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Consider a sequence of positive integers in arithmetic progression 𝑢𝑘 = 𝑢0 +𝑘𝑟with (𝑢0, 𝑟) = 1. Denote the least commonmultiple
of 𝑢0, . . . , 𝑢𝑛 by 𝐿𝑛. We show that if 𝑛 ⩾ 𝑟2 + 𝑟, then 𝐿𝑛 ⩾ 𝑢0𝑟

𝑟+1
(𝑟 + 1), and we obtain optimum result on 𝑛 in some cases for such

estimate. Besides, for quadratic sequences 𝑚2 + 𝑐, (𝑚 + 1)2 + 𝑐, . . . , 𝑛2 + 𝑐, we also show that the least common multiple is at least
2
𝑛 when𝑚 ⩽ ⌈𝑛/2⌉, which sharpens a recent result of Farhi.

1. Introduction

Integer sequences in arithmetic progressions constitute a
recurrent theme in number theory. The most notable result
in this new century is perhaps the existence of arbitrary long
sequences of primes in arithmetic progressions due to Green
and Tao [1].

The bounds of the least common multiple for the finite
sequences in arithmetic progressions also attract some atten-
tion. The prime number theorem assures that the least com-
mon multiple of the first 𝑛 positive integers is asymptotically
upper bounded by (𝑒 + 𝜀)𝑛 and lower bounded by (𝑒 − 𝜀)𝑛
for any prefixed 𝜀. As for effective uniform estimate, Hanson
[2] obtained the upper bound 3𝑛 about forty years ago by
considering Sylvester series of one. Nair [3] gave 2𝑛 as alower
bound in a simple proof ten years later in view of obtaining
a Chebyshev-type estimate on the number of prime numbers
as in a tauberian theorem due to Shapiro [4].

Recently, some results concerning the lower bound of the
least commonmultiple of positive integers in finite arithmetic
progressions were obtained by Farhi [5]. Some other results
about the least common multiple of consecutive integers and
consecutive arithmetic progression terms are given by Farhi
and Kane [6] and by Hong and Qian [7], respectively. If
𝑎0, . . . , 𝑎𝑛 are integers, we denote their least commonmultiple
by [𝑎0, . . . , 𝑎𝑛]. Consider two coprime positive integers 𝑢0 and
𝑟, and put 𝑢𝑘 = 𝑢0 + 𝑘𝑟, 𝐿𝑘 = [𝑢0, . . . , 𝑢𝑘]. A recent result
of Hong et al. (cf. [8, 9]) shows that for any positive integers
𝑎, 𝛼, 𝑟, and 𝑛 such that 𝑎 ⩾ 2, 𝛼, 𝑟 ⩾ 𝑎, 𝑛 ⩾ 2𝛼𝑟, we have
𝐿𝑛 ⩾ 𝑢0𝑟

𝛼+𝑎−2
(𝑟 + 1)

𝑛.

Recently, Wu et al. [10] improved the Hong-Kominers
lower bound. A special case of Hong-Kominers result tells us
that if 𝑛 ⩾ 𝑟(𝑟 + 3) (or 𝑛 ⩾ 𝑟(𝑟 + 4)) if 𝑟 is odd (or even),
then 𝐿𝑛 ⩾ 𝑢0𝑟

𝑟+1
(𝑟 + 1)

𝑛. In this note, we find that the Hong-
Kominers lower bound is still valid if 𝑛 ∈ [𝑟(𝑟 + 1), 𝑟(𝑟 + 𝑟0))
with 𝑟0 = 3 or 4 if 𝑟 is odd or even. That is, we have the
following result.

Theorem 1. Let 𝑛, 𝑢0, 𝑟 ∈ N with (𝑢0, 𝑟) = 1. One puts for any
𝑘 ∈ �0, 𝑛�, 𝑢𝑘 = 𝑢0 + 𝑘𝑟 and 𝐿𝑛 = [𝑢0, . . . , 𝑢𝑛]. Then, for any
𝑛 ⩾ 𝑟(𝑟 + 1),

𝐿𝑛 ⩾ 𝑢0𝑟
𝑟+1
(𝑟 + 1)

𝑛
. (1)

Furthermore, if 𝑢0 > 𝑟 or 𝑢0 < min{3, 𝑟}, the same estimate
holds when 𝑛 = 𝑟2 + 𝑟 − 1.

