

𝑢 (𝑥, 𝑡) = (𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡
+ 𝑘
2
𝑒
𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡

+𝑎
12

(𝑘
1
+ 𝑘
2
) 𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡+𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡
)

× (1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡

+𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡+𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡
)

−1

.

(21)

Similarly, the higher order soliton solutions can be examined
in a parallel manner. Finally, following the procedure of
combined Exp-function ansatz method, the two periodic
solutions of AKNS equation can be obtained by setting𝑚 = 2

and 𝑛 = 1in (5) in the following form:

𝜑 = cos (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡) + cos (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) , (22)

where 𝑙 and 𝑘 are free parameters. This case leads to a family
of double periodic solutions as

𝑢 (𝑥, 𝑡) = (−𝑘 sin (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡)

+𝑘 sin (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) )

× (cos (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡)

+ cos (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) )
−1

.

(23)

The above solutions are given out for the first time in the
literature.

3. Conclusions

Generally, 𝑁-soliton solution can be constructed after one
obtains multilinear form of nonlinear evolution equations
according to Hirota method. In this paper, we proposed
a different ansatz method which is composed of complex
and real exponential functions. This method allows us to
construct multiple kinds of solutions, such as N-soliton
solutions and breath-type solitary solutions. By taking two
(2 + 1)-dimensional nonlinear evolution equations as exam-
ples, it is shown that this method is effective and direct
for constructing new exact solutions of nonlinear integrable
partial differential equations.
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