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This paper studies the coupled inhomogeneous Lane-Emden system from the Lagrangian formulation point of view.The existence
of multiple positive solutions has been discussed in the literature. Here we aim to classify the system with respect to a first-order
Lagrangian according to the Noether point symmetries it admits. We then obtain first integrals of the various cases which admit
Noether point symmetries.

1. Introduction

The well-known coupled Lane-Emden systems

−Δ𝑢 (𝑥) = V
𝑝
(𝑥) , 𝑥 ∈ Ω,

−ΔV (𝑥) = 𝑢
𝑞
(𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥) , V (𝑥) > 0, 𝑥 ∈ Ω,

𝑢 (𝑥) = V (𝑥) = 0, 𝑥 ∈ 𝜕Ω,

(1)

−Δ𝑢 (𝑥) = V
𝑝
(𝑥) + 𝜆𝑓 (𝑥) , 𝑥 ∈ Ω,

−ΔV (𝑥) = 𝑢
𝑞
(𝑥) + 𝜆𝑔 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥) , V (𝑥) > 0, 𝑥 ∈ Ω,

𝑢 (𝑥) = V (𝑥) = 0, 𝑥 ∈ 𝜕Ω,

(2)

whereΩ is a domain in the 𝑛-dimensional Euclidean spaceR𝑛
and Δ = ∑

𝑛

𝑖=1
(𝜕

2
/𝜕𝑥

2

𝑖
) is the Laplacian on Ω, arise naturally

from the study of several physical phenomena such as pattern
formation, population evolution, and chemical reactions (see
[1] and references therein). These Lane-Emden systems (1)-
(2) have attracted considerable attention in recent years as can
be seen from the number of papers published in the literature.

Several authors have studied the properties of solutions
of (1), such as a priori estimates, existence and uniqueness
results, Liouville-type theorems, and some symmetric and
uniqueness results (see, e.g., [1–10]). For the inhomogeneous
system (2), multiplicity results [11] have also been proved
under certain conditions.

Recently, the authors of [12] studied the weakly coupled
homogeneous second-order semilinear ordinary differential
system

−𝑢


(𝑥) = V

𝑝
(𝑥) , 𝑥 ∈ (−𝑙, 𝑙) ,

−V

(𝑥) = 𝑢

𝑞
(𝑥) , 𝑥 ∈ (−𝑙, 𝑙) ,

𝑢 (𝑥) , V (𝑥) > 0, 𝑥 ∈ (−𝑙, 𝑙) ,

𝑢 (−𝑙) = 𝑢 (𝑙) = V (−𝑙) = V (𝑙) = 0,

(3)

where 𝑝, 𝑞 > 1, and its corresponding inhomogeneous
version

−𝑢


(𝑥) = V

𝑝
(𝑥) + 𝜆𝑓 (𝑥) , 𝑥 ∈ (−𝑙, 𝑙) ,

−V

(𝑥) = V

𝑞
(𝑥) + 𝜆𝑔 (𝑥) , 𝑥 ∈ (−𝑙, 𝑙) ,

𝑢 (𝑥) , V (𝑥) > 0, 𝑥 ∈ (−𝑙, 𝑙) ,

𝑢 (−𝑙) = 𝑢 (𝑙) = V (−𝑙) = V (𝑙) = 0.

(4)
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It should be noted that the systems (3) and (4) are the one-
dimensional cases of the systems (1) and (2), respectively. A
nondegeneracy result has been proved for positive solutions
of the homogeneous system (3) and bymaking use of the non-
degeneracy and uniqueness results of homogeneous system
(3), sufficient and necessary conditions for the existence of
multiple positive solutions for the inhomogeneous system (4)
were obtained [12].

In this paper we study the coupled inhomogeneous Lane-
Emden system

𝑢


(𝑡) + V

𝑝
(𝑡) + 𝛽𝑓 (𝑡) = 0,

V

(𝑡) + 𝑢

𝑞
(𝑡) + 𝛽𝑔 (𝑡) = 0,

(5)

where 𝑓 and 𝑔 are arbitrary functions of 𝑡 and 𝑝, 𝑞 and 𝛽
are any arbitrary constants from the Lagrangian formulation
point of view. We perform a Noether point symmetry clas-
sification of (5) with respect to a first-order Lagrangian. We
then construct first integrals for the corresponding Noether
operators. First integrals are of interest because they tell us
something physical about the system [13] and can also be used
to reduce the order of the differential equations.