In 2007, Farhi [11] showed that [12 + 1, 22 + 1, . . . , 𝑛2 +
1] ⩾ 0.32(1.442)

𝑛. Note that Qian et al. [12] obtained some
results on the least common multiple of consecutive terms in
a quadratic progression. We can now state the second result
of this paper.

Theorem 2. Let 𝑐, 𝑚, 𝑛 ∈ N be such that 0 < 𝑚 < 𝑛. Suppose
that𝑚 ⩽ ⌈𝑛/2⌉. Then, one has

[𝑚
2
+ 𝑐, (𝑚 + 1)

2
+ 𝑐, . . . , 𝑛

2
+ 𝑐] ⩾ 2

𝑛
. (2)

This theorem improves the result in [11].
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2. Proof of the First Theorem

Let 𝑥, 𝑦 ∈ Rwith𝑦 ̸= 0.We say that 𝑥 is amultiple of𝑦 if there
is an integer 𝑧 such that 𝑥 = 𝑦𝑧. As usual, ⌊𝑥⌋ denotes the
largest integer not larger than 𝑥, and ⌈𝑥⌉, denotes the smallest
integer not smaller than 𝑥.

We will introduce the two following results. The first
is a known result which tells us that 𝐿𝑛 is a multiple of
(𝑢0 ⋅ ⋅ ⋅ 𝑢𝑛/𝑛!). This is can be proved by considering a suitable
partial fraction expansion (cf. [11]) or by considering the
integral ∫1

0
𝑥
𝑢0/𝑟−1

(1 − 𝑥)
𝑛
𝑑𝑥 (cf. [13]).

For ℓ ∈ �0, 𝑛�, with a slight modification of notation as in
[11], we put 𝐿𝑛,ℓ = [𝑢𝑛−ℓ, . . . , 𝑢𝑛] and

𝐵𝑛,ℓ :=

𝑢𝑛−ℓ ⋅ ⋅ ⋅ 𝑢𝑛

ℓ!

. (3)

Clearly, we have 𝐿𝑛 = 𝐿𝑛,𝑛 and for any ℓ ∈ �0, 𝑛�, 𝐿𝑛 ⩾ 𝐿𝑛,ℓ.
This result can be restated as

Lemma 3. For any ℓ ∈ [0, 𝑛], one can find a positive integer
𝐴𝑛,ℓ such that 𝐿𝑛,ℓ = 𝐴𝑛,ℓ𝐵𝑛,ℓ.

Our modification aims to emphasize the estimate of the
terms 𝐴𝑛,ℓ and 𝐵𝑛,ℓ that will give us some improvement. If
𝑛 ⩾ 𝑢0, then we see that the first term 𝑢0 does not play an
important role as it will be a factor of the term 𝑢0 + 𝑢0𝑟 =
𝑢0(1 + 𝑟). Hence, the behaviour should be different when 𝑛 is
large. It will be more interesting to give a control over the last
ℓ terms.

Note that 𝐵𝑛,ℓ+1 = (𝑢𝑛−ℓ−1/(ℓ + 1))𝐵𝑛,ℓ, thus

𝐵𝑛,ℓ+1 ⩽ 𝐵𝑛,ℓ ⇐⇒ 𝑢0 + (𝑛 − (ℓ + 1)) 𝑟 ⩽ ℓ + 1 ⇐⇒ ℓ + 1

⩾

𝑛𝑟 + 𝑢0

𝑟 + 1

.

(4)

We will put ℓ𝑛 = min{⌊𝑢𝑛/(𝑟 + 1)⌋, 𝑛}. The following
lemma tells us that keeping the first smaller terms can
increase at least the power 𝑛 in the estimate of lower bound in
such a way (cf. also [13]).

