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The local fractional variational iteration method for local fractional Laplace equation is investigated in this paper. The operators
are described in the sense of local fractional operators. The obtained results reveal that the method is very effective.

1. Introduction

As it is known, the partial differential equations [1, 2] and
fractional differential equations [3–5] appear in many areas
of science and engineering. As a result, various kinds of
analytical methods and numerical methods were developed
[6–8]. For example, the variational iteration method [9–
15] was applied to solve differential equations [16–18], inte-
gral equations [19], and numerous applications to differ-
ent nonlinear equations in physics and engineering. Also,
the fractional variational iteration method [20–23] and
the fractional complex transform [24–27] were discussed
recently. The efficient techniques have successfully addressed
a wide class of nonlinear problems for differential equa-
tions; see [28–36] and the references therein. We notice
that the developed methods are very convenient, efficient,
and accurate.

Recently, the local fractional variational iterationmethod
[37] is derived from local fractional operators [38–48]. The
method, which accurately computes the solutions in a local
fractional series form or in an exact form, presents interest

to applied sciences for problems where the other methods
cannot be applied properly.

In this paper, we investigate the application of local
fractional variational iteration method for solving the local
fractional Laplace equations [49] with the different fractal
conditions.

This paper is organized as follows.
In Section 2, the basic mathematical tools are reviewed.

Section 3 presents briefly the local fractional variational
iteration method based on local fractional variational for
fractal Lagrange multipliers. Section 4 presents solutions to
the local fractional Laplace equations with differential fractal
conditions.

2. Mathematical Fundamentals

In this section, we present few mathematical fundamentals
of local fractional calculus and introduce the basic
notions of local fractional continuity, local fractional
derivative, and local fractional integral of nondifferential
functions.
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2.1. Local Fractional Continuity

Lemma 1 (see [42]). Let 𝐹 be a subset of the real line and a
fractal. If 𝑓 : (𝐹, 𝑑) → (Ω


, 𝑑

) is a bi-Lipschitz mapping, then

there is, for constants 𝜌, 𝜏 > 0 and 𝐹 ⊂ 𝑅,

𝜌
𝑠
𝐻
𝑠

(𝐹) ≤ 𝐻
𝑠

(𝑓 (𝐹)) ≤ 𝜏
𝑠
𝐻
𝑠

(𝐹) (1)

such that for all 𝑥
1
, 𝑥
2

∈ 𝐹,

𝜌
𝛼𝑥1 − 𝑥

2



𝛼

≤
𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
 ≤ 𝜏
𝛼𝑥1 − 𝑥
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𝛼

. (2)

As a direct result of Lemma 1, one has [42]
𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
 ≤ 𝜏
𝛼𝑥1 − 𝑥

2



𝛼 (3)

such that
𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
 < 𝜀
𝛼

, (4)

where 𝛼 is fractal dimension of 𝐹.
Suppose that there is [38–43]

𝑓 (𝑥) − 𝑓 (𝑥
0
)
 < 𝜀
𝛼 (5)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then 𝑓(𝑥) is called

local fractional continuous at 𝑥 = 𝑥
0
and it is denoted by

lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑓 (𝑥
0
) . (6)

Suppose that the function 𝑓(𝑥) is satisfied the condition (5)
for𝑥 ∈ (𝑎, 𝑏), and hence it is called a local fractional continuous
on the interval (𝑎, 𝑏), denoted by

𝑓 (𝑥) ∈ 𝐶
𝛼

(𝑎, 𝑏) . (7)

2.2. Local Fractional Derivatives and Integrals. Suppose that
𝑓(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏), then the local fractional derivative of 𝑓(𝑥)

of order 𝛼 at 𝑥 = 𝑥
0
is given by [37–43]

𝐷
𝑥

(𝛼)
𝑓 (𝑥
0
) = 𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

,

(8)

where Δ
𝛼

(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

There is [38–40]

