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We introduce two new concepts of weakly relaxed 𝜂-𝛼 monotone mappings and weakly relaxed 𝜂-𝛼 semimonotone mappings.
Using the KKM technique, the existence of solutions for variational-like problems with weakly relaxed 𝜂-𝛼monotone mapping in
reflexive Banach spaces is established. Also, we obtain the existence of solution for variational-like problems with weakly relaxed
𝜂-𝛼 semimonotone mappings in arbitrary Banach spaces by using the Kakutani-Fan-Glicksberg fixed-point theorem.

1. Introduction

The variational inequality theory provides us with a simple,
natural, unified, and elegant framework to study a wide class
of linear and nonlinear problems arising in many fields, such
as mechanics, engineering sciences, elasticity, optimization,
control, programming, economics, transportation, oceanog-
raphy, and regional. Because of their wide applicability,
various extensions and generalizations of the classical vari-
ational inequality problem have been proposed and studied
in recent years. Variational-like inequalities problems is one
of cornerstone in this field. Some special case of generalized
variational inequalities and variational-like inequalities have
been studied by several authors including Bai et al. [1], Chang
et al. [2], dos Santos et al. [3], Xiao and Huang [4], Zhao and
Xia [5, 6], and references therein.

It is well known that the monotonicity and general-
ized monotonicity play an important role of the study in
variational inequality theory. In recent years, a substantial
number of papers on existence results for solving varia-
tional inequality problems and variational-like inequality
problems based on different generalization of monotonicity

such as pseudomonotonicity, quasimonotonicity, relaxed
monotonicity, semimonotonicity, and 𝑝-monotonicity (see
[7–15]) appeared. In [16], Fang and Huang introduced a
new concept of relaxed 𝜂-𝛼 monotonicity and obtained
the existence of solutions for variational-like inequalities
with relaxed 𝜂-𝛼 monotone mappings in reflexive Banach
spaces. Recently, Sintunavarat [17] established the existence
of solution of mixed equilibrium problem with the weakly
relaxed 𝛼-monotone bi-function in Banach spaces.

Inspired and motivated by the work of Fang and Huang
[16] and Sintunavarat [17], in this paper we introduce the two
new concepts of weakly relaxed 𝜂-𝛼monotonemappings and
weakly relaxed 𝜂-𝛼 semimonotone mappings as well as two
classes of variational-like inequalities withweakly relaxed 𝜂-𝛼
monotone mappings and weakly relaxed 𝜂-𝛼 semimonotone
mappings. By using the KKM technique, we study some
existence of solutions for variational-like inequalities with
weakly relaxed 𝜂-𝛼 monotone mappings in reflexive Banach
spaces. We also obtain the solvability of variational-like
inequalities with weakly relaxed 𝜂-𝛼 semimonotone map-
pings in arbitrary Banach spaces by using the Kakutani-Fan-
Glicksberg fixed-point theorem. Our results in this paper
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extend and improve the results of Fang and Huang [16] and
many results in the literature.

2. Preliminaries

In this paper, unless otherwise specified, 𝐾 is a nonempty
closed convex subset of a real reflexive Banach space 𝐸 with
dual space 𝐸∗. The following basic knowledge will be useful
in our work.

Definition 1 (see [18]). Let 𝑇 : 𝐾 → 𝐸
∗ and 𝜂 : 𝐾 × 𝐾 → 𝐸

be two mappings. A mapping 𝑇 is said to be 𝜂-hemicon-
tinuous if, for any fixed 𝑥, 𝑦 ∈ 𝐾, themapping𝑓 : [0, 1] → R

defined by

𝑓 (𝑡) = ⟨𝑇 (𝑡𝑦 + (1 − 𝑡) 𝑥) , 𝜂 (𝑦, 𝑥)⟩ (1)

is continuous at 0+.

Definition 2 (see [16]). Let 𝑇 : 𝐾 → 𝐸
∗ and 𝜂 : 𝐾 × 𝐾 → 𝐸

be two mappings. A mapping 𝑇 is said to be 𝜂-coercive with
respect to a proper function 𝑓 : 𝐾 → R ∪ {∞} if there exists
𝑥
0
∈ 𝐾 such that

[⟨𝑇𝑥 − 𝑇𝑥
0
, 𝜂 (𝑥, 𝑥

0
)⟩ + 𝑓 (𝑥) − 𝑓 (𝑥

0
)]

𝜂 (𝑥, 𝑥0)


→ ∞, (2)

whenever ‖𝑥‖ is large enough.

Remark 3. If 𝑓 = 𝛿
𝐾
, where 𝛿

𝐾
is the indicator function of𝐾,

thenDefinition 2 coincides with the definition of 𝜂-coercivity
in the sense of Yang and Chen [15].