Lemma 4. One has 𝐵𝑛,ℓ𝑛 ⩾ 𝑢0(𝑟 + 1)
𝑛.

Proof. We can just proceed by mathematical induction.
If 𝑛 = 0, then ℓ𝑛 = 0 and 𝐵0,0 = 𝑢0, and it holds. In fact, if

𝑛 ⩽ 𝑢0, then we have ℓ𝑛 = 𝑛 and

𝐵𝑛,𝑛 = 𝑢0 (

𝑢0

1

+ 𝑟) ⋅ ⋅ ⋅ (

𝑢0

𝑛

+ 𝑟) ⩾ 𝑢0(1 + 𝑟)
𝑛
. (5)

When 𝑛 ⩾ 𝑢0, we have (𝑛𝑟+𝑢0)/(𝑟+1) ⩽ (𝑛𝑟+𝑛)/(𝑟+1) ⩽
𝑛 and ℓ𝑛 = ⌊(𝑛𝑟 + 𝑢0)/(𝑟 + 1)⌋. It remains to derive the result
for the case 𝑛 + 1 from that of 𝑛 ⩾ 𝑢0.

It is obvious that ℓ𝑛 ⩽ ℓ𝑛+1 ⩽ ℓ𝑛 + 1 and 𝑢𝑛/(𝑟 + 1) − 1 ⩽
ℓ𝑛 ⩽ 𝑢𝑛/(𝑟 + 1).

If ℓ𝑛 = ℓ𝑛+1, then (𝑛 + 1)𝑟 + 𝑢0 ⩽ (ℓ𝑛 + 1)(𝑟 + 1) and
𝑢𝑛−ℓ𝑛

= 𝑢0 + (𝑛 − ℓ𝑛)𝑟 ⩽ ℓ𝑛 + 1.
Thus,

𝑢𝑛+1

𝑢𝑛−ℓ𝑛

=

𝑢𝑛−ℓ𝑛
+ (ℓ𝑛 + 1) 𝑟

𝑢𝑛−ℓ𝑛

= 1 +

ℓ𝑛 + 1

𝑢𝑛−ℓ𝑛

𝑟 ⩾ 1 + 𝑟. (6)

Hence,

𝐵𝑛+1,ℓ𝑛+1
=

𝑢𝑛+1

𝑢𝑛−ℓ𝑛

⋅ 𝐵𝑛,ℓ𝑛
⩾ 𝑢0(𝑟 + 1)

𝑛+1
. (7)

If ℓ𝑛+1 = ℓ𝑛 + 1, then

𝐵𝑛+1,ℓ𝑛+1
=

𝑢𝑛+1

ℓ𝑛 + 1

⋅ 𝐵𝑛,ℓ𝑛
⩾ 𝑢0(𝑟 + 1)

𝑛+1
. (8)

In either case, the principle of mathematical induction
assures the result.

We can complete our proof now. Suppose that 𝑛 ⩾ 𝑟(𝑟+1).
Then,

ℓ𝑛 = ⌊

𝑢𝑛

𝑟 + 1

⌋ ⩾ ⌊𝑟
2
+

𝑢0

𝑟 + 1

⌋ ⩾ 𝑟
2
. (9)

By considering the first 𝑟multiples of 𝑟, we have 𝑟𝑟+1 | ℓ𝑛!.
Since (𝑟, 𝑢0) = 1, we deduce that for all 𝑘 ∈ �0, 𝑛�, (𝑟, 𝑢𝑘) = 1.
Writing the result of Lemma 3 for ℓ = ℓ𝑛 as

ℓ𝑛! ⋅ 𝐿𝑛,ℓ𝑛
= 𝐴𝑛,ℓ𝑛

⋅ 𝑢𝑛−ℓ𝑛
⋅ ⋅ ⋅ 𝑢𝑛, (10)

we conclude that 𝑟𝑟+1 | 𝐴𝑛,ℓ𝑛 .
Using the Lemma 4, we obtain

𝐿𝑛 ⩾ 𝐿𝑛,ℓ𝑛
= 𝐴𝑛,ℓ𝑛

𝐵𝑛,ℓ𝑛
⩾ 𝑢0𝑟
𝑟+1
(𝑟 + 1)

𝑛
, (11)

which is our conclusion.
Consider the case 𝑛 = 𝑟2 + 𝑟 − 1. If 𝑢0 > 𝑟, then we still

have ℓ𝑛 ⩾ 𝑟
2.