2. Fundamental Definitions about Noether
Symmetries and First Integrals

In this Section we recall some fundamental definitions about
Noether point symmetries and first integrals which we utilize
in Section 3.

We consider the vector field

Γ = 𝜏 (𝑡, 𝑢, V)
𝜕

𝜕𝑡

+ 𝜉 (𝑡, 𝑢, V)
𝜕

𝜕𝑢

+ 𝜂 (𝑡, 𝑢, V)
𝜕

𝜕V
,

(6)

with first prolongation [14]

Γ

[1]
= Γ + (

̇

𝜉 − �̇� ̇𝜏)

𝜕

𝜕�̇�

+ ( ̇𝜂 − V̇ ̇𝜏)

𝜕

𝜕V̇
,

(7)

where ̇𝜏, ̇

𝜉, and ̇𝜂 denote total time derivatives of 𝜏, 𝜉, and 𝜂,
respectively.

Definition 1. Consider the system of two second-order differ-
ential equations for the two unknowns 𝑢 and V, namely,

�̈� = 𝜓1 (𝑡, 𝑢, V, �̇�, V̇) , V̈ = 𝜓2 (𝑡, 𝑢, V, �̇�, V̇) . (8)

A function 𝐿(𝑡, 𝑢, V, �̇�, V̇) is called a first-order Lagrangian of
the system (8) if (8) are equivalent to the Euler-Lagrange
equations [15, 16]

𝐷𝑡 (
𝜕𝐿

𝜕�̇�

) −

𝜕𝐿

𝜕𝑢

= 0, 𝐷𝑡 (
𝜕𝐿

𝜕V̇
) −

𝜕𝐿

𝜕V
= 0, (9)

where𝐷𝑡 is the total differentiation operator defined by

𝐷𝑡 =
𝜕

𝜕𝑡

+ �̇�

𝜕

𝜕𝑢

+ V̇
𝜕

𝜕V
+ �̈�

𝜕

𝜕�̇�

+ V̈
𝜕

𝜕V̇
+ ⋅ ⋅ ⋅ .

(10)

Definition 2. We call the vector field Γ as in (6) a generator of
a Noether point symmetry [15] associated with a first-order
Lagrangian 𝐿(𝑡, 𝑢, V, �̇�, V̇) of the system (8) if there exists a
potential function 𝐵(𝑡, 𝑢, V) such that

Γ

[1]
(𝐿) + 𝐷𝑡 (𝜏) 𝐿 = 𝐷𝑡 (𝐵) .

(11)

The usefulness of an available Noether point symmetry is
given in the following theorem.

Theorem 3 (Noether [17]). If Γ of the form (6) is a Noether
point symmetry generator corresponding to a first-order
Lagrangian 𝐿(𝑡, 𝑢, V, �̇�, V̇) of the system (8), then

𝐼 = 𝐵 − [𝜏𝐿 + (𝜉 − 𝜏�̇�)

𝜕𝐿

𝜕�̇�

+ (𝜂 − 𝜏V̇)
𝜕𝐿

𝜕V̇
] (12)

is a Noether first integral of the system (8) associated with the
operator Γ.

3. Noether Symmetry Classification and the
First Integrals for (5)

To perform a Noether symmetry classification of the coupled
inhomogeneous Lane-Emden system (5) it turns out that we
need to consider four cases for different values of 𝑝 and 𝑞
separately.

3.1. 𝑝 ̸= −1, 𝑞 ̸= −1. In this case a first-order Lagrangian of the
system (5) is given by

𝐿 = �̇�V̇ −
V𝑝+1

𝑝 + 1

−

𝑢

𝑞+1

𝑞 + 1

− 𝛽 (V𝑓 (𝑡) + 𝑢𝑔 (𝑡)) . (13)

The substitution of 𝐿 into (11) and separation with respect to
powers of �̇� and V̇ yield linear overdetermined system of eight
partial differential equations, namely,

𝜏𝑢 = 0,

𝜏V = 0,

𝜉𝑢 + 𝜂V − 𝜏𝑡 = 0,

𝜉V = 0,

𝜂𝑢 = 0,

𝜂𝑡 = 𝐵𝑢,

𝜉𝑡 = 𝐵V,

−𝛽𝜏V ̇

𝑓 − 𝛽𝜏𝑢 ̇𝑔 − 𝜉𝑢

𝑞
− 𝛽𝑔𝜉 − 𝜂V

𝑝

− 𝛽𝑓𝜂 − 𝜏𝑡

V𝑝+1

𝑝 + 1

− 𝜏𝑡

𝑢

𝑞+1

𝑞 + 1

− 𝛽V𝜏𝑡𝑓 − 𝛽𝑢𝜏𝑡𝑔 = 𝐵𝑡.

