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We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived
through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique
and strictly monotonic. Furthermore, we determine the critical minimal wave speed.

1. Introduction

Recently, great attention has been paid to the study of the
traveling wave solutions in reaction-diffusion models [1–17].
In the sense of epidemiology, the traveling wave solutions
describe the transition from a disease-free equilibrium to an
endemic equilibrium; the existence and nonexistence of non-
trivial traveling wave solutions indicate whether or not the
disease can spread [11]. The results contribute to predicting
the developing tendency of infectious diseases, to determin-
ing the key factors of the spread of infectious disease, and to
seeking the optimum strategies of preventing and controlling
the spread of the infectious diseases [18–21].

Some methods have been used to derive the existence of
travelingwave solutions in reaction-diffusionmodels, and the
monotone iterationmethod has been proved to be an effective
one. Such a method reduces the existence of traveling wave
solutions to that of an ordered pair of upper-lower solutions
[6, 7, 9, 10, 14, 15].

In [22], Berezovsky and coworkers introduced a simple
epidemic model through the incorporation of variable pop-
ulation, disease-induced mortality, and emigration into the
classical model of Kermack and McKendrick [23]. The total
population (𝑁) is divided into two groups of susceptible (𝑆)

and infectious (𝐼); that is to say, 𝑁 = 𝑆 + 𝐼. The model
describing the relations between the state variables is

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) − 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑚) 𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑑) 𝐼,

(1)

where the reproduction of susceptible follows a logistic equa-
tion with the intrinsic growth rate 𝑟 and the carrying capacity
𝐾, 𝛽 denotes the contact transmission rate (the infection rate
constant), 𝜇 is the natural mortality; 𝑑 denotes the disease-
induced mortality, and𝑚 is the per-capita emigration rate of
uninfected.

For model (1), the epidemic threshold, the so-called basic
reproduction number 𝑅

0
, is then computed as 𝑅

0
= 𝛽/(𝜇 +

𝑑). The disease will successfully invade when 𝑅
0
> 1 but will

die out if 𝑅
0
< 1. 𝑅

0
= 1 is usually a threshold whether the

disease goes to extinction or goes to an endemic. Large values
of 𝑅
0
may indicate the possibility of a major epidemic [19]. In

addition, the basic demographic reproductive number 𝑅
𝑑
is

given by 𝑅
𝑑
= 𝑟/(𝜇 + 𝑚). It can be shown that if 𝑅

𝑑
> 1 the

population grows, while 𝑅
𝑑
≤ 1 implies that the population

does not survive [22].
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For simplicity, rescaling model (1) by letting 𝑆 → 𝑆/𝐾,
𝐼 → 𝐼/𝐾, and 𝑡 → 𝑡/(𝜇 + 𝑑) leads to the following model:

𝑑𝑆

𝑑𝑡
= ]𝑅
𝑑 (𝑆 + 𝐼) [1 − (𝑆 + 𝐼)] − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆,

𝑑𝐼

𝑑𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼,

(2)

where ] = (𝜇+𝑚)/(𝜇+𝑑) is defined by the ratio of the average
life span of susceptibles to that of infectious.

For details, we refer the reader to [20, 22].
In this paper, we are interested in the existence of traveling

wave solutions in the following reaction-diffusion epidemic
model [20]:

𝜕𝑆

𝜕𝑡
= ]𝑅
𝑑
(𝑆 + 𝐼) [1 − (𝑆 + 𝐼)] − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆 + 𝑑

𝜕
2𝑆

𝜕𝑥2
,

𝜕𝐼

𝜕𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼 + 𝑑

𝜕
2𝐼

𝜕𝑥2
,

𝑆 (𝑥, 0) = 𝑆
0
(𝑥) , 𝐼 (𝑥, 0) = 𝐼

0
(𝑥) ,

(3)

where ], 𝑅
0
, 𝑅
𝑑
are all positive constants, 𝑑 is the diffusion

coefficient, and (𝑥, 𝑡) ∈ 𝑅 × 𝑅+.
We are looking for the traveling wave solutions of model

(3) with the following form:

𝑆 (𝑥, 𝑡) = 𝑆 (𝜉) , 𝐼 (𝑥, 𝑡) = 𝐼 (𝜉) , 𝜉 = 𝑥 + 𝑐𝑡, (4)

satisfying the following boundary value conditions:

(𝑆 (−∞) , 𝐼 (−∞))
𝑇
= 𝐸
1
, (𝑆 (+∞) , 𝐼 (+∞))

𝑇
= 𝐸
2
,

(5)

where 𝐸
1
, 𝐸
2
are the equilibrium points of model (3).

This paper is arranged as follows. In Section 2, we con-
struct a pair of ordered upper-lower solutions of model (3)
and establish the uniqueness and strict monotonicity of the
traveling wave solutions.

2. Existence and Asymptotic Decay Rates

In this section, we will establish the existence of traveling
wave solutions of model (3) by constructing a pair of ordered
upper-lower solutions. The definition of the upper solution
and the lower solution is standard. We assume that the ineq-
uality between two vectors throughout this paper is compo-
nentwise.

Setting

�̂� =
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆, �̂� = 𝐼, (6)

then model (3) can be written as

𝜕�̂�

𝜕𝑡
= −]𝑅

𝑑
(
𝑅
𝑑
− 1

𝑅
𝑑

− �̂� + �̂�) [1 − (
𝑅
𝑑
− 1

𝑅
𝑑

− �̂� + �̂�)]

+ 𝑅
0

((𝑅
𝑑
− 1) /𝑅

𝑑
− �̂�) �̂�

(𝑅
𝑑
− 1) /𝑅

𝑑
− �̂� + �̂�

+ ](
𝑅
𝑑
− 1

𝑅
𝑑

− �̂�) + 𝑑
𝜕2�̂�

𝜕𝑥2
,

𝜕�̂�

𝜕𝑡
= 𝑅
0

((𝑅
𝑑
− 1) /𝑅

𝑑
− �̂�) �̂�

(𝑅
𝑑
− 1) /𝑅

𝑑
− �̂� + �̂�

− �̂� + 𝑑
𝜕2�̂�

𝜕𝑥2
,

(�̂�, �̂�)
𝑇

(−∞) = (0, 0)
𝑇
, (�̂�, �̂�)

𝑇

(+∞) = (�̂�
∗

, �̂�
∗

)
𝑇

.

(7)

Formodel (3), the equilibria are𝐸
1
= ((𝑅
𝑑
−1)/𝑅

𝑑
, 0) and

𝐸
2
= (𝑆
∗
, 𝐼
∗
), where

𝑆
∗
=
]𝑅
0
𝑅
𝑑
− 𝑅
0
− ] + 1

]𝑅2
0
𝑅
𝑑

, 𝐼
∗
= (𝑅
0
− 1) 𝑆

∗
, (8)

and for model (7), the equilibria are 𝐸
1

= (0, 0) and 𝐸
2

=

(�̂�
∗

, �̂�
∗

), where

�̂�
∗

=
(𝑅
0
− 1) (]𝑅

0
𝑅
𝑑
− ]𝑅
0
− ] + 1)

]𝑅2
0
𝑅
𝑑

,

�̂�
∗

=
(𝑅
0
− 1) (]𝑅

0
𝑅
𝑑
− 𝑅
0
− ] + 1)

]𝑅2
0
𝑅
𝑑

.

(9)

Obviously,

�̂�
∗

− �̂�
∗

=
(] − 1) (𝑅

0
− 1)

]𝑅
0
𝑅
𝑑

,

�̂�
∗

=
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆
∗
, �̂�
∗

= 𝐼
∗
.