Supposing now that 𝑟 ⩾ 2 and 𝑢0 ⩽ min{2, 𝑟−1}, we shall
prove that, for 𝑛0 = 𝑟

2
+ 𝑟 − 1, it is still possible to choose

ℓ


𝑛0
= 𝑟
2 and 𝑛0 − ℓ



𝑛0
= 𝑟 − 1 so that 𝐵𝑛0 ,ℓ𝑛0 ⩾ 𝑢0(𝑟 + 1)

𝑛0 .
On the one hand, when 𝑛 = 𝑟2 − 𝑟 − 1, we have

ℓ𝑛 = ⌊

𝑢0 + 𝑟 (𝑟
2
− 𝑟 − 1)

𝑟 + 1

⌋

= ⌊

𝑟
2
(𝑟 + 1) − 2𝑟 (𝑟 + 1) + 𝑟 + 𝑢0

𝑟 + 1

⌋

= 𝑟
2
− 2𝑟 + ⌊

𝑟 + 𝑢0

𝑟 + 1

⌋

= 𝑟
2
− 2𝑟 + 1.

(12)

Thus, 𝑛 − ℓ𝑛 = 𝑟 − 2 and
𝑢𝑟−2 ⋅ ⋅ ⋅ 𝑢𝑟2−𝑟−1

(𝑟
2
− 2𝑟 + 1)!

⩾ 𝑢0(𝑟 + 1)
𝑟
2
−𝑟−1
. (13)

On the other hand, we write

𝐵𝑛0 ,ℓ


𝑛0

=

𝑢𝑟−1 ⋅ ⋅ ⋅ 𝑢𝑟2+𝑟−1

𝑟
2
!

=

𝑢𝑟−2 ⋅ ⋅ ⋅ 𝑢𝑟2−𝑟−1

(𝑟
2
− 2𝑟 + 1)!

⋅

𝑢𝑟2−𝑟𝑢𝑟2

𝑢𝑟−2 (𝑟
2
− 𝑟 + 1)

⋅

𝑟−1

∏

𝑠=1

𝑢𝑟2−𝑟+𝑠𝑢𝑟2+𝑟−𝑠

(𝑟
2
− 2𝑟 + 𝑠 + 1) (𝑟

2
− (𝑠 − 1))

.

(14)
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It suffices to show that for any 𝑠 ∈ �1, 𝑟 − 1�,
𝑢𝑟2−𝑟+𝑠𝑢𝑟2+𝑟−𝑠

(𝑟
2
− 2𝑟 + 𝑠 + 1) (𝑟

2
− (𝑠 − 1))

⩾ (𝑟 + 1)
2
, (15)

𝑢𝑟2−𝑟𝑢𝑟2

𝑢𝑟−2 (𝑟
2
− 𝑟 + 1)

⩾ (𝑟 + 1)
2
. (16)

Equation (15) is equivalent to

𝑢𝑟2−𝑟+𝑠𝑢𝑟2+𝑟−𝑠 ⩾ (𝑟
2
− 2𝑟 + 𝑠 + 1) (𝑟

2
− (𝑠 − 1)) (𝑟 + 1)

2
.

(17)

By expanding, it remains to verify for any integer 𝑟 ⩾ 𝑠 +
1 ⩾ 2 that

𝑓𝑠 (𝑟) := 2𝑢0𝑟
3
− (4𝑠 − 1) 𝑟

2
+ 2𝑠 (𝑠 − 1) 𝑟 + 𝑠

2
+ 𝑢
2

0
− 1 ⩾ 0.