Definition 4 (see [16]). A mapping 𝑇 : 𝐾 → 𝐸
∗ is said to be

relaxed 𝜂-𝛼monotone if there exist a function 𝜂 : 𝐾×𝐾 → 𝐸

and 𝛼 : 𝐸 → R with 𝛼(𝑡𝑧) = 𝑡
𝑝

𝛼(𝑧) for all 𝑡 > 0 and 𝑧 ∈ 𝐸
such that

⟨𝑇𝑥 − 𝑇𝑦, 𝜂 (𝑥, 𝑦)⟩ ≥ 𝛼 (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾, (3)

where 𝑝 > 1 is a constant.

Remark 5. (1) If 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐾, then (3)
reduces to

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼 (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾, (4)

and 𝑇 is said to be 𝛼-monotone.
(2) If 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼(𝑧) = 𝑘‖𝑧‖

𝑝,
where 𝑘 > 0 and 𝑝 > 1, then (3) becomes

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝑘
𝑥 − 𝑦


𝑝

, ∀𝑥, 𝑦 ∈ 𝐾, (5)

and 𝑇 is said to be 𝑝-monotone (see in [14, 19, 20]).
(3) Every monotone mapping is relaxed 𝜂-𝛼 monotone

with 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼 ≡ 0.

Definition 6. Let 𝐹 : 𝐾 → 2
𝐸 be a set-valued mapping.

Then, 𝐹 is said to be KKM mapping if, for any finite
subset {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
} of 𝐾, we have co{𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
} ⊂

⋃
𝑛

𝑖=1
𝐹(𝑦
𝑖
), where co{𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
} denotes the convex hull

of {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
}.

Remark 7. Let 𝐹, 𝐺 : 𝐾 → 2
𝐸. If 𝐹 is KKM mapping and

𝐹(𝑦) ⊂ 𝐺(𝑦) for all 𝑦 ∈ 𝐾, then 𝐺 is also KKMmapping.

Lemma 8 (see [21]). Let 𝑀 be a nonempty subset of a
Hausdorff topological vector space𝑋, and let𝐹 : 𝑀 → 2

𝑋 be a
KKMmapping. If𝐹(𝑦) is closed in𝑋 for all𝑦 ∈ 𝑀 and compact
for some 𝑦 ∈ 𝑀, then⋂

𝑦∈𝑀
𝐹(𝑦) ̸= 0.

3. Variational-Like Inequalities Problems with
Weakly Relaxed 𝜂-𝛼 Monotone Mapping

In this section, we introduce the new class of mapping
which generalizes several classes. Using KKM technique, we
study and prove the existence of solutions for variational-like
inequalities problems with mapping in such class in Banach
spaces.

Definition 9. A mapping 𝑇 : 𝐾 → 𝐸
∗ is said to be weakly

relaxed 𝜂-𝛼monotone if there exist a function 𝜂 : 𝐾×𝐾 → 𝐸

and 𝛼 : 𝐸 → R with

lim
𝑡→0
+

𝛼 (𝑡𝑥) = 0, (6)

lim
𝑡→0
+

𝑑

𝑑𝑡
𝛼 (𝑡𝑥) = 0, (7)

for all 𝑡 > 0 and 𝑥 ∈ 𝐸 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝜂 (𝑥, 𝑦)⟩ ≥ 𝛼 (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (8)

Remark 10. We obtain that the relaxed 𝜂-𝛼 monotonicity
implies weakly relaxed 𝜂-𝛼monotonicity. So, class of relaxed
𝜂-𝛼 monotone mapping is subclass of weakly relaxed 𝜂-𝛼
monotone mapping class. Also, we get that classes of relaxed
𝛼monotonemapping, 𝑝-monotonemapping, andmonotone
mapping are subclass of weakly relaxed 𝜂-𝛼 monotone map-
ping class.

Theorem 11. Let 𝑇 : 𝐾 → 𝐸
∗ be an 𝜂-hemicontinuous and

weakly relaxed 𝜂-𝛼 monotone and let 𝑓 : 𝐾 → R ∪ {∞} be a
proper convex function. Suppose that the following conditions
hold:

(a) 𝜂(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾;
(b) for any fixed 𝑦, 𝑧 ∈ 𝐾, the mapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex.

Then, the following problems (9) and (10) are equivalent:

𝑓𝑖𝑛𝑑 𝑥 ∈ 𝐾

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0,

∀𝑦 ∈ 𝐾,

(9)

𝑓𝑖𝑛𝑑 𝑥 ∈ 𝐾

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝑇𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝛼 (𝑦 − 𝑥) ,

∀𝑦 ∈ 𝐾.

(10)



Abstract and Applied Analysis 3

Proof. Suppose that (9) has a solution. So, there exists 𝑥 ∈ 𝐾
such that

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾. (11)

Since 𝑇 is weakly relaxed 𝜂-𝛼monotone, we have

⟨𝑇𝑦 − 𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ ≥ 𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾, (12)

and then

⟨𝑇𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

≥ ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝛼 (𝑦 − 𝑥) + 𝑓 (𝑦) − 𝑓 (𝑥)

≥ 𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾.