(10)

For simplicity, we define the following functions and con-
stants:

𝛼
0
=

𝑅
𝑑
− 1

𝑅
𝑑

, 𝜙 (𝐼) = 𝛼
0
�̂�
∗

+ (�̂�
∗

− �̂�
∗

) 𝐼;

𝛽
0
= 𝛼
0
(�̂�
∗

)
2𝑅
0
− 1

𝑅
0

(𝑅
0
− ] + 1) ;

𝛾
0
= 2] (𝑅

𝑑
− 1) (�̂�

∗

− �̂�
∗

) − []�̂�
∗

+ (𝑅
0
− 1) �̂�

∗

] ;

𝜓 (𝐼) = ]𝑅
𝑑
(�̂�
∗

− �̂�
∗

)
2

𝐼
2
+ 𝛾
0
�̂�
∗

𝐼 + 𝛽
0
;

𝜂
0
= −

𝛾
0
�̂�
∗

2]𝑅
𝑑
(�̂�
∗

− �̂�
∗

)
2
;

𝜑 (𝐼) = 1, 𝐼 > 0; 𝜑 (𝐼) = −1, 𝐼 ≤ 0;

𝐵 =
�̂�
∗

2
[1 + 𝜑(

�̂�
∗

2
− 𝜂
0
)] .

(11)

And we will always assume the following hypotheses
throughout the rest of this paper:
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[H1]

𝑅
0
> 1, 1 < 𝑅

𝑑
<

2𝑅2
0
+ 2𝑅
0
− 2

3𝑅2
0
− 2𝑅
0

,

max{
27𝑅
0
(𝑅
𝑑
− 1)
2

𝑅3
𝑑

,
𝑅
0
− 1

𝑅
0
𝑅
𝑑
− 1

}

< ] <
−1

𝑅
0
𝑅
𝑑
− 𝑅
0
− 1

.

(12)

[H2]

] ≥ max{
𝑅
0

2 − 𝑅
𝑑

,
𝑅3
0
− 2𝑅2
0
+ 4𝑅
0
− 2

2𝑅2
0
+ 2𝑅
0
− 2 − (3𝑅2

0
− 2𝑅
0
) 𝑅
𝑑

} ,

𝜓 (𝐵) ≤ 0.

(13)

Then we can obtain the following.

Lemma 1. If [H1] holds, then 𝐸
2
and 𝐸

2
are endemic points of

model (3) and model (7), respectively.

Lemma 2. For model (7), if [H1] holds, then 𝐸
1
is unstable,

and 𝐸
2
is stable.

For the sake of convenience, let 𝑥 = √𝑑 �̃�. For simplicity,
we still use the variables 𝑆, 𝐼, and 𝑥 instead of �̂�, �̂�, and �̃�,
respectively, then model (7) could be rewritten as

𝜕𝑆

𝜕𝑡
= −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) +

𝜕2𝑆

𝜕𝑥2
,

𝜕𝐼

𝜕𝑡
= 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 +
𝜕
2
𝐼

𝜕𝑥2
,

(𝑆, 𝐼)
𝑇
(−∞) = (0, 0)

𝑇
, (𝑆, 𝐼)

𝑇
(+∞) = (�̂�

∗

, �̂�
∗

)
𝑇

.

(14)

Following the definition of quasi-monotonicity [17], we
can obtain the following results.

Lemma 3. Model (14) is a quasi-monotone decreasing system
in (𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].

Proof. Let

𝐹
1
(𝑆, 𝐼) = −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ,

𝐹
2 (𝑆, 𝐼) = 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼.

(15)

From [17], we can know that the functions 𝐹
1
(𝑆, 𝐼) and

𝐹
2
(𝑆, 𝐼) are said to possess a quasi-monotone nonincreasing

system, if the sign of 𝜕𝐹
1
(𝑆, 𝐼)/𝜕𝐼 and 𝜕𝐹

2
(𝑆, 𝐼)/𝜕𝑆 are both

nonpositive.
Since

𝜕𝐹
2
(𝑆, 𝐼)

𝜕𝑆
= −𝑅
0
(

𝐼

𝛼
0
− 𝑆 + 𝐼

)

2

≤ 0,

𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
= 𝑅
0
(

𝛼
0
− 𝑆

𝛼
0
− 𝑆 + 𝐼

)

2

+ 2]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) − ]𝑅

𝑑
,

𝜕

𝜕𝑆
(
𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
) = −2]𝑅

𝑑
− 2𝑅
0

(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

3
≤ −2]𝑅

𝑑
< 0.

(16)

Then,

𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
≤ 𝑅
0
(

𝛼
0

𝛼
0
+ 𝐼

)

2

+ 2]𝑅
𝑑
(𝛼
0
+ 𝐼) − ]𝑅

𝑑
. (17)

Let

𝐺 (𝑧) =
𝛼
2

0
𝑅
0

𝑧2
+ 2]𝑅

𝑑
𝑧 − ]𝑅

𝑑
, 𝑧 ∈ [𝛼

0
, 𝛼
0
+ 𝐼
∗
] , (18)

then

𝐺

(𝑧) = 2]𝑅

𝑑
−

2𝛼2
0
𝑅
0

𝑧3
= 0, (19)

obviously, 𝑧∗ = 3√𝛼2
0
𝑅
0
/]𝑅
𝑑
is the unique real root of 𝐺(𝑧).

Since ] > 27𝑅
0
(𝑅
𝑑
− 1)
2
/𝑅3
𝑑
, consider 𝛼

0
= (𝑅
𝑑
− 1)/𝑅

𝑑
,

then we can get

𝐺 (𝑧
∗
) =

(𝛼2
0
𝑅
0
)
2/3

[(27𝛼2
0
𝑅
0
)
1/3

− (]𝑅
𝑑
)
1/3

]

(𝑧∗)
2

< 0.
(20)

And
lim
𝑧→0

+

𝐺 (𝑧) = lim
𝑧→+∞

𝐺 (𝑧) = +∞; (21)

hence, 𝐺(𝑧) has two positive roots.
Since ] ≥ 𝑅

0
/(2 − 𝑅

𝑑
), thus 𝐺(𝛼

0
) = 𝑅
0
+ ]𝑅
𝑑
− 2] ≤ 0.

According to conditions [𝐻1] and [𝐻2], we can get

𝐺(𝛼
0
+ 𝐼
∗
) = ]𝑅

𝑑
− 2] + 2]𝑅

𝑑
𝐼
∗
+ 𝑅
0
(

𝛼
0

𝛼
0
+ 𝐼∗

)

2

< ]𝑅
𝑑
− 2] + 2]𝑅

𝑑
𝐼
∗
+ 𝑅
0

=
(3𝑅2
0
𝑅
𝑑
− 2𝑅2
0
− 2𝑅
0
𝑅
𝑑
− 2𝑅
0
+ 2) ]

𝑅2
0

+
(𝑅3
0
− 2𝑅2
0
+ 4𝑅
0
− 2)

𝑅2
0

≤ 0.

(22)

Then, 𝐺([𝛼
0
, 𝛼
0
+ 𝐼∗]) ≤ 0. Hence, 𝜕𝐹

1
(𝑆, 𝐼)/𝜕𝐼 ≤ 0.

That is to say, model (14) is a quasi-monotone system in
(𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].
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Since the traveling wave solution of model (14) has the
following form

𝑆 (𝜉) = 𝑆 (𝑥 + 𝑐𝑡) , 𝐼 (𝜉) = 𝐼 (𝑥 + 𝑐𝑡) , 𝜉 = 𝑥 + 𝑐𝑡, 𝑐 > 0;

(23)

substituting (23) into model (14), we can get the following
model:

𝑆

− 𝑐𝑆

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) = 0,

𝐼

− 𝑐𝐼

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 = 0,

(𝑆, 𝐼)
𝑇
(−∞) = (0, 0)

𝑇
, (𝑆, 𝐼)

𝑇
(+∞) = (�̂�

∗

, �̂�
∗

)
𝑇

.

(24)

Obviously, we can know the following.

Remark 4. Model (24) is also a quasi-monotone system in
(𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].

Nowwe establish the existence of travelingwave solutions
of model (24) through monotone iteration of a pair of
smooth upper and lower solutions. Following [17], we give the
definitions of the upper and lower solutions of model (24) as
follows, respectively.