(14)
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Solving the above system of equations, we obtain

𝜏 = 𝑎 (𝑡) ,

𝜉 =

̇𝑎𝑢

2

− 𝑢ℎ


(V) + 𝑒 (𝑡) ,

𝜂 =

̇𝑎V

2

+ ∫ 𝑏 (𝑡) 𝑑𝑡 + ℎ (V) ,

𝐵 =

̈𝑎

2

𝑢V + 𝑏𝑢 + ̇𝑒V + 𝑙 (𝑡) ,

−

1

𝑝 + 1

[ ̇𝑎 + (𝑝 + 1)

̇𝑎

2

] V
𝑝+1

−

1

𝑞 + 1

[ ̇𝑎 + (𝑞 + 1)

̇𝑎

2

] 𝑢

𝑞+1

+ ℎ


𝑢

𝑞+1
− 𝛽𝑎 (V ̇

𝑓 + 𝑢 ̇𝑔) − 𝑒𝑢

𝑞

− 𝛽𝑔𝑢(

3 ̇𝑎

2

− ℎ


) + 𝛽𝑔𝑒 − V

𝑝
(∫ 𝑏 𝑑𝑡 + ℎ)

−

3

2

𝛽 ̇𝑎𝑓V − 𝛽𝑓(∫ 𝑏 𝑑𝑡 + ℎ) =
1

2

⃛𝑎𝑢V + ̇

𝑏𝑢 + ̈𝑒V + ̇

𝑙.

(15)

The analysis of (15) reveals the following three cases for which
the Noether point symmetries exist.

Case 1. 𝑓(𝑡) = 𝛿, 𝑔(𝑡) = 𝜆, where 𝛿 and 𝜆 are constants.
In this case we obtain 𝜏 = 𝑐1, where 𝑐1 is a constant, 𝜉 = 0,

𝜂 = 0, and 𝐵 = 0. Therefore we have a single generator of
Noether symmetry, namely, Γ = 𝜕/𝜕𝑡. The use of the Noether
integral (12) gives us the first integral

𝐼 = �̇�V̇ +
V𝑝+1

𝑝 + 1

+

𝑢

𝑞+1

𝑞 + 1

+ 𝛽 (𝛿V + 𝜆𝑢) . (16)

Case 2. 𝑓(𝑡) = 𝛿𝑡

−3/2, 𝑔(𝑡) = 𝜆𝑡

−3/2, 𝑝 = −3, and 𝑞 = −3,
where 𝛿 and 𝜆 are constants.

In this case we obtain 𝜏 = 2𝑡, 𝜉 = 𝑢, 𝜂 = V, and 𝐵 = 0,
and so we have a single Noether symmetry

Γ = 2𝑡

𝜕

𝜕𝑡

+ 𝑢

𝜕

𝜕𝑢

+ V
𝜕

𝜕V
.

(17)

The formula (12) provides the first integral

𝐼 = 2𝑡�̇�V̇ − (𝑢V̇ + �̇�V) + 2𝛽𝑡
−1/2

(𝛿V + 𝜆𝑢) − 𝑡 (𝑢
−2
+ V
−2
) .

(18)

Case 3. 𝑓(𝑡) = 𝛿𝑡−3, 𝑔(𝑡) = 𝜆𝑡−3, 𝑝 = −3, and 𝑞 = −3, where
𝛿 and 𝜆 are constants.

We get 𝜏 = 𝑡2, 𝜉 = 𝑢𝑡, 𝜂 = 𝑡V, and 𝐵 = 𝑢V, and so we have
a single Noether symmetry generator

Γ = 𝑡

2 𝜕

𝜕𝑡

+ 𝑢𝑡

𝜕

𝜕𝑢

+ V𝑡
𝜕

𝜕V
.

(19)

The invocation of the Noether integral (12) results in the first
integral

𝐼 = 𝑡

2
�̇�V̇ − 𝑡 (𝑢V̇ + �̇�V) + 𝑢V + 𝛽𝑡

−1
(𝛿V + 𝜆𝑢)

−

𝑡

2

2

(𝑢

−2
+ V
−2
) .