(13)

Therefore, 𝑥 ∈ 𝐾 is a solution of problem (10).
Conversely, suppose that 𝑥 ∈ 𝐾 is a solution of problem

(10) and 𝑦 is any point in 𝐾 with 𝑓(𝑦) < ∞. For 𝑡 ∈ (0, 1),
we let 𝑦

𝑡
:= (1 − 𝑡)𝑥 + 𝑡𝑦. From (10), we get that 𝑓(𝑥) < ∞. It

follows from𝐾 being convex that 𝑦
𝑡
∈ 𝐾. From (10), we have

⟨𝑇𝑦
𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ + 𝑓 (𝑦

𝑡
) − 𝑓 (𝑥) ≥ 𝛼 (𝑦

𝑡
− 𝑥)

= 𝛼 (𝑡 (𝑦 − 𝑥)) ,

(14)

and thus

𝑓 (𝑦
𝑡
) − 𝑓 (𝑥) ≥ 𝛼 (𝑡 (𝑦 − 𝑥)) − ⟨𝑇𝑦

𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ . (15)

The convexity of 𝑓 implies that

𝑓 (𝑦
𝑡
) − 𝑓 (𝑥) = 𝑓 ((1 − 𝑡) 𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

≤ 𝑡 (𝑓 (𝑦) − 𝑓 (𝑥)) .

(16)

From (15) and (16), we get

𝑡 (𝑓 (𝑦) − 𝑓 (𝑥)) ≥ 𝛼 (𝑡 (𝑦 − 𝑥)) − ⟨𝑇𝑦
𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ . (17)

By the assumption (b), we have

⟨𝑇𝑦
𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ = ⟨𝑇𝑦

𝑡
, 𝜂 ((1 − 𝑡) 𝑥 + 𝑡𝑦, 𝑥)⟩

≤ (1 − 𝑡) ⟨𝑇𝑦
𝑡
, 𝜂 (𝑥, 𝑥)⟩ + 𝑡 ⟨𝑇𝑦

𝑡
, 𝜂 (𝑥, 𝑦)⟩

= 𝑡 ⟨𝑇𝑦
𝑡
, 𝜂 (𝑦, 𝑥)⟩

= 𝑡 ⟨𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦) , 𝜂 (𝑦, 𝑥)⟩ .

(18)

It follows from (17) and (18) that

𝑡 ⟨𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦) , 𝜂 (𝑦, 𝑥)⟩ + 𝑡 (𝑓 (𝑦) − 𝑓 (𝑥))

≥ 𝛼 (𝑡 (𝑦 − 𝑥)) ,

(19)

that is

⟨𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦) , 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

≥
𝛼 (𝑡 (𝑦 − 𝑥))

𝑡
,

(20)

for all 𝑦 ∈ 𝐾. Taking 𝑡 → 0
+ in the previous inequality and

using 𝜂-hemicontinuity of 𝑇, we get

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ lim
𝑡→0
+

𝛼 (𝑡 (𝑦 − 𝑥))

𝑡
. (21)

From (6), we get lim
𝑡→0
+(𝛼(𝑡(𝑦 − 𝑥))/𝑡) is indeterminate

form. Using L’ Hôpital’s rule, we obtain that

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ lim
𝑡→0
+

(𝑑/𝑑𝑡) 𝛼 (𝑡 (𝑦 − 𝑥))

1
.

(22)

By property (7) of weakly relaxed 𝜂-𝛼monotone of𝑇, we have

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, (23)

for all 𝑦 ∈ 𝐾 with 𝑓(𝑦) < ∞. In case of 𝑓(𝑦) = ∞, the
relation

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0 (24)

is trivial. Therefore, 𝑥 ∈ 𝐾 is also a solution of problem (9).

Theorem 12. Let 𝐾 be a nonempty bounded closed convex
subset of a real reflexive Banach space 𝐸, and let 𝐸∗ be the dual
space of 𝐸. Suppose that 𝑇 : 𝐾 → 𝐸

∗ is an 𝜂-hemicontinuous
and weakly relaxed 𝜂-𝛼 monotone mapping and 𝑓 : 𝐾 →

R ∪ {∞} is a proper convex lower semicontinuous function. If
the following conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed𝑦, 𝑧 ∈ 𝐾, themapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex and lower semicontinuous function,
(c) 𝛼 is weakly lower semicontinuous; that is, for any net

{𝑥
𝛽
}, we have that 𝑥

𝛽
converges to 𝑥 in 𝜎(𝐸, 𝐸∗) implies

that 𝛼(𝑥) ≤ lim inf 𝛼(𝑥
𝛽
),

then the problem (9) is solvable.