Definition 5. A smooth function (𝑆(𝜉), 𝐼(𝜉))
𝑇 (𝜉 ∈ R) is an

upper solution of model (24) if its derivatives (𝑆


, 𝐼


)
𝑇 and

(𝑆


, 𝐼


) are continuous on R, and (𝑆, 𝐼)
𝑇 satisfies

𝑆

− 𝑐𝑆

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ≤ 0,

𝐼

− 𝑐𝐼

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 ≤ 0,

(25)

with the following boundary value conditions

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≥ (

�̂�
∗

�̂�
∗) . (26)

Definition 6. A smooth function (𝑆(𝜉), 𝐼(𝜉))
𝑇 (𝜉 ∈ R) is a

lower solution of model (24) if its derivatives (𝑆, 𝐼)
𝑇 and

(𝑆

, 𝐼

) are continuous on R, and (𝑆, 𝐼)

𝑇 satisfies

𝑆

− 𝑐𝑆

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ≥ 0,

𝐼

− 𝑐𝐼

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 ≥ 0,

(27)

with the following boundary value conditions

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≤ (

�̂�
∗

�̂�
∗) . (28)

The construction of the smooth upper-lower solution pair
is based on the solution of the following KPP equation:

𝑤

− 𝑐𝑤

+ 𝑓 (𝑤) = 0,

𝑤 (−∞) = 0, 𝑤 (+∞) = 𝑏,
(29)

where 𝑓 ∈ 𝐶2([0, 𝑏]) and 𝑓 > 0 in the open interval (0, 𝑏)
with 𝑓(0) = 𝑓(𝑏) = 0, 𝑓(0) = 𝑎

1
> 0, and 𝑓(𝑏) = −𝑏

1
< 0

[15]. First, let us recall the following result.

Lemma 7 (see [1, 15]). Corresponding to every 𝑐 ≥ 2√𝑎
1
,

model (29) has a unique (up to a translation of the origin)
monotonically increasing traveling wave solution 𝑤(𝜉) for 𝜉 ∈

𝑅. The traveling wave solution 𝑤 has the following asymptotic
behaviors.

(i) For the wave solution with noncritical speed 𝑐 > 2√𝑎
1
,

one has

𝑤 (𝜉) = 𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4𝑎1)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4𝑎1)/2)𝜉) 𝑎𝑠 𝜉 → −∞,

𝑤 (𝜉) = 𝑏 − 𝑏
𝜔
𝑒
((𝑐−√𝑐

2
+4𝑏1)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝑏1)/2)𝜉) 𝑎𝑠 𝜉 → +∞,

(30)

where 𝑎
𝜔
and 𝑏
𝜔
are positive constants.

(ii) For the wave with critical speed 𝑐 = 2√𝑎
1
, one has

𝑤 (𝜉) = (𝑎
𝑐
+ 𝑑
𝑐
𝜉) 𝑒√
𝑎1𝜉 + 𝑜 (𝜉𝑒√

𝑎1𝜉) 𝑎𝑠 𝜉 → −∞,

𝑤 (𝜉) = 𝑏 − 𝑏
𝑐
𝑒
(√𝑎1−√𝑎1+𝑏1)𝜉

+ 𝑜 (𝑒
(√𝑎1−√𝑎1+𝑏1)𝜉) 𝑎𝑠 𝜉 → +∞,

(31)

where the constant 𝑑
𝑐
is negative, 𝑏

𝑐
is positive, and 𝑎

𝑐
∈ 𝑅.

For constructing the upper solution of the model (24), we
start with the following model:

𝐼

− 𝑐𝐼

+ 𝐼 (�̂�

∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝛼
0
�̂�
∗

+ (�̂�
∗

− �̂�
∗

) 𝐼
= 0,

𝐼 (−∞) = 0, 𝐼 (+∞) = �̂�
∗

.

(32)

Define 𝑓(𝐼) = 𝐼(�̂�
∗

− 𝐼)(𝛼
0
(𝑅
0
− 1)/𝜙(𝐼)), 𝐼 ∈ [0, �̂�

∗

], one
can verify that all of the following conditions are satisfied:

(i) 𝑓(𝐼) = 𝐼(�̂�
∗

− 𝐼)(𝛼
0
(𝑅
0
− 1)/𝜙(𝐼)) ∈ 𝐶2([0, �̂�

∗

]);
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(ii) 𝑓(𝐼) > 0, for all 𝐼 ∈ (0, �̂�
∗

) and 𝑓(0) = 𝑓(�̂�
∗

) = 0;

(iii) 𝑓(0) = 𝑅
0
− 1 > 0, 𝑓(�̂�∗) = −𝛼

0
(𝑅
0
− 1)
2
/𝑅
0
�̂�
∗

< 0.

From Lemma 7, we know that, for each 𝑐 ≥ 2√𝑅
0
− 1,

equation (32) has a unique traveling wave solution 𝐼(𝜉) (up
to a translation of the origin), satisfying the given boundary
value conditions (26).

Define

(
𝑆 (𝜉)

𝐼 (𝜉)
) = (

�̂�
∗

�̂�
∗
𝐼 (𝜉)

𝐼 (𝜉)

) , 𝜉 ∈ 𝑅, (33)

then we can get the following result.

Lemma 8. For each 𝑐 ≥ 2√𝑅
0
− 1, (33) is a smooth upper

solution of model (24).

Proof. On the boundary,

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≥ (

�̂�
∗

�̂�
∗) . (34)

As for the 𝐼 component, we have

𝐼


− 𝑐𝐼


+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 (�̂�
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 (�̂�
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝑅
0

𝛼
0
�̂�
∗

− �̂�
∗

𝐼

𝜙 (𝐼)
𝐼 − 𝐼

= −𝐼 (�̂�
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝐼
𝛼
0
(𝑅
0
− 1) �̂�

∗

− (𝑅
0
�̂�
∗

− �̂�
∗

+ �̂�
∗

) 𝐼

𝜙 (𝐼)

= −𝐼 (�̂�
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝐼
𝛼
0
(𝑅
0
− 1) �̂�

∗

− 𝛼
0
(𝑅
0
− 1) 𝐼

𝜙 (𝐼)

= 0.

(35)

As for the 𝑆 component, since ] > 1, then �̂�
∗

− �̂�
∗

= (] −

1)(𝑅
0
− 1)/]𝑅

0
𝑅
𝑑
> 0. And

(i) if 𝜂
0
< �̂�
∗

/2, then max
𝜉∈[0,�̂�

∗

]
𝜓(𝐼) = 𝜓(�̂�

∗

) = 𝜓(𝐵);

(ii) if 𝜂
0
≥ �̂�
∗

/2, then max
𝜉∈[0,�̂�

∗

]
𝜓(𝐼) = 𝜓(0) = 𝜓(𝐵).

Thus we can get:

𝑆


− 𝑐𝑆


− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
�̂�
∗

�̂�
∗
(𝐼


− 𝑐𝐼


) − ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
�̂�
∗

�̂�
∗
(−𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ 𝐼) − ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼)

× [1 − (𝛼
0
− 𝑆 + 𝐼)] + 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

= (1 −
�̂�
∗

�̂�
∗
)𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+
�̂�
∗

�̂�
∗
𝐼 − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

× [1 − (𝛼
0
− 𝑆 + 𝐼)] + ] (𝛼

0
− 𝑆)

=
�̂�
∗

− �̂�
∗

�̂�
∗

𝑅
0

𝛼
0
�̂�
∗

− �̂�
∗

𝐼

𝜙 (𝐼)
𝐼 +

�̂�
∗

�̂�
∗
𝐼 − ]𝑅

𝑑

𝜙 (𝐼)

�̂�
∗

[1 −
𝜙 (𝐼)

�̂�
∗

]

+ ]
𝛼
0
�̂�
∗

− �̂�
∗

𝐼

�̂�
∗

=
(�̂�
∗

− �̂�
∗

) 𝐼𝜓 (𝐼)

(�̂�
∗

)
2

𝜙 (𝐼)

≤ 0.

