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We show that some recent results concerning the existence of best proximity points can be obtained from the same results in fixed
point theory.

1. Introduction

Let 𝐴 and 𝐵 be two nonempty subsets of a metric space
(𝑋, 𝑑). In this paper, we adopt the following notations and
definitions:

𝐷 (𝑥, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐵} , ∀𝑥 ∈ 𝑋,

𝐴
0
:= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) , for some 𝑦 ∈ 𝐵} ,

𝐵
0
:= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) , for some 𝑥 ∈ 𝐴} .

(1)

The notion of best proximity point is defined as follows.

Definition 1. Let 𝐴 and 𝐵 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑇 : 𝐴 → 𝐵 a non-self-mapping. A point
𝑥
∗
∈ 𝐴 is called a best proximity point of 𝑇 if 𝑑(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵), where

dist (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐴 × 𝐵} . (2)

Similarly, for a multivalued non-self-mapping 𝑇 : 𝐴 →

2
𝐵, where (𝐴, 𝐵) is a nonempty pair of subsets of a metric
space (X, 𝑑), a point 𝑥∗ ∈ 𝐴 is a best proximity point of 𝑇
provided that𝐷(𝑥∗, 𝑇𝑥∗) = dist (𝐴, 𝐵).

Recently, the notion of 𝑃-property was introduced in [1]
as follows.

Definition 2 (see [1]). Let (𝐴, 𝐵) be a pair of nonempty subsets
of a metric space (𝑋, 𝑑) with