Proof. Consider the set valued mapping 𝐹 : 𝐾 → 2
𝐸 defined

by

𝐹 (𝑦) = {𝑥 ∈ 𝐾 : ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0} , (25)

for all 𝑦 ∈ 𝐾.
It is easy to see that 𝑥 ∈ 𝐾 solves the problem (9); that is,

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾, (26)

if and only if 𝑥 ∈ ⋂
𝑦∈𝐾

𝐹(𝑦).Thus, it is sufficient to prove that
⋂
𝑦∈𝐾

𝐹(𝑦) ̸= 0.
Next, we show that 𝐹 is a KKM mapping. Assume the

contrary, then there exists {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
} ⊂ 𝐾 such that

co{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
} ̸⊂ ⋃

𝑚

𝑖=1
𝐹(𝑦
𝑖
). This implies that there exists

𝑦
0
∈ co{𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
} such that 𝑦

0
= ∑
𝑚

𝑖=1
𝑡
𝑖
𝑦
𝑖
, where 𝑡

𝑖
≥ 0,

𝑖 = 1, 2, . . . , 𝑚 and ∑𝑚
𝑖=1

𝑡
𝑖
= 1, but 𝑦

0
∉ ⋃
𝑚

𝑖=1
𝐹(𝑦
𝑖
).

From (25), we have

⟨𝑇𝑦
0
, 𝜂 (𝑦
𝑖
, 𝑦
0
)⟩ + 𝑓 (𝑦

𝑖
) − 𝑓 (𝑦

0
) < 0, for 𝑖 = 1, 2, . . . , 𝑚.

(27)
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By (b) and (25), we obtain that

0 = ⟨𝑇𝑦
0
, 𝜂 (𝑦
0
, 𝑦
0
)⟩

= ⟨𝑇𝑦
0
, 𝜂 (

𝑚

∑

𝑖=1

𝑡
𝑖
𝑦
𝑖
, 𝑦
0
)⟩

≤

𝑚

∑

𝑖=1

𝑡
𝑖
⟨𝑇𝑦
0
, 𝜂 (𝑦
𝑖
, 𝑦
0
)⟩

<

𝑚

∑

𝑖=1

𝑡
𝑖
[𝑓 (𝑦
0
) − 𝑓 (𝑦

𝑖
)]

= 𝑓 (𝑦
0
) −

𝑚

∑

𝑖=1

𝑡
𝑖
𝑓 (𝑦
𝑖
)

≤ 𝑓 (𝑦
0
) − 𝑓 (𝑦

0
)

= 0,

(28)

which is a contradiction. Therefore, 𝐹 is a KKMmapping.
Now, we define another set-valued mapping𝐺 : 𝐾 → 2

𝐸

by

𝐺 (𝑦) = {𝑥 ∈ 𝐾 : ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝛼 (𝑦 − 𝑥)}

(29)

for all 𝑦 ∈ 𝐾.
Next, we will claim that 𝐹(𝑦) ⊂ 𝐺(𝑦) for all 𝑦 ∈ 𝐾. For

each 𝑦 ∈ 𝐾, let 𝑥 ∈ 𝐹(𝑦); then,

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0. (30)

From the weakly relaxed 𝜂-𝛼monotonicity of 𝑇, we get

⟨𝑇𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

≥ 𝛼 (𝑦 − 𝑥) + [⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)]

≥ 𝛼 (𝑦 − 𝑥) .

(31)

This implies that 𝑥 ∈ 𝐺(𝑦) and hence 𝐹(𝑦) ⊂ 𝐺(𝑦) for all
𝑦 ∈ 𝐾. So, 𝐺 is also a KKMmapping.

By assumption, 𝑥 → ⟨𝑇𝑦, 𝜂(𝑥, 𝑦)⟩ and 𝑓 are two convex
lower-semicontinuous functions. Then it is easy to see that
they are both weakly lower semicontinuous. From the defi-
nition of 𝐺 and the weakly lower semicontinuity of 𝛼, we get
that 𝐺(𝑦) is weakly closed for all 𝑦 ∈ 𝐾. Since 𝐾 is closed
bounded and convex, it also isweakly compact, and then𝐺(𝑦)
is weakly compact in 𝐾 for each 𝑦 ∈ 𝐾. From Lemma 8 and
Theorem 11, we obtain that

⋂

𝑦∈𝐾

𝐹 (𝑦) = ⋂

𝑦∈𝐾

𝐺 (𝑦) ̸= 0. (32)

So, there exists 𝑥 ∈ 𝐾, such that

⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾; (33)

that is, problem (9) has a solution. This completes the proof.

We know that the relaxed 𝜂-𝛼 monotonicity implies the
weakly relaxed 𝜂-𝛼monotonicity. Therefore, Theorem 12 can
be deduced to the following corollary.

Corollary 13. Let 𝐾 be a nonempty bounded closed convex
subset of a real reflexive Banach space 𝐸, and let 𝐸∗ be the dual
space of 𝐸. Suppose that 𝑇 : 𝐾 → 𝐸

∗ is an 𝜂-hemicontinuous
and relaxed 𝜂-𝛼monotone mapping and 𝑓 : 𝐾 → R ∪ {∞} is
a proper convex lower semicontinuous function. If the following
conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed𝑦, 𝑧 ∈ 𝐾, themapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex and lower semicontinuous function,
(c) 𝛼 is weakly lower semicontinuous,

then the problem (9) is solvable.