(20)

3.2. 𝑝 = −1, 𝑞 = −1. In this case the coupled inhomogeneous
Lane-Emden system (5) becomes

𝑢


(𝑡) +

1

V (𝑡)
+ 𝛽𝑓 (𝑡) = 0,

V

(𝑡) +

1

𝑢 (𝑡)

+ 𝛽𝑔 (𝑡) = 0,

(21)

which has a Lagrangian

𝐿 = �̇�V̇ − (ln 𝑢V) − 𝛽 (V𝑓 (𝑡) + 𝑢𝑔 (𝑡)) . (22)

Following the above procedure of Section 3.1, we obtain just
one case for which Noether point symmetries exist. This is
when 𝑓(𝑡) = 𝛿𝑒

−𝑏𝑡, 𝑔(𝑡) = 𝜆𝑒

𝑏𝑡, where 𝛿, 𝑏, and 𝜆 are
constants.

This case provides us with a single Noether point symme-
try

Γ =

𝜕

𝜕𝑡

− 𝑏𝑢

𝜕

𝜕𝑢

+ 𝑏V
𝜕

𝜕V
with 𝐵 = 0. (23)

The Noetherian first integral associated with Γ is

𝐼 = �̇�V̇ + 𝑏 (𝑢V̇ − �̇�V) + ln 𝑢V + 𝛽 (𝛿V𝑒−𝑏𝑡 + 𝜆𝑢𝑒𝑏𝑡) . (24)

3.3. 𝑝 ̸= −1, 𝑞 = −1. In this case the coupled inhomogeneous
Lane-Emden system (5) becomes

𝑢


(𝑡) + V

𝑝
(𝑡) + 𝛽𝑓 (𝑡) = 0,

V

(𝑡) +

1

𝑢 (𝑡)

+ 𝛽𝑔 (𝑡) = 0,

(25)

which has a first-order Lagrangian

𝐿 = �̇�V̇ −
1

𝑝 + 1

V
𝑝+1

− ln 𝑢 − 𝛽 (V𝑓 (𝑡) + 𝑢𝑔 (𝑡)) . (26)

Carrying out similar procedure as above, we obtain the
following one case for which Noether point symmetries exist.
This is 𝑓(𝑡) = 𝛿, 𝑔(𝑡) = 𝜆, where 𝛿 and 𝜆 are constants.

This case provides us with one Noether point symmetry,
namely,

Γ =

𝜕

𝜕𝑡

with 𝐵 = 0. (27)

The Noetherian first integral corresponding to Γ is

𝐼 = �̇�V̇ +
V𝑝+1

𝑝 + 1

+ ln 𝑢 + 𝛽 (𝛿V + 𝜆𝑢) . (28)

3.4. 𝑝 = −1, 𝑞 ̸= −1. In this case the coupled inhomogeneous
Lane-Emden system (5) becomes

𝑢


(𝑡) +

1

V (𝑡)
+ 𝛽𝑓 (𝑡) = 0,

V

(𝑡) + 𝑢

𝑞
(𝑡) + 𝛽𝑔 (𝑡) = 0,

(29)
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for which a Lagrangian 𝐿(𝑡, 𝑢, V, �̇�, V̇) is given by

𝐿 = �̇�V̇ − ln V − 1

𝑞 + 1

𝑢

𝑞+1
− 𝛽 (V𝑓 (𝑡) + 𝑢𝑔 (𝑡)) . (30)

Following the above procedure we obtain one case for which
Noether point symmetries exist. This is 𝑓(𝑡) = 𝛿, 𝑔(𝑡) = 𝜆,
where 𝛿 and 𝜆 are constants.

Here we obtain one Noether point symmetry, namely,

Γ =

𝜕

𝜕𝑡

with 𝐵 = 0 (31)

and the Noetherian first integral corresponding to Γ is

𝐼 = �̇�V̇ +
𝑢

𝑞+1

𝑞 + 1

+ ln V + 𝛽 (𝛿V + 𝜆𝑢) . (32)

4. Concluding Remarks

In this paper we studied the coupled inhomogeneous Lane-
Emden system (5). Sufficient and necessary conditions for the
existence of multiple positive solutions for this system were
obtained in [12]. Here we performed the complete Noether
symmetry classification of the system (5) with respect to a
first-order Lagrangian.We considered four cases for different
values of 𝑝 and 𝑞 separately and obtained several cases
for the functions 𝑓(𝑡) and 𝑔(𝑡) which resulted in Noether
point symmetries. For each of these cases we then presented
the Noetherian first integral for the corresponding Noether
operator. The importance of first integrals, particularly of
systems, was mentioned in the Introduction section.
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