𝑓 (𝑥) ∈ 𝐷
𝑥

(𝛼)

(𝑎, 𝑏) (9)

if

𝑓
(𝛼)

(𝑥) = 𝐷
𝑥

(𝛼)
𝑓 (𝑥) (10)

for any 𝑥 ∈ (𝑎, 𝑏).
Local fractional derivative of high order is written in the

form [38–40]

𝑓
(𝑘𝛼)

(𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐷
𝑥

(𝛼)
⋅ ⋅ ⋅ 𝐷
𝑥

(𝛼)
𝑓 (𝑥) ,

(11)

and local fractional partial derivative of high order is [38–40]

𝜕
𝑘𝛼

𝜕𝑥𝑘𝛼
𝑓 (𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕
𝛼

𝜕𝑥𝛼
⋅ ⋅ ⋅

𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝑥) .

(12)

Let a function 𝑓(𝑥) satisfy the condition (7). Local
fractional integral of 𝑓(𝑥) of order 𝛼 in the interval [𝑎, 𝑏] is
given by [37–43]

𝑎
𝐼
𝑏

(𝛼)
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(13)

where Δ𝑡
𝑗

= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}, and

[𝑡
𝑗
, 𝑡
𝑗+1

], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡
0

= 𝑎, 𝑡
𝑁

= 𝑏, is a partition
of the interval [𝑎, 𝑏]. For other definition of local fractional
derivative, see [44–48].

There exists [38–40]

𝑓 (𝑥) ∈ 𝐼
𝑥

(𝛼)

(𝑎, 𝑏) (14)

if

𝑓
(𝛼)

(𝑥) =
𝑎
𝐼
𝑥

(𝛼)
𝑓 (𝑥) (15)

for any 𝑥 ∈ (𝑎, 𝑏).
Local fractionalmultiple integrals of𝑓(𝑥) is written in the

form [40]

𝑥0
𝐼
𝑥

(𝑘𝛼)
𝑓 (𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑥0
𝐼
𝑥

(𝛼)
⋅ ⋅ ⋅
𝑥0

𝐼
𝑥

(𝛼)
𝑓 (𝑥)

(16)

if (7) is valid for 𝑥 ∈ (𝑎, 𝑏).

3. Local Fractional Variational
Iteration Method

In this section, we introduce the local fractional variational
iterationmethod derived from the local fractional variational
approach for fractal Lagrange multipliers [40].

Let us consider the local fractional variational approach
in the one-dimensional case through the following local
fractional functional, which reads [40]

𝐼 (𝑦) =
𝑎
𝐼
𝑏

(𝛼)
𝑓 (𝑥, 𝑦 (𝑥) , 𝑦

(𝛼)

(𝑥)) , (17)

where 𝑦
(𝛼)

(𝑥) is taken in local fractional differential operator
and 𝑎 ≤ 𝑥 ≤ 𝑏.

The local fractional variational derivative is given by [40]

𝛿
𝛼

𝐼 =
𝑎
𝐼
𝑏

(𝛼)
{(

𝜕𝑓

𝜕𝑦
−

𝑑
𝛼

𝑑𝑥𝛼
(

𝜕𝑓

𝜕𝑦(𝛼)
)) 𝜂 (𝑥)} , (18)

where 𝛿
𝛼 is local fractional variation signal and 𝜂(𝑎) = 𝜂(𝑏) =

0.
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The nonlinear local fractional equation reads as

𝐿
𝛼

𝑢 + 𝑁
𝛼

𝑢 = 0, (19)

where 𝐿
𝛼
and 𝑁

𝛼
are linear and nonlinear local fractional

operators, respectively.
Local fractional variational iteration algorithm can be

written as [37]

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛

(𝑡) +
𝑡0

𝐼
𝑡

(𝛼)
{𝜉
𝛼

[𝐿
𝛼

𝑢
𝑛

(𝑠) + 𝑁
𝛼

𝑢
𝑛

(𝑠)]} . (20)