Remark 14. Since the monotonicity, 𝑝-monotonicity, and
relaxed 𝛼-monotonicity imply relaxed 𝜂-𝛼 monotonicity, we
can be applying Corollary 13 to the other problems for the
mapping satisfies these property.

Next, we study and prove that result for the case of 𝐾 is
unbounded set.

Theorem 15. Let 𝐾 be a nonempty unbounded closed convex
subset of a real reflexive Banach space 𝐸, and let 𝐸∗ be the dual
space of 𝐸. Suppose that 𝑇 : 𝐾 → 𝐸

∗ is an 𝜂-hemicontinuous
and weakly relaxed 𝜂-𝛼monotone mapping and 𝑓 : 𝐾 → R∪

{∞} is a proper convex lower semicontinuous function. If the
following conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed𝑦, 𝑧 ∈ 𝐾, themapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex and lower semicontinuous function,
(c) 𝛼 is weakly lower semicontinuous,
(d) 𝑇 is weakly 𝜂-coercive with respect to 𝑓; that is, there

exists 𝑥
0
∈ 𝐾 such that

⟨𝑇𝑥, 𝜂 (𝑥
0
, 𝑥)⟩ + 𝑓 (𝑥

0
) − 𝑓 (𝑥) < 0, (34)

whenever 𝑥 ∈ 𝐾 and ‖𝑥‖ large enough,

then the problem (9) is solvable.

Proof. For 𝜖 > 0, define 𝐾
𝜖
:= {𝑦 ∈ 𝐾 : ‖𝑦‖ ≤ 𝜖}. Consider

the following problem:

find𝑥 ∈ 𝐾
𝜖

such that ⟨𝑇𝑥
𝜖
, 𝜂 (𝑦, 𝑥

𝜖
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥

𝜖
) ≥ 0,

∀𝑦 ∈ 𝐾
𝜖
.

(35)

Since 𝐾
𝜖
is bounded, by Theorem 12, we get that the

problem (35) has at least one solution 𝑥
𝜖
∈ 𝐾
𝜖
.

For 𝑥
0
in the weakly 𝜂-coercivity condition (d), we fixed

𝜖 > ‖𝑥
0
‖. From (35), we can find that 𝑥

𝜖
∈ 𝐾
𝜖
such that

⟨𝑇𝑥
𝜖
, 𝜂 (𝑥
0
, 𝑥
𝜖
)⟩ + 𝑓 (𝑥

0
) − 𝑓 (𝑥

𝜖
) ≥ 0. (36)
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Since 𝑥
𝜖
∈ 𝐾
𝜖
, we have ‖𝑥

𝜖
‖ ≤ 𝜖. If ‖𝑥

𝜖
‖ = 𝜖 for all 𝜖, we

may choose 𝜖 large enough so that the weakly 𝜂-coercivity
condition (d) implies that

⟨𝑇𝑥
𝜖
, 𝜂 (𝑥
0
, 𝑥
𝜖
)⟩ + 𝑓 (𝑥

0
) − 𝑓 (𝑥

𝜖
) < 0, (37)

which contradicts (36). Therefore, there exists 𝜖 such that
‖𝑥
𝜖
‖ < 𝜖.
For each 𝑦 ∈ 𝐾, we can choose 0 < 𝑡 < 1 such that 𝑡𝑦 +

(1− 𝑡)𝑥
𝜖
∈ 𝐾
𝜖
. From (35) and the fact that 𝑡𝑦+ (1− 𝑡)𝑥

𝜖
∈ 𝐾
𝜖
,

we have

⟨𝑇𝑥
𝜖
, 𝜂 (𝑡𝑦 + (1 − 𝑡) 𝑥

𝜖
, 𝑥
𝜖
)⟩ + 𝑓 (𝑡𝑦 + (1 − 𝑡) 𝑥

𝜖
) − 𝑓 (𝑥

𝜖
)

≥ 0.

(38)

By the above inequality and the convexity of 𝑓 and mapping
in (b), we get

𝑡 ⟨𝑇𝑥
𝜖
, 𝜂 (𝑦, 𝑥

𝜖
)⟩ + 𝑡𝑓 (𝑦) − 𝑡𝑓 (𝑥

𝜖
)

= 𝑡 ⟨𝑇𝑥
𝜖
, 𝜂 (𝑦, 𝑥

𝜖
)⟩ + (1 − 𝑡) ⟨𝑇𝑥

𝜖
, 𝜂 (𝑥
𝜖
, 𝑥
𝜖
)⟩

+ 𝑡𝑓 (𝑦) + (1 − 𝑡) 𝑓 (𝑥
𝜖
) − 𝑓 (𝑥

𝜖
)

≥ ⟨𝑇𝑥
𝜖
, 𝜂 (𝑡𝑦 + (1 − 𝑡) 𝑥

𝜖
, 𝑥
𝜖
)⟩ + 𝑓 (𝑡𝑦 + (1 − 𝑡) 𝑥

𝜖
)

− 𝑓 (𝑥
𝜖
)

≥ 0,

(39)

for all 𝑦 ∈ 𝐾. This implies that

⟨𝑇𝑥
𝜖
, 𝜂 (𝑦, 𝑥

𝜖
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥

𝜖
) ≥ 0, (40)

for all 𝑦 ∈ 𝐾. Therefore, 𝑥
𝜖
∈ 𝐾 is a solution of the problem

(9). This completes the proof.