(36)

Hence, (𝑆, 𝐼) forms a smooth upper solution for model (24).

For constructing the lower solution of the model (24), we
start with the following model:

𝐼

− 𝑐𝐼

+ 𝐼 [�̂�

∗

− (1 + 𝜀) 𝐼]
𝛼
0
(𝑅
0
− 1)

𝛼
0
�̂�
∗

+ (�̂�
∗

− �̂�
∗

) 𝐼
= 0,

𝐼 (−∞) = 0, 𝐼 (+∞) =
�̂�
∗

1 + 𝜀
.

(37)

Define 𝑔(𝐼) = 𝐼[�̂�
∗

− (1 + 𝜀)𝐼](𝛼
0
(𝑅
0
− 1)/(𝛼

0
�̂�
∗

+ (�̂�
∗

−

�̂�
∗

)𝐼)), 𝐼 ∈ [0, �̂�
∗

/(1 + 𝜀)]. One can easily verify that all of the
following conditions hold:

(i) 𝑔(𝐼) = 𝐼[�̂�
∗

−(1+𝜀)𝐼](𝛼
0
(𝑅
0
−1)/(𝛼

0
�̂�
∗

+(�̂�
∗

−�̂�
∗

)𝐼)) ∈

𝐶2([0, �̂�
∗

/(1 + 𝜀)]);

(ii) 𝑔(𝐼) > 0, for all 𝐼 ∈ (0, �̂�
∗

/(1+𝜀)) and𝑔(0) = 𝑔(�̂�
∗

/(1+

𝜀)) = 0;
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(iii) 𝑔(0) = 𝑅
0
− 1 > 0, 𝑔(�̂�∗/(1 + 𝜀)) = −(1 + 𝜀)𝛼

0
(𝑅
0
−

1)/(𝜀𝛼
0
+ (𝑅
0
/(𝑅
0
− 1))�̂�

∗

) < 0.

From Lemma 7, we know that, for each fixed 𝑐 ≥

2√𝑅
0
− 1, model (37) has a unique traveling wave solution

𝐼(𝜉) (up to a translation of the origin), satisfying the given
boundary value conditions (28).

Define

(
𝑆 (𝜉)

𝐼 (𝜉)
) = (

�̂�
∗

�̂�
∗
𝐼 (𝜉)

𝐼 (𝜉)

) , 𝜉 ∈ 𝑅, (38)

then we have the following result:

Lemma 9. For each fixed 𝑐 ≥ 2√𝑅
0
− 1, (38) is a lower

solution of model (24).

Proof. On the boundary,

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) = (

�̂�
∗

1 + 𝜀

�̂�
∗

1 + 𝜀

) ≤ (
�̂�
∗

�̂�
∗) .

(39)

As for the 𝐼 component, we have

𝐼

− 𝑐𝐼

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 [�̂�
∗
− (1 + 𝜀) 𝐼]

𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 [�̂�
∗
− (1 + 𝜀) 𝐼]

𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝐼 (�̂�

∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

= 𝜀(𝐼)
2𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
≥ 0.

(40)

As for the 𝑆 component, we have

𝑆

− 𝑐𝑆

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
�̂�
∗

�̂�
∗
(𝐼

− 𝑐𝐼

) − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
�̂�
∗

�̂�
∗
{[𝜀 (𝐼)

2 𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
] − [𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼]}

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)] + 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

= 𝜀
�̂�
∗

�̂�
∗
(𝐼)
2𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
+

(�̂�
∗

− �̂�
∗

) 𝐼𝜓 (𝐼)

(�̂�
∗

)
2

𝜙 (𝐼)

≥ 0.

(41)

Thus (𝑆, 𝐼) forms a smooth lower solution formodel (24).

Next, we show that, by shifting the upper solution far
enough to the left, then the upper-lower solution in Lemmas
8 and 9 are ordered.

Lemma 10. Let 𝑐 ≥ 2√𝑅
0
− 1, (𝑆, 𝐼)𝑇 and (𝑆, 𝐼)

𝑇 be the upper
solution and the lower solution defined in (33) and (38), then
there exists a positive number 𝑟, such that (𝑆, 𝐼)

𝑇
(𝜉 + 𝑟) ≥

(𝑆, 𝐼)
𝑇
(𝜉) for all 𝜉 ∈ 𝑅.

Proof. Our proof is only for 𝑐 > 2√𝑅
0
− 1, and the proof for

the case of 𝑐 = 2√𝑅
0
− 1 is similar to it.

First, we derive the asymptotic behaviors of the upper
solution and the lower solution at infinities.

According to Lemma 7, when 𝜉 → −∞, we can obtain:

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗
𝐵
1

𝐵
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(42)

And let 𝜎
0

= (1/2)(𝑐 −

√𝑐2 + 4(𝛼
0
(𝑅
0
− 1)
2
/𝑅
0
�̂�
∗

) < 0, 𝛿
0

= (1/2)(𝑐 −

√𝑐2 + 4((1 + 𝜀)𝛼
0
(𝑅
0
− 1)/(𝜀𝛼

0
+ (𝑅
0
/(𝑅
0
− 1))�̂�

∗

)) < 0,
when 𝜉 → +∞, we can get

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗) − (

�̂�
∗

�̂�
∗
𝐴
2

𝐴
2

)𝑒
𝜎0𝜉 + 𝑜 (𝑒

𝜎0𝜉) ,

(
𝑆

𝐼
) (𝜉) =

1

1 + 𝜀
(
�̂�
∗

�̂�
∗) − (

�̂�
∗

�̂�
∗
𝐵
2

𝐵
2

)𝑒
𝛿0𝜉 + 𝑜 (𝑒

𝛿0𝜉) ,

(43)

where, 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
are all positive constants.
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Since for any �̃� > 0, 𝐼�̃�(𝜉) ≡ 𝐼(𝜉 + �̃�) is also a solution of

model (32). Thus, (𝑆�̃�, 𝐼�̃�)
𝑇

(𝜉) is an upper solution of model
(24). So, according to Lemma 7, when 𝜉 → −∞, we can get:

(
𝑆
�̃�

𝐼
�̃�
) (𝜉) = (

�̂�
∗

�̂�
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)�̃�𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(44)

Since (𝑐 − √𝑐2 − 4(𝑅
0
− 1))/2 > 0, we can choose a large

enough number �̃� ≫ 0, such that

(

�̂�
∗

�̂�
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)�̃� > (

�̂�
∗

�̂�
∗
𝐵
1

𝐵
1

), (45)

hence, there exists a large number𝑁
1
≫ 1, such that

(
𝑆
�̃�

(𝜉)

𝐼
�̃�

(𝜉)
) > (

𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ (−∞, −𝑁

1
] . (46)

By using a similar argument as above, there exists a large
enough number𝑁

2
≫ 1, such that

(
𝑆
�̃�

(𝜉)

𝐼
�̃�

(𝜉)
) > (

𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [𝑁

2
, +∞) . (47)

Second, we show that

(
𝑆
�̃�

(𝜉)

𝐼
�̃�

(𝜉)
) > (

𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [−𝑁

1
, 𝑁
2
] . (48)

We deal with such two possible cases:

Case 1. If

(
𝑆
�̃�

(𝜉)

𝐼
�̃�

(𝜉)
) > (

𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [−𝑁

1
, 𝑁
2
] , (49)

then, the proof is completed.

Case 2. If there exists a point 𝜉
0
∈ (−𝑁

1
, 𝑁
2
), such that

(
𝑆
�̃�

(𝜉
0
)

𝐼
�̃�

(𝜉
0
)
) ≤ (

𝑆 (𝜉
0
)

𝐼 (𝜉
0
)
) (50)

satisfying 𝑆
�̃�

(𝜉
0
) < 𝑆(𝜉

0
) or 𝐼�̃�(𝜉

0
) < 𝐼(𝜉

0
).