Here, we can construct a correction functional as follows [37]:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛

(𝑡) +
𝑡0

𝐼
𝑡

(𝛼)
{𝜉
𝛼

[𝐿
𝛼

𝑢
𝑛

(𝑠) + 𝑁
𝛼

�̃�
𝑛

(𝑠)]} , (21)

where �̃�
𝑛
is considered as a restricted local fractional varia-

tion and 𝜉
𝛼 is a fractal Lagrange multiplier; that is, 𝛿

𝛼
�̃�
𝑛

= 0

[37, 40].
Having determined the fractal Lagrangian multipliers,

the successive approximations 𝑢
𝑛+1

, 𝑛 ≥ 0, of the solution
𝑢 will be readily obtained upon using any selective fractal
function 𝑢

0
. Consequently, we have the solution

𝑢 = lim
𝑛→∞

𝑢
𝑛
. (22)

Here, this technology is called the local fractional variational
method [37]. We notice that the classical variation is recov-
ered in case of local fractional variation when the fractal
dimension is equal to 1. Besides, the convergence of local
fractional variational process and its algorithms were taken
into account [37].

4. Solutions to Local Fractional Laplace
Equation in Fractal Timespace

The local fractional Laplace equation (see [38–40] and the
references therein) is one of the important differential equa-
tions with local fractional derivatives. In the following, we
consider solutions to local fractional Laplace equations in
fractal timespace.

Case 1. Let us start with local fractional Laplace equation
given by

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑡2𝛼
+

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0 (23)

and subject to the fractal value conditions

𝜕
𝛼

𝜕𝑡𝛼
𝑇 (𝑥, 0) = 0, 𝑇 (𝑥, 0) = −𝐸

𝛼
(𝑥
𝛼

) . (24)

A corrected local fractional functional for (24) reads as

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

𝜆
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(25)

Taking into account the properties of the local fractional
derivative, we obtain

𝛿
𝛼

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

+ 𝛿
𝛼

0
𝐼
𝑡

(𝛼)
{

𝜆
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(26)

Hence, from (25)-(26) we get

𝛿
𝛼

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡) +
𝜆
𝛼

Γ (1 + 𝛼)
𝛿
𝛼

𝑢
𝑛

(𝛼)

(𝑥, 𝑡)

𝜏=𝑡

− [
𝜆
𝛼

Γ (1 + 𝛼)
]

(𝛼)

𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

𝜏=𝑡

− (𝛿
𝛼

𝑢
𝑛

(𝑥, 𝜏))
0
𝐼
𝑡

(𝛼)
(

𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡) +
𝜆
𝛼

Γ (1 + 𝛼)
𝛿
𝛼

𝑢
𝑛

(𝛼)

𝜏=𝑡

− (
𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)

𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

𝜏=𝑡

+ (𝛿
𝛼

𝑢
𝑛

(𝑥, 𝜏))
0
𝐼
𝑡

(𝛼)
(

𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 0.

(27)

As a result, from (27) we can derive

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 0,
𝜆
𝛼

Γ (1 + 𝛼)

𝜏=𝑡

= 0,

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)

= 1.

(28)

We have 𝜆 = 𝜏 − 𝑡 such that the fractal Lagrange multiplier
reads as

𝜆
𝛼

Γ (1 + 𝛼)
=

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
. (29)

From (24) we take the initial value, which reads as

𝑢
0

(𝑥, 𝑡) = −𝐸
𝛼

(𝑥
𝛼

) . (30)

By using (25) we structure a local fractional iteration proce-
dure as

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(31)
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Hence, we can derive the first approximation term as

𝑢
1

(𝑥, 𝑡)

= 𝑢
0

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −𝐸
𝛼

(𝑥
𝛼

) +
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(−𝐸
𝛼

(𝑥
𝛼

))}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
) .