It is easy to see that the relaxed 𝜂-𝛼monotonicity implies
the weakly relaxed 𝜂-𝛼 monotonicity. So, Theorem 15 can be
deduced to the following corollary.

Corollary 16. Let𝐾 be a nonempty unbounded closed convex
subset of a real reflexive Banach space 𝐸, and let 𝐸∗ be the dual
space of 𝐸. Suppose that 𝑇 : 𝐾 → 𝐸

∗ is an 𝜂-hemicontinuous
and relaxed 𝜂-𝛼monotone mapping and 𝑓 : 𝐾 → R ∪ {∞} is
a proper convex lower semicontinuous function. If the following
conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed𝑦, 𝑧 ∈ 𝐾, themapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex and lower semicontinuous function,
(c) 𝛼 is weakly lower semicontinuous,
(d) 𝑇 is weakly 𝜂-coercive with respect to 𝑓,

then the problem (9) is solvable.

Since the 𝜂-coercivity with respect to 𝑓 implies that
the weakly 𝜂-coercivity with respect to 𝑓, we can utilize
Corollary 16 to the result of Fang and Huang [16].

Corollary 17 (Theorem 2.3 [16]). Let 𝐾 be a nonempty
unbounded closed convex subset of a real reflexive Banach space
𝐸, and let 𝐸∗ be the dual space of 𝐸. Suppose that 𝑇 : 𝐾 → 𝐸

∗

is an 𝜂-hemicontinuous and relaxed 𝜂-𝛼 monotone mapping
and𝑓 : 𝐾 → R∪{∞} is a proper convex lower semicontinuous
function. If the following conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed𝑦, 𝑧 ∈ 𝐾, themapping 𝑥 → ⟨𝑇𝑧, 𝜂(𝑥, 𝑦)⟩

is convex and lower semicontinuous function,
(c) 𝛼 is weakly lower semicontinuous,
(d) 𝑇 is 𝜂-coercive with respect to 𝑓,

then the problem (9) is solvable.

Remark 18. Theorems 11, 12, and 15 are improvement of
the results of Fang and Huang [16] from the corresponding
results of variational-like inequality problems for relaxed
𝜂-𝛼 monotone mapping to weakly relaxed 𝜂-𝛼 monotone
mapping. Also, these results are extension of the known
results of Hartman and Stampacchia [22] and corresponding
results in [14, 19, 23].

4. Variational-Like Inequalities
Problems with Weakly Relaxed
𝜂-𝛼 Semimonotone Mapping

Through this section, let 𝐸 be an arbitrary Banach space with
its dual space 𝐸∗, let 𝐸∗∗ denote the dual space of 𝐸∗, and let
𝐾 be a nonempty closed convex subset of 𝐸∗∗.

Definition 19. A mapping 𝐴 : 𝐾 × 𝐾 → 𝐸
∗∗ is said to be

weakly relaxed 𝜂-𝛼 semimonotone if the following conditions
hold:

(a) for each fixed 𝑢 ∈ 𝐾, 𝐴(𝑢, ⋅) is weakly relaxed 𝜂-𝛼
monotone; that is, there exist mappings 𝜂 : 𝐾 × 𝐾 →

𝐸
∗ and 𝛼 : 𝐸∗∗ → R such that

lim
𝑡→0
+

𝛼 (𝑡𝑥) = 0,

lim
𝑡→0
+

𝑑

𝑑𝑡
𝛼 (𝑡𝑥) = 0,

(41)

for all 𝑡 > 0 and 𝑥 ∈ 𝐸∗∗ and
⟨𝐴 (𝑢, V) − 𝐴 (𝑢, 𝑤) , 𝜂 (V, 𝑤)⟩ ≥ 𝛼 (V − 𝑤)

∀V, 𝑤 ∈ 𝐾;

(42)

(b) for each fixed V ∈ 𝐾, 𝐴(⋅, V) is completely continuous;
that is, for any net {𝑢

𝛽
} with 𝑢

𝛽
converges to 𝑢

0

in 𝜎(𝐸
∗∗

, 𝐸
∗

), we have that {𝐴(𝑢
𝛽
, V)} converges to

𝐴(𝑢
0
, V) in the norm topology of 𝐸∗.

Remark 20. We obtain that relaxed 𝜂-𝛼 semimonotonicity
due to Fang and Huang [16] implies weakly relaxed 𝜂-𝛼
semimonotonicity. Therefore, the class of relaxed 𝜂-𝛼 semi-
monotone mappings is subclass of the class of weakly relaxed
𝜂-𝛼 semimonotone mappings.
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Let 𝐴 : 𝐾 ×𝐾 → 𝐸
∗∗ and 𝜂 : 𝐾 ×𝐾 → 𝐸

∗ be two map-
pings and 𝑓 : 𝐾 → R ∪ {∞} is a proper convex lower-semi-
continuous function. We consider the following problem:

find 𝑢 ∈ 𝐾

such that ⟨𝐴 (𝑢, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 0,

∀V ∈ 𝐾.