In this case, we use the Sliding Domain method [15].

Step 1. we shift (𝑆
�̃�

, 𝐼
�̃�

)
𝑇 to the left by increasing the number

�̃� until finding a new number 𝑟
1
> �̃� such that (𝑆𝑟1 , 𝐼𝑟1)𝑇 >

(𝑆, 𝐼)
𝑇 on the smaller interval [−𝑁

1
, 𝑁
2
− (𝑟
1
− �̃�)].

Step 2. we shift (𝑆
𝑟1
, 𝐼
𝑟1
)
𝑇 back to the right by decreasing 𝑟

1

to a smaller number �̃� < 𝑟
2

< 𝑟
1
such that one of the

branches of the upper solution touches its counterpart of
the lower solution at some point 𝜉

1
in the interval (−𝑁

1
+

(𝑟
1
− 𝑟
2
),𝑁
2
− (𝑟
1
− �̃�)). On the endpoints of the interval

(−𝑁
1
+(𝑟
1
−𝑟
2
),𝑁
2
−(𝑟
1
−�̃�)), we still have (𝑆𝑟2 , 𝐼𝑟2)𝑇 > (𝑆, 𝐼)

𝑇.
Let �⃗�(𝜉) = (𝑆

𝑟2
, 𝐼
𝑟2
)
𝑇
− (𝑆, 𝐼)

𝑇 and �⃗� = (𝐹
1
, 𝐹
2
)
𝑇, where

𝐹
1
= −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ,

𝐹
2
= 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼.

(51)

For 𝜉 ∈ (−𝑁
1
+ (𝑟
1
− 𝑟
2
),𝑁
2
− (𝑟
1
− �̃�)), we get that

�⃗�


− 𝑐�⃗�


+ (

𝜕𝐹
1

𝜕𝑆
(𝑆 + 𝜁

1
𝜔
1
, 𝐼
𝑟2
)

𝜕𝐹
1

𝜕𝐼
(𝑆
𝑟2
, 𝐼 + 𝜁

2
𝜔
2
)

𝜕𝐹
2

𝜕𝑆
(𝑆 + 𝜁

3
𝜔
1
, 𝐼
𝑟2
)

𝜕𝐹
2

𝜕𝐼
(𝑆
𝑟2
, 𝐼 + 𝜁

4
𝜔
2
)

)�⃗�

= 0,

(52)

where 𝜁
𝑖
∈ [0, 1], 𝑖 = 1, 2, 3, 4. Since the above model is

monotone and the cube [(0, 0), (�̂�
∗

, �̂�
∗

)] is convex, thus we
can deduce by Maximum Principle that �⃗� > 0 for 𝜉 ∈

[−𝑁
1
+(𝑟
1
−𝑟
2
),𝑁
2
−(𝑟
1
− �̃�)]. So 𝜉

1
does not exist and we can

decrease 𝑟
2
further to �̃�. It is calculated that the point 𝜉

0
does

not exist either. The proof of this lemma is completed.

To ease the burden of notations, we still use (𝑆, 𝐼)
𝑇 to

denote the shifted upper solution as given in Lemma 8. Let

𝐷
11

= −
𝑅2
0
+ ]𝑅
0
𝑅
𝑑
+ ]𝑅
0
− 4𝑅
0
− 2] + 3

𝑅
0

,

𝐷
12

=
]𝑅
0
𝑅
𝑑
− 2𝑅
0
− 2] + 3

𝑅
0

,

𝐷
21

= −
(𝑅
0
− 1)
2

𝑅
0

,

𝐷
22

= −
𝑅
0
− 1

𝑅
0

,

𝜇
1
=

− (𝐷
11

+ 𝐷
22
) + √(𝐷

11
− 𝐷
22
)
2
+ 4𝐷
12
𝐷
21

2
,

𝜇
2
=

− (𝐷
11

+ 𝐷
22
) − √(𝐷

11
− 𝐷
22
)
2
+ 4𝐷
12
𝐷
21

2
.

(53)

With such constructed ordered upper-lower solution pair,
we can get the following.

Theorem 11. For 𝑐 ≥ 2√𝑅
0
− 1, model (24) has a unique

(up to a translation of the origin) traveling wave solution.
The traveling wave solution is strictly increasing and has the
following asymptotic properties:
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(i) if 𝑐 > 2√𝑅
0
− 1, when 𝜉 → −∞,

(
𝑆

𝐼
) (𝜉) = (

𝐴
1

𝐴
2

) 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(54)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗) − (

𝐴
1

𝐴
2

)𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(55)

while 𝜇
1
= 𝜇
2
:

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗) − (

𝐴
11

+ 𝐴
12
𝜉

𝐴
21

+ 𝐴
22
𝜉

)𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(56)

where, 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐴

11
, 𝐴
21

∈ R, 𝐴
1
, 𝐴
2
, 𝐴
1
, 𝐴
2
,

𝐴
12
and 𝐴

22
are all positive constants.

(ii) if 𝑐 = 2√𝑅
0
− 1, when 𝜉 → −∞,

(
𝑆

𝐼
) (𝜉) = (

𝐵
11

+ 𝐵
12
𝜉

𝐵
21

+ 𝐵
22
𝜉
) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) , (57)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗) − (

𝐵
11

𝐵
22

)𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(58)

while 𝜇
1
= 𝜇
2
,

(
𝑆

𝐼
) (𝜉) = (

�̂�
∗

�̂�
∗) − (

𝐵
11

+ 𝐵
12
𝜉

𝐵
21

+ 𝐵
22
𝜉

)𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(59)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐵

12
, 𝐵
22

< 0, 𝐵
11
, 𝐵
21
, 𝐵
11
, 𝐵
21

∈

R, and 𝐵
11
, 𝐵
22
, 𝐵
12
, 𝐵
22
are all positive constants.

Proof. From Lemma 3 and Remark 4, we know that model
(24) is a quasi-monotone nonincreasing system in (𝑆, 𝐼) ∈

[𝐸
1
, 𝐸
2
], and by using the monotone iteration scheme given

in [3, 13], we can obtain the existence of the solution (𝑆, 𝐼)
𝑇 to

the first two equations in model (24) for every 𝑐 ≥ 2√𝑅
0
− 1,

which satisfies

(
𝑆 (𝜉)

𝐼 (𝜉)
) ≤ (

𝑆 (𝜉)

𝐼 (𝜉)
) ≤ (

𝑆 (𝜉)

𝐼 (𝜉)
) . (60)

According to the above inequality, we can get that, on
the boundary, the solution tends to (0, 0)

𝑇 as 𝜉 → −∞ and
(�̂�
∗

, �̂�
∗

)
𝑇 as 𝜉 → +∞.

To derive the asymptotic decay rate of the traveling wave
solutions as 𝜉 → ±∞, we just let 𝑐 > 2√𝑅

0
− 1 and

𝑈 (𝜉) = (𝑆 (𝜉) , 𝐼 (𝜉))
𝑇
, −∞ < 𝜉 < +∞ (61)

be the traveling wave solution of model (24) generated form
the monotone iteration, since the case of (ii) 𝑐 = 2√𝑅

0
− 1 is

similar to it.
We differentiate model (24) with respect to 𝜉, and note

that 𝑈(𝜉) = (𝜒
1
, 𝜒
2
)
𝑇
(𝜉) satisfies

𝜒


1
− 𝑐𝜒


1
+ 𝐶
11

(𝑆, 𝐼) 𝜒
1
+ 𝐶
12

(𝑆, 𝐼) 𝜒
2
= 0,

𝜒


2
− 𝑐𝜒


2
+ 𝐶
21

(𝑆, 𝐼) 𝜒
1
+ 𝐶
22

(𝑆, 𝐼) 𝜒
2
= 0,

(62)

where
𝐶
11

(𝑆, 𝐼) = ]𝑅
𝑑
[1 − (𝛼

0
− 𝑆 + 𝐼)] − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

−
𝑅
0
𝐼

𝛼
0
− 𝑆 + 𝐼

+
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
− ],

𝐶
12 (𝑆, 𝐼) = −]𝑅

𝑑
[1 − (𝛼

0
− 𝑆 + 𝐼)] + ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

+
𝑅
0
(𝛼
0
− 𝑆)

𝛼
0
− 𝑆 + 𝐼

−
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
,

𝐶
21

(𝑆, 𝐼) = −
𝑅
0
𝐼

𝛼
0
− 𝑆 + 𝐼

+
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
,

𝐶
22 (𝑆, 𝐼) =

𝑅
0
(𝛼
0
− 𝑆)

𝛼
0
− 𝑆 + 𝐼

−
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
− 1.