(32)

The second approximation can be calculated in the similar
way, which is

𝑢
2

(𝑥, 𝑡)

= 𝑢
1

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝑡
2𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 2𝛼)
)}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
−

𝑡
4𝛼

Γ (1 + 4𝛼)
) .

(33)

Proceeding in this manner, we get

𝑢
𝑛

(𝑥, 𝑡) = 𝐸
𝛼

(𝑥
𝛼

) (

𝑛

∑

𝑘=0

(−1)
𝑘 𝑡

2𝑘𝛼

Γ (1 + 2𝑘𝛼)
) . (34)

Thus, the final solution reads as

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛

(𝑥, 𝑡)

= 𝐸
𝛼

(𝑥
𝛼

) (

∞

∑

𝑘=0

(−1)
𝑘 𝑡

2𝑘𝛼

Γ (1 + 2𝑘𝛼)
)

= −𝐸
𝛼

(𝑥
𝛼

) cos
𝛼

(𝑡
𝛼

) .

(35)

Case 2. Consider the local fractional Laplace equation as

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑡2𝛼
+

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0 (36)

subject to fractal value conditions given by

𝜕
𝛼

𝜕𝑡𝛼
𝑇 (𝑥, 0) = −𝐸

𝛼
(𝑥
𝛼

) , 𝑇 (𝑥, 0) = 0. (37)

Now we can structure the same local fractional iteration
procedure (31).

By using (36)-(37) we take an initial value as

𝑢
0

(𝑥, 𝑡) = −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
. (38)

The first approximation term reads as

𝑢
1

(𝑥, 𝑡)

= 𝑢
0

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(−

𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
.

(39)

In the same manner, the second approximation is given by

𝑢
2

(𝑥, 𝑡)

= 𝑢
1

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
(

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
−

𝑡
5𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 5𝛼)
.

(40)

Finally, we can obtain the local fractional series solution as
follows:

𝑢
𝑛

(𝑥, 𝑡) = 𝐸
𝛼

(𝑥
𝛼

) (

𝑛

∑

𝑘=0

(−1)
𝑘 𝑡

(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)
) . (41)

Thus, the expression of the final solution is given by

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛

(𝑥, 𝑡)

= 𝐸
𝛼

(𝑥
𝛼

) (

∞

∑

𝑖=0

(−1)
𝑘 𝑡

(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)
)

= −𝐸
𝛼

(𝑥
𝛼

) sin
𝛼

(𝑡
𝛼

) .

(42)

As is known, the Mittag-Leffler function in fractal space
can be written in the form

𝐸𝛼 (𝑥
𝛼

) − 𝐸
𝛼

(𝑥
𝛼

0
)
 ≤ 𝐸
𝛼

(𝑥
𝛼

0
)

𝑥 − 𝑥
0



𝛼

< 𝜀
𝛼

,

sin𝛼 (𝑡
𝛼

) − sin
𝛼

(𝑡
𝛼

0
)
 <

cos𝛼 (𝑥
𝛼

0
)


𝑡 − 𝑡
0



𝛼

< 𝜀
𝛼

.

(43)

Hence, the fractal dimensions of both 𝐸
𝛼

(𝑥
𝛼

) and
cos
𝛼

(𝑡
𝛼

) are equal to 𝛼.
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5. Conclusions

Local fractional calculus is set up on fractals and the local
fractional variational iteration method is derived from local
fractional calculus. This new technique is efficient for the
applied scientists to process these differential and integral
equations with the local fractional operators. The variational
iteration method [9–19, 27] is derived from fractional calcu-
lus and classical calculus; the fractional variational iteration
method [20–22, 27] is derived from the modified fractional
derivative, while the local fractional variational iteration
method [37] is derived from the local fractional calculus [37–
43]. Other methods for local fractional ordinary and partial
differential equations were considered in [27].

In this paper, two outstanding examples of applications of
the local fractional variational iteration method to the local
fractional Laplace equations are investigated in detail. The
reliable obtained results are complementary with the ones
presented in the literature.
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