(43)

Theorem 21. Let 𝐸 be a real Banach space and let𝐾 ⊂ 𝐸
∗∗ be

a nonempty bounded closed convex set. Suppose that 𝐴 : 𝐾 ×

𝐾 → 𝐸
∗∗ is a weakly relaxed 𝜂-𝛼 semimonotonemapping and

let𝑓 : 𝐾 → R∪{∞} be a proper convex lower semicontinuous
function. If the following conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,
(b) for any fixed 𝑦, 𝑧, 𝑤 ∈ 𝐾, the mapping 𝑥 → ⟨𝐴(𝑧,

𝑤), 𝜂(𝑥, 𝑦)⟩ is convex and lower semicontinuous func-
tion,

(c) for each 𝑥 ∈ 𝐾, 𝐴(𝑥, ⋅) : 𝐾 → 𝐸
∗∗ is finite-dimen-

sional continuous; that is, for any finite-dimensional
subspace 𝐹 ⊂ 𝐸

∗∗, 𝐴(𝑥, ⋅) : 𝐾 ∩ 𝐹 → 𝐸
∗∗ is con-

tinuous,
(d) 𝛼 is convex lower semicontinuous,

then the problem (43) is solvable.

Proof. Let 𝐹 ⊂ 𝐸
∗∗ be a finite-dimensional subspace with

𝐾
𝐹
:= 𝐹 ∩ 𝐾 ̸= 0. For each 𝑤 ∈ 𝐾, consider the following

problem:

find 𝑢
0
∈ 𝐾
𝐹

such that ⟨𝐴 (𝑤, 𝑢
0
) , 𝜂 (V, 𝑢

0
)⟩ + 𝑓 (V) − 𝑓 (𝑢

0
) ≥ 0,

∀V ∈ 𝐾
𝐹
.

(44)

It follows from 𝐾
𝐹
being bounded closed and convex and

𝐴(𝑤, ⋅) being continuous on 𝐾
𝐹
and weakly relaxed 𝜂-𝛼

monotone for each fixed 𝑤 ∈ 𝐾 that from Theorem 12, we
obtain that problem (44) has a solution 𝑢

0
∈ 𝐾
𝐹
.

Next, define a set-valued mapping 𝑇 : 𝐾
𝐹

→ 2
𝐾
𝐹 as

follows:

𝑇𝑤 = {𝑢 ∈ 𝐾
𝐹
: ⟨𝐴 (𝑤, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢)

≥ 0, ∀V ∈ 𝐾
𝐹
} , ∀𝑤 ∈ 𝐾

𝐹
.

(45)

ByTheorem 11, we get that, for each 𝑤 ∈ 𝐾
𝐹
,

𝑇𝑤 = {𝑢 ∈ 𝐾
𝐹
: ⟨𝐴 (𝑤, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢)

≥ 𝛼 (V − 𝑢) , ∀V ∈ 𝐾
𝐹
} .

(46)

It is known that every convex lower-semicontinuous
function in Banach spaces is weakly lower semicontinu-
ous. Therefore, condition (b) and the proper convex lower
semicontinuity of 𝑓 and 𝛼 implies that 𝑇 has nonempty
bounded closed and convex values. By the complete con-
tinuity of 𝐴(⋅, 𝑢), we have that 𝑇 is upper semicontinuous.

Using the Kakutani-Fan-Glicksberg fixed-point theorem, we
obtain that 𝑇 has a fixed-point 𝑤

0
∈ 𝐾
𝐹
and thus

⟨𝐴 (𝑤
0
, 𝑤
0
) , 𝜂 (V, 𝑤

0
)⟩ + 𝑓 (V) − 𝑓 (𝑤

0
) ≥ 0, ∀V ∈ 𝐾

𝐹
.

(47)

Now, define

F := {𝐹 ⊂ 𝐸
∗∗

: 𝐹 is finite dimensional with𝐹 ∩ 𝐾 ̸= 0} ,

𝑊
𝐹
:= {𝑢 ∈ 𝐾 : ⟨𝐴 (𝑢, V) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢)

≥ 𝛼 (V − 𝑢) , ∀V ∈ 𝐾
𝐹
} , ∀𝐹 ∈ F.

(48)

From (47), usingTheorem 11, we obtain that𝑊
𝐹
is nonempty

and bounded. Here, we denote𝑊
𝐹
by the 𝜎(𝐸∗∗, 𝐸∗)-closure

of𝑊
𝐹
in 𝐸∗∗ and thus𝑊

𝐹
is 𝜎(𝐸∗∗, 𝐸∗)-compact in 𝐸∗∗.