(63)

Now, we study the exponential decay rate of the traveling
wave solution as 𝜉 → −∞. The asymptotic model of model
(62) as 𝜉 → −∞ is

𝜆

− 𝑐𝜆

+ 𝐸
11
𝜆 + 𝐸
12
𝜇 = 0,

𝜇

− 𝑐𝜇

+ 𝐸
21
𝜆 + 𝐸
22
𝜇 = 0,

(64)

where
𝐸
11

= −] (𝑅
𝑑
− 1) , 𝐸

12
= ]𝑅
𝑑
+ 𝑅
0
− 2],

𝐸
21

= 0, 𝐸
22

= 𝑅
0
− 1.

(65)

The second equation of model (64) has two independent
solutions with the following form:

𝜇
(1)

(𝜉) = 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉,

𝜇
(2)

(𝜉) = 𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉.

(66)
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Relating the second equation of model (62) with the
second equation of model (64), we can deduce that 𝜒

2
(𝜉) has

the following property as 𝜉 → −∞:

𝜒
2
(𝜉) = 𝛼 [1 + 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

+ 𝛽 [1 + 𝑜 (1)] 𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

(67)

for some constants 𝛼 and 𝛽. Thus, we can obtain that

𝜒
2
(𝜉) = 𝛼𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉 + 𝛽𝑒

((𝑐+√𝑐
2
−4(𝑅0−1))/2)𝜉

+ Υ
1 (𝜉) + Υ

2 (𝜉) ,

(68)

where

lim
𝜉→−∞

Υ
1 (𝜉)

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= 0,

lim
𝜉→−∞

Υ
2
(𝜉)

𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

= 0.

(69)

So we obtain that

lim
𝜉→−∞

𝜒
2 (𝜉) − 𝛼𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= lim
𝜉→−∞

Υ
1
(𝜉) + Υ

2
(𝜉) + 𝛽𝑒

((𝑐+√𝑐
2
−4(𝑅0−1))/2)𝜉

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= lim
𝜉→−∞

Υ
1 (𝜉)

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝛽 lim
𝜉→−∞

𝑒
√𝑐
2
−4(𝑅0−1)𝜉

+ lim
𝜉→−∞

Υ
2
(𝜉)

𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

lim
𝜉→−∞

𝑒
√𝑐
2
−4(𝑅0−1)𝜉 = 0.

(70)

Thus, 𝜒
2
(𝜉) = 𝛼[1 + 𝑜(1)]𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉.

Now, we consider the first equation of model (64). We
rewrite it as

𝜆

− 𝑐𝜆

− ] (𝑅

𝑑
− 1) 𝜆 = − (]𝑅

𝑑
+ 𝑅
0
− 2]) 𝜇. (71)

One can verify that (𝑐 − √𝑐2 − 4(𝑅
0
− 1))/2 is not a

characteristic of

𝜆

− 𝑐𝜆

− ] (𝑅

𝑑
− 1) 𝜆 = 0. (72)

The above equation has two independent solutions of the
following form:

𝜆
(1)

(𝜉) = 𝑒
((𝑐−√𝑐

2
+4](𝑅𝑑−1))/2)𝜉,

𝜆
(2)

(𝜉) = 𝑒
((𝑐+√𝑐

2
+4](𝑅𝑑−1))/2)𝜉.

(73)

Thus, when 𝜉 → −∞, 𝜒
1
(𝜉) has the following property:

𝜒
1 (𝜉) = 𝛼 [1 + 𝑜 (1)] 𝑒

((𝑐+√𝑐
2
+4](𝑅𝑑−1))/2)𝜉

+ 𝛽 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
+4](𝑅𝑑−1))/2)𝜉

+ 𝛾 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

(74)

for some constants 𝛼, 𝛽; 𝛾 ̸= 0. Since 𝜒
1
(−∞) = 0, thus 𝛽 = 0.

So, when 𝜉 → −∞, we have the following formula:

(
𝜒
1
(𝜉)

𝜒
2 (𝜉)

) = (
𝛾 [1 + 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝛼 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

) . (75)

Then, we study the exponential decay rate of the traveling
wave solution as 𝜉 → +∞. The asymptotic model of model
(62) as 𝜉 → +∞ is

𝜓


1
− 𝑐𝜓


1
+ 𝐷
11
𝜓
1
+ 𝐷
12
𝜓
2
= 0,

𝜓


2
− 𝑐𝜓


2
+ 𝐷
21
𝜓
1
+ 𝐷
22
𝜓
2
= 0.

(76)

By setting (𝜓
𝑖
)

(𝜉) = �̃�

𝑖
, 𝑖 = 1, 2, we rewrite model (76)

as a first order model of ordinary differential equation in the
four components (𝜓

1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇:

𝜓


1
= �̃�
1
,

�̃�


1
= 𝑐�̃�
1
− 𝐷
11
𝜓
1
− 𝐷
12
𝜓
2
,

𝜓


2
= �̃�
2
,

�̃�


2
= 𝑐�̃�
2
− 𝐷
21
𝜓
1
− 𝐷
22
𝜓
2
.

(77)

In the case of (i) 𝜇
1

̸= 𝜇
2
, we can obtain that the solution

of model (77) has the following form:

(𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇
=

4

∑
𝑖=1

𝑐
𝑖
ℎ
𝑖
𝑒
𝜆𝑖𝜉, (78)

where

𝜆
1
=

𝑐 + √𝑐2 + 4𝜇
1

2
, 𝜆

2
=

𝑐 − √𝑐2 + 4𝜇
1

2
,

𝜆
3
=

𝑐 + √𝑐2 + 4𝜇
2

2
, 𝜆

4
=

𝑐 − √𝑐2 + 4𝜇
2

2
,

(79)

and ℎ
𝑖
(𝑖 = 1, 2, 3, 4) are the eigenvectors of the constant

matrix with 𝜆
𝑖
(𝑖 = 1, 2, 3, 4) as the corresponding eigenval-

ues, 𝑐
𝑖
(𝑖 = 1, 2, 3, 4) are arbitrary constants. Since

lim
𝜉→+∞

(𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇
= 0, (80)

thus (𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇

= 𝑐
2
ℎ
2
𝑒𝜆2𝜉 + 𝑐

4
ℎ
4
𝑒𝜆4𝜉, so when 𝜉 →

+∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

) = (
𝜅
1
[Λ
1
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇1)/2)𝜉

𝜅
1
[Γ
1
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇1)/2)𝜉

)

+ (
𝜅
2
[Λ
2
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇2)/2)𝜉

𝜅
2
[Γ
2
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇2)/2)𝜉

) .

(81)
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Furthermore, we can obtain that

𝜒
1 (𝜉) = 𝜅

1
Λ
1
𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉 + 𝜅

2
Λ
2
𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

+ Ω
11

(𝜉) + Ω
12

(𝜉) ,

𝜒
2
(𝜉) = 𝜅

1
Γ
1
𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉 + 𝜅

2
Γ
2
𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

+ Ω
21 (𝜉) + Ω

22 (𝜉) ,

(82)

where

lim
𝜉→+∞

Ω
11 (𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

= 0, lim
𝜉→+∞

Ω
12 (𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

= 0,

lim
𝜉→+∞

Ω
21

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

= 0, lim
𝜉→+∞

Ω
22

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

= 0.