(18)

With simple computation, we obtain for any real 𝑟, 𝑠 > 0
with 𝑟 ⩾ 𝑠 + 1,

𝑓𝑠 (𝑠 + 1) = 2 (𝑢0 − 1) 𝑠
3
+ 6 (𝑢0 − 1) 𝑠

2

+ 2 (3𝑢0 − 2) 𝑠 + 𝑢
2

0
+ 2𝑢0 ⩾ 0,

𝑓


𝑠
(𝑟) ⩾ 6𝑟

2
− 2 (4𝑠 − 1) 𝑟 + 2𝑠 (𝑠 − 1)

⩾ 2 (𝑟 − 𝑠) (3𝑟 − 𝑠 + 1) ⩾ 0,

(19)

which allow to establish (15).
Equation (16) is equivalent to

(𝑢0 + (𝑟
2
− 𝑟) 𝑟) (𝑢0 + 𝑟

3
)

⩾ (𝑢0 + (𝑟 − 2) 𝑟) (𝑟
2
− 𝑟 + 1) (𝑟 + 1)

2

(20)

or

(2 − 𝑢0) 𝑟
4
+ (𝑢0 − 1) 𝑟

3
+ (1 − 𝑢0) 𝑟

2

+ (2 − 𝑢0) 𝑟 + 𝑢
2

0
− 𝑢0 ⩾ 0.

(21)

Such inequality holds for any positive integer 𝑟when 𝑢0 =
1 or 2.

Finally, we still have

𝐵𝑛0 ,ℓ


𝑛0

⩾ 𝑢0(𝑟 + 1)
𝑛0
. (22)

and the condition ℓ
𝑛0
⩾ 𝑟
2 allows us to conclude.

3. Proof of the Second Theorem

We shall start by proving the following lemma.

Lemma 5. Let 𝑐, 𝑚, 𝑛 ∈ N be such that 0 < 𝑚 < 𝑛. Put

𝐿


𝑚,𝑛
:= [𝑚

2
+ 𝑐, (𝑚 + 1)

2
+ 𝑐, . . . , 𝑛

2
+ 𝑐] . (23)

Then,

𝐿


𝑚,𝑛
⩾

∏
𝑛

𝑘=𝑚
√𝑘
2
+ 𝑐

(𝑛 − 𝑚)!

. (24)

Proof. We shall denote 𝑥𝚤 = cos(log𝑥) + 𝚤 sin(log𝑥).
Consider the integral of complex-valued function of a real

variable

∫

1

0

𝑥
𝑚−1+√𝑐𝚤

(1 − 𝑥)
𝑛−𝑚
𝑑𝑥. (25)

Firstly, by integrating by parts (𝑛 − 𝑚) times,

∫

1

0

𝑥
𝑚−1+√𝑐𝚤

(1 − 𝑥)
𝑛−𝑚
𝑑𝑥

=

𝑥
𝑚+√𝑐𝚤

(1 − 𝑥)
𝑛−𝑚

𝑚 + √𝑐𝚤












1

0

+

𝑛 − 𝑚

𝑚 + √𝑐𝚤

∫

1

0

𝑥
𝑚+√𝑐𝚤

(1 − 𝑥)
𝑛−𝑚−1

𝑑𝑥

=

(𝑛 − 𝑚)!

∏
𝑛−1

𝑘=𝑚
(𝑘 + √𝑐𝚤)

∫

1

0

𝑥
𝑛−1+√𝑐𝚤

𝑑𝑥

=

(𝑛 − 𝑚)!

∏
𝑛

𝑘=𝑚
(𝑘 + √𝑐𝚤)

.

(26)

Secondly, by expanding

∫

1

0

𝑥
𝑚−1+√𝑐𝚤

(1 − 𝑥)
𝑛−𝑚
𝑑𝑥

= ∫

1

0

𝑛−𝑚

∑

𝑘=0

(−1)
𝑘
(

𝑛 − 𝑚

𝑘
)𝑥
𝑚−1+𝑘+√𝑐𝚤

𝑑𝑥

=

𝑛−𝑚

∑

𝑘=0

(−1)
𝑘
(
𝑛−𝑚

𝑘
)

𝑚 + 𝑘 + √𝑐𝚤

.