It is known that, for any 𝐹
𝑖
∈ F, 𝑖 ∈ N, we have𝑊

∩
𝑖
𝐹
𝑖

⊂

∩𝑊
𝐹
𝑖

. Therefore, {𝑊
𝐹
: 𝐹 ∈ F} has the finite intersection

property; that is,

⋂

𝐹∈F

𝑊
𝐹

̸= 0. (49)

Next, we show that, for 𝑢 ∈ ⋂
𝐹∈F𝑊

𝐹
,

⟨𝐴 (𝑢, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 0, ∀V ∈ 𝐾. (50)

Indeed, for V ∈ 𝐾, let 𝐹 ∈ F be such that V ∈ 𝐾
𝐹
and 𝑢 ∈ 𝐾

𝐹
.

Then, there exists a net {𝑢
𝛽
} in𝑊

𝐹
such that 𝑢

𝛽
converges to

𝑢 in 𝜎(𝐸∗∗, 𝐸∗). From the definition of𝑊
𝐹
, we have

⟨𝐴 (𝑢
𝛽
, V) , 𝜂 (V, 𝑢

𝛽
)⟩ + 𝑓 (V) − 𝑓 (𝑢

𝛽
) ≥ 𝛼 (V − 𝑢

𝛽
) . (51)

By the complete continuity of 𝐴(⋅, V) and the proper convex
lower semicontinuity of 𝑓 and 𝛼, we get

⟨𝐴 (𝑢, V) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 𝛼 (V − 𝑢) , ∀V ∈ 𝐾.
(52)

Again, usingTheorem 11, we conclude that

⟨𝐴 (𝑢, V) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 0, ∀V ∈ 𝐾. (53)

This implies that 𝑢 is a solution of the problem (43). This
completes the proof.

Theorem 22. Let 𝐸 be a real Banach space and let𝐾 ⊂ 𝐸
∗∗ be

a nonempty unbounded closed convex set. Suppose that𝐴 : 𝐾×

𝐾 → 𝐸
∗∗ is a weakly relaxed 𝜂-𝛼 semimonotonemapping and

let𝑓 : 𝐾 → R∪{∞} be a proper convex lower semicontinuous
function. If the following conditions hold:

(a) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾,

(b) for any fixed 𝑦, 𝑧, 𝑤 ∈ 𝐾, the mapping 𝑥 → ⟨𝐴(𝑧,

𝑤), 𝜂(𝑥, 𝑦)⟩ is convex and lower semicontinuous func-
tion,
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(c) for each 𝑥 ∈ 𝐾, 𝐴(𝑥, ⋅) : 𝐾 → 𝐸
∗ is finite-dimen-

sional continuous,

(d) 𝛼 is convex lower semicontinuous,

(e) there exists a point 𝑢
0
∈ 𝐾 such that lim inf

‖𝑢‖→∞

[⟨𝐴(𝑢, 𝑢), 𝜂(𝑢, 𝑢
0
)⟩ + 𝑓(𝑢) − 𝑓(𝑢

0
)] > 0,

then the problem (43) is solvable.

Proof. For 𝜖 > 0, we denote by 𝐵
𝜖
the closed ball with radius

𝜖 and center at 0 in 𝐸∗∗. By Theorem 21, the problem

⟨𝐴 (𝑢, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 0, ∀V ∈ 𝐵
𝜖

(54)

has a solution 𝑢
𝜖
∈ 𝐵
𝜖
.

Let 𝜖 be large enough such that 𝑢
0
∈ 𝐵
𝜖
. Therefore,

⟨𝐴 (𝑢
𝜖
, 𝑢
𝜖
) , 𝜂 (𝑢

0
, 𝑢
𝜖
)⟩ + 𝑓 (𝑢

0
) − 𝑓 (𝑢

𝜖
) ≥ 0. (55)

By condition (e), we get that {𝑢
𝜖
} is bounded. So, we may

suppose that 𝑢
𝜖
converges to 𝑢 in 𝜎(𝐸∗∗, 𝐸∗) as 𝜖 → ∞. It

follows fromTheorem 11 that

⟨𝐴 (𝑢
𝜖
, V) , 𝜂 (V, 𝑢

𝜖
)⟩ + 𝑓 (V) − 𝑓 (𝑢

𝜖
) ≥ 𝛼 (V − 𝑢

𝜖
) ,

∀V ∈ 𝐾.
(56)

Letting 𝜖 → ∞, we have

⟨𝐴 (𝑢, V) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 𝛼 (V − 𝑢) , ∀V ∈ 𝐾.
(57)

Again fromTheorem 11, we get

⟨𝐴 (𝑢, 𝑢) , 𝜂 (V, 𝑢)⟩ + 𝑓 (V) − 𝑓 (𝑢) ≥ 0, ∀V ∈ 𝐾. (58)

This show that 𝑢 ∈ 𝐾 is a solution of the problem (43). This
completes the proof.

Remark 23. Theorems 21 and 22 extend and improve Theo-
rems 3.1 and 3.2 of Fang and Huang [16] andTheorems 2.1 to
2.6 of Chen [7].
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