(83)

𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
, Γ
1
, and Γ

2
are all constants.

Let 𝜇 = min{𝜇
1
, 𝜇
2
}, then

lim
𝜉→+∞

𝜒
1
(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

= 𝜅
1
Λ
1
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ 𝜅
2
Λ
2
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

+ lim
𝜉→+∞

Ω
11 (𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ lim
𝜉→+∞

Ω
12

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

= Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) ,

lim
𝜉→+∞

𝜒
2
(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

= 𝜅
1
Γ
1
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ 𝜅
2
Γ
2
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

+ lim
𝜉→+∞

Ω
21

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ lim
𝜉→+∞

Ω
22 (𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

= Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) ,

(84)

where

Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) = {

𝜅
1
Λ
1
, 𝜇
1
< 𝜇
2
,

𝜅
2
Λ
2
, 𝜇
1
> 𝜇
2
,

Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) = {

𝜅
1
Γ
1
, 𝜇
1
< 𝜇
2
,

𝜅
2
Γ
2
, 𝜇
1
> 𝜇
2
;

(85)

thus, when 𝜉 → +∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

)

= (
Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) (1 + 𝑜 (1)) 𝑒

((𝑐−√𝑐
2
+4𝜇)/2)𝜉

Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) (1 + 𝑜 (1)) 𝑒

((𝑐−√𝑐
2
+4𝜇)/2)𝜉

) .

(86)

In the case of (ii) 𝜇
1
= 𝜇
2
, we can obtain that the solution

of model (77) has the following form:

(𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇
= (𝐺
1
+ 𝐺
2
𝜉)𝐻
1,2

𝑒
𝜆1𝜉

+ (𝐺
3
+ 𝐺
4
𝜉)𝐻
3,4

𝑒
𝜆3𝜉,

(87)

where𝐻
1,2

is the eigenvector of the constantmatrix with 𝜆
1
=

𝜆
2
as the corresponding eigenvalues, 𝐻

3,4
is the eigenvector

of the constant matrix with 𝜆
3

= 𝜆
4
as the corresponding

eigenvalues, 𝐺
𝑖
(𝑖 = 1, 2, 3, 4) are arbitrary constants.

Since lim
𝜉→+∞

(𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇
= 0, thus

(𝜓
1
, �̃�
1
, 𝜓
2
, �̃�
2
)
𝑇
= (𝐺
3
+ 𝐺
4
𝜉)𝐻
3,4

𝑒
𝜆3𝜉. (88)

So, when 𝜉 → +∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

) = (
(𝐺
1,3

+ 𝐺
1,4

𝜉) 𝑒𝜆3𝜉 + 𝑜 (𝑒𝜆3𝜉)

(𝐺
2,3

+ 𝐺
2,4

𝜉) 𝑒𝜆4𝜉 + 𝑜 (𝑒𝜆4𝜉)
) . (89)

By comparing the upper solution and roughness of the
exponential dichotomy [24], we obtain the asymptotic decay
rate of the traveling wave solutions at +∞ given in Theorem
11.

According to the monotone iteration process [3], the
traveling wave solution𝑈(𝜉) is increasing; thus𝑈(𝜉) ≥ 0 and
𝑈(𝜉) = (𝜒

1
, 𝜒
2
)
𝑇
(𝜉) hold

𝜒


1
− 𝑐𝜒


1
+

𝜕𝐹
1

𝜕𝑆
𝜒
1
+

𝜕𝐹
1

𝜕𝐼
𝜒
2
= 0,

𝜒


2
− 𝑐𝜒


2
+

𝜕𝐹
2

𝜕𝑆
𝜒
1
+

𝜕𝐹
2

𝜕𝐼
𝜒
2
= 0,

(90)

satisfying

(𝜒
1
, 𝜒
2
)
𝑇

(𝜉) ≥ 0, (𝜒
1
, 𝜒
2
)
𝑇

(±∞) = 0. (91)

The strong Maximum Principle implies that (𝜒
1
, 𝜒
2
)
𝑇
(𝜉)

> 0. So the strict monotonicity of the traveling wave solutions
is concluded.
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Now, we use the Sliding domain method to prove the
uniqueness of the traveling wave solution. Let 𝑈

1
(𝜉) =

(𝑆
1
, 𝐼
1
)
𝑇
(𝜉) and 𝑈

2
(𝜉) = (𝑆

2
, 𝐼
2
)
𝑇
(𝜉) be the traveling wave

solution of model (24), with 𝑐 > 2√𝑅
0
− 1. Thus, there are

some positive numbers 𝐴
𝑖
, 𝐵
𝑖
(𝑖 = 1, 2, 3, 4), such that for a

big enough number𝑁 ≫ 1, when 𝜉 < −𝑁, we have

(
𝑆
1
(𝜉)

𝐼
1
(𝜉)

) = (
𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(
𝑆
2 (𝜉)

𝐼
2 (𝜉)

) = (
𝐴
3
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

𝐴
4
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(92)

when 𝜉 > 𝑁,

(
𝑆
1
(𝜉)

𝐼
1
(𝜉)

) = (
�̂�
∗

− 𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

�̂�
∗

− 𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(
𝑆
2 (𝜉)

𝐼
2 (𝜉)

) = (
�̂�
∗

− 𝐵
3
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

�̂�
∗

− 𝐵
4
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) .

(93)

Since the traveling wave solutions of model (24) are trans-
lation-invariant, then for any 𝜃 ∈ 𝑅, 𝑈𝜃

1
(𝜉) ≡ 𝑈

1
(𝜉 + 𝜃) ≡

(𝑆
1
(𝜉+𝜃), 𝐼

1
(𝜉 + 𝜃))

𝑇 is also a travelingwave solution ofmodel
(24).Thus, by using the samemethod as above, when 𝜉 < −𝑁,
we can get

(
𝑆
1 (𝜉 + 𝜃)

𝐼
1
(𝜉 + 𝜃)

)

= (
𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜃𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜃𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(94)

when 𝜉 > 𝑁,

(
𝑆
1 (𝜉 + 𝜃)

𝐼
1 (𝜉 + 𝜃)

)

= (
�̂�
∗

− 𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

�̂�
∗

− 𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) .

(95)

If 𝜃 is large enough, then we can obtain the following ineq-
ualities:

𝐴
1
𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜃 > 𝐴

3
,

𝐴
2
𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜃 > 𝐴

4
,

𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

< 𝐵
3
,

𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

< 𝐵
4
.

(96)

Thus, if 𝜃 is large enough, then 𝑈𝜃
1
(𝜉) > 𝑈

2
(𝜉), for all 𝜉 ∈

𝑅 \ [−𝑁,𝑁].
Now, we consider model (24) on the interval [−𝑁,𝑁].
First, suppose that

𝑊(𝜉) ≡ 𝑈
𝜃

1
(𝜉) − 𝑈

2
(𝜉) ≥ 0, 𝜉 ∈ [−𝑁,𝑁] , (97)

then

𝑊

− 𝑐𝑊


+ (

𝜕𝐹
1

𝜕𝑆
(𝑆
2
+ 𝜁
1
𝜔
1
, 𝐼
1
)

𝜕𝐹
1

𝜕𝐼
(𝑆
1
, 𝐼
2
+ 𝜁
2
𝜔
2
)

𝜕𝐹
2

𝜕𝑆
(𝑆
2
+ 𝜁
3
𝜔
1
, 𝐼
1
)

𝜕𝐹
2

𝜕𝐼
(𝑆
1
, 𝐼
2
+ 𝜁
4
𝜔
2
)

)𝑊 = 0,

𝑊 (−𝑁) > 0, 𝑊 (𝑁) > 0,

(98)

where, 𝜁
𝑖
∈ (0, 1) (𝑖 = 1, 2, 3, 4), 𝜉 ∈ (−𝑁,𝑁). Since the

abovemodel ismonotone, by theMaximumPrinciple, we can
deduce that 𝑊(𝜉) > 0, 𝜉 ∈ [−𝑁,𝑁]. Consequently, we get
that 𝑈𝜃

1
(𝜉) > 𝑈

2
(𝜉), 𝜉 ∈ 𝑅.