(27)

On one hand, put such complex number in Cartesian
form, and after multiplying it by 𝐿

𝑚,𝑛
, we get a linear combi-

nation of 𝑥𝑘 + 𝑦𝑘√𝑐𝚤 with integer coefficients, where 0 ⩽ 𝑘 ⩽
𝑛 − 𝑚 and 𝑥𝑘, 𝑦𝑘 ∈ Z. On the other hand, it is easy to see
that the number obtained by integrating by parts (𝑛 − 𝑚)
times is not zero. So, its modulus is not smaller than 1, and
we conclude that

𝐿


𝑚,𝑛
⩾

∏
𝑛

𝑘=𝑚
√𝑘
2
+ 𝑐

(𝑛 − 𝑚)!

. (28)

Now, we write furthermore

𝐿


𝑚,𝑛
⩾

𝑛!

(𝑚 − 1)! (𝑛 − 𝑚)!

= 𝑚(

𝑛

𝑚
) . (29)

Suppose now that 𝑚 ⩽ 𝑚 := ⌈𝑛/2⌉, then 𝐿
𝑚,𝑛
⩾ 𝐿


𝑚 ,𝑛
⩾

𝑚

(
𝑛

𝑚
 ) and 𝑛 = 2𝑚 or 2𝑚 − 1.

The following Stirling estimate

(

𝑛

𝑒

)

𝑛

√2𝜋𝑛 ⩽ 𝑛! ⩽ (

𝑛

𝑒

)

𝑛

√2𝜋𝑛𝑒
1/(12𝑛) (30)
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allows us to obtain

(

2𝑛

𝑛
) ⩾

2
2𝑛

√𝑛𝜋

𝑒
−1/(6𝑛)

. (31)

If 𝑛 = 2𝑚, then

𝑚

(

2𝑚


𝑚
 ) ⩾ 2

2𝑚


√
𝑚


𝜋

𝑒
−1/(6𝑚


)
.

(32)

As the function√(𝑥/𝜋)𝑒−1/(6𝑥) is increasing and its value
at 𝑥 = 4 is ⩾ 1.08, we conclude that for any integer𝑚 ⩾ 4

𝑚

(

2𝑚


𝑚
 ) ⩾ 2

2𝑚


. (33)

If 𝑛 = 2𝑚 − 1, then we can conclude similarly for𝑚 ⩾ 5

𝑚

(

2𝑚

− 1

𝑚
 ) ⩾ (2𝑚


− 1)(

2 (𝑚

− 1)

𝑚

− 1

)

⩾ 2
2𝑚

−1𝑚

− 1/2

√𝑚

𝜋

𝑒
−1/(6𝑚


)

⩾ 2
2𝑚

−1
.

(34)

In brief, for any integer 𝑚, 𝑛 with 𝑛 ⩾ 8 and 𝑚 ⩽ ⌈𝑛/2⌉,
we just establish that

𝐿


𝑚,𝑛
⩾ 2
𝑛
. (35)

The case 𝑛 = 7 can be checked directly as 4 ( 7
4
) ⩾ 2
7.

For the case 𝑛 = 6, we have

[16 + 𝑐, 25 + 𝑐, 36 + 𝑐] ⩾ [25 + 𝑐, 36 + 𝑐]

=

(25 + 𝑐) (36 + 𝑐)

gcd (25 + 𝑐, 36 + 𝑐)

⩾

25 × 36

11

⩾ 64 = 2
6
.

(36)

For the case 𝑛 = 5, we have

[9 + 𝑐, 16 + 𝑐, 25 + 𝑐] ⩾ [16 + 𝑐, 25 + 𝑐]

⩾

16 × 25

25 − 16

⩾ 2
5
.

(37)

It is easy to check the cases 𝑛 = 2, 3, and 4 as it involves
only two terms, and we can make our final conclusion.
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