Second, we suppose that there exists a point 𝜉
∗
∈ (−𝑁,𝑁)

such that

𝑆
𝜃

1
(𝜉
∗
) < 𝑆
2
(𝜉
∗
) (99)

or

𝐼
𝜃

1
(𝜉
∗
) < 𝐼
2
(𝜉
∗
) . (100)

In this case, we increase 𝜃, that is shifting 𝑈𝜃
1
to the left,

so that 𝑈𝜃
1
(−𝑁) > 𝑈

2
(−𝑁) and 𝑈𝜃

1
(𝑁) > 𝑈

2
(𝑁). According

to the monotonicity of 𝑈𝜃
1
and 𝑈

2
, we can find a number 𝜃 ∈

(0, 2𝑁) such that 𝑈𝜃
1
(𝜉 + 𝜃) > 𝑈

2
(𝜉), 𝜉 ∈ (−𝑁,𝑁). Shifting

𝑈𝜃
1
(𝜉 + 𝜃) back until one component of 𝑈𝜃

1
(𝜉 + 𝜃) touches its

counterpart of𝑈
2
(𝜉) at some point 𝜉 ∈ (−𝑁,𝑁). Since𝑈𝜃

1
(𝜉+

𝜃) and𝑈
2
(𝜉) are strictly increasing, 𝜉 ∈ (−𝑁,𝑁), thus, we get

that 𝑈𝜃
1
(𝜉 + 𝜃) > 𝑈

2
(𝜉), 𝜉 = ±𝑁. However, by the Maximum

Principle for that component again, we find that components
of 𝑈𝜃
1
and 𝑈

2
are identically equal for all 𝜉 ∈ [−𝑁,𝑁] for a

larger number 𝜃. This is a contradiction, thus 𝑈𝜃
1
(𝜉) > 𝑈

2
(𝜉),

𝜉 ∈ 𝑅. Here, 𝜃 is a new number which is chosen by the above
mean.

Now, decrease the 𝜃 until one of the following happens.
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Case (a). There is a 𝜃 ≥ 0, such that𝑈𝜃
1
= 𝑈
2
(𝜉), 𝜉 ∈ 𝑅. In this

case, we have finished the proof.

Case (b).There are a 𝜃 and a point 𝜉
1
∈ 𝑅, such that one of the

components of𝑈𝜃
1
and𝑈

2
are equal. And𝑈𝜃

1
≥ 𝑈
2
, 𝜉 ∈ 𝑅. On

𝑅 for that component, according to the Maximum Principle,
we find that𝑈𝜃

1
and𝑈

2
must be identical on that component.

We can return to Case (a).
Consequently, in either situation, their exists a number

𝜃 ≥ 0 such that

𝑈
𝜃

1
(𝜉) = 𝑈

2
(𝜉) , 𝜉 ∈ (−∞, +∞) . (101)

This ends of the proof.

ByTheorem 11, we can get the following theorem:

Theorem 12. For each 𝑐 ≥ 2√𝑅
0
− 1, model (3) has a unique

(up to a translation of the origin) traveling wave solution.
The traveling wave solution is strictly increasing and has the
following asymptotic properties:

(i) 𝑐 > 2√𝑅
0
− 1: when 𝜉 → −∞,

𝑆 (𝜉) =
𝑅
𝑑
− 1

𝑅
𝑑

− 𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

𝐼 (𝜉) = 𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉 + 𝑜 (𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉) .

(102)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ 𝐴
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

𝐼 (𝜉) = 𝐼
∗
− 𝐴
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(103)

if 𝜇
1
= 𝜇
2
,

𝑆 (𝜉) = 𝑆
∗
+ (𝐴
11

+ 𝐴
12
𝜉) 𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

𝐼 (𝜉) = 𝐼
∗
− (𝐴
21

+ 𝐴
22
𝜉) 𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(104)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐴

11
, 𝐴
21

∈ R 𝐴
1
, 𝐴
2
, 𝐴
1
, 𝐴
2
,

𝐴
12
and 𝐴

22
are all positive constants.

(ii) 𝑐 = 2√𝑅
0
− 1: when 𝜉 → −∞,

𝑆 (𝜉) =
𝑅
𝑑
− 1

𝑅
𝑑

− (𝐴
11

+ 𝐴
12
𝜉) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) ,

𝐼 (𝜉) = (𝐴
11

+ 𝐴
12
𝜉) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) .

(105)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ 𝐵
11
𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉 + 𝑜 (𝑒

(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

𝐼 (𝜉) = 𝐼
∗
− 𝐵
22
𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉 + 𝑜 (𝑒

(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(106)

if 𝜇
1
= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ (𝐵
11

+ 𝐵
12
𝜉) 𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

𝐼 (𝜉) = 𝐼
∗
− (𝐵
21

+ 𝐵
22
𝜉) 𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(107)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐵

12
, 𝐵
22

< 0, 𝐵
11
, 𝐵
21
, 𝐵
11
, 𝐵
21

∈

R, 𝐵
11
, 𝐵
22
, 𝐵
12
, 𝐵
22
are all positive constants.

Theorem 13. There is no monotone traveling wave solution of
model (24) for any 0 < 𝑐 < 2√𝑅

0
− 1. In other words, there

is no monotone traveling wave solution of model (3) for any
0 < 𝑐 < 2√𝑅

0
− 1.

Proof. Suppose there is a monotone traveling wave solution
L(𝜉) = (𝑙

1
(𝜉), 𝑙
2
(𝜉))
𝑇 of model (24) with the wave speed 𝑐

0
,

where 𝑐
0
∈ (0, 2√𝑅

0
− 1).

The asymptotic model of L(𝜉) = (𝑙
1
(𝜉), 𝑙
2
(𝜉))
𝑇 as 𝜉 →

−∞ is

𝜆


− 𝑐
0
𝜆


− ] (𝑅
𝑑
− 1) 𝜆 + (]𝑅

𝑑
+ 𝑅
0
− 2]) 𝜇 = 0,

𝜇

− 𝑐
0
𝜇

+ (𝑅
0
− 1) 𝜇 = 0.

(108)

The second function of (108) has two characteristics
as the following ones: (𝑐

0
+ √4(𝑅

0
− 1) − 𝑐2

0
𝑖)/2, (𝑐

0
−

√4(𝑅
0
− 1) − 𝑐2

0
𝑖)/2.Thus it has two independent solutions of

the following form:

𝜇
11

= 𝑒
(𝑐0/2)𝜉 cos(

√4 (𝑅
0
− 1) − 𝑐2

0

2
𝜉) ,

𝜇
22

= 𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐2

0

2
𝜉) .

(109)
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Similar to the proof of Theorem 11, we can get that, when
𝜉 → −∞, 𝜒

2
(𝜉) can be described as the following equation:

𝜒
2
(𝜉) = 𝐾

1
𝑒
(𝑐0/2)𝜉 cos(

√4 (𝑅
0
− 1) − 𝑐2

0

2
𝜉)

+ 𝐾
2
𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐2

0

2
𝜉) + h.o.t,

= √𝐾2
1
+ 𝐾2
2
𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐2

0

2
𝜉 + 𝜏 (𝜉))

+ h.o.t,
(110)

where tan(𝜏(𝜉)) = 𝐾
1
/𝐾
2
, and h.o.t is the short notation for

the higher order terms.
That is to say, 𝑙

2
(𝜉) is oscillating. Thus, any solution of

model (24) with 0 < 𝑐 < 2√𝑅
0
− 1 is not strictly mono-

tone.

Theorems 12 and 13 indicate that 𝑐 = 2√𝑅
0
− 1 is the crit-

ical minimal wave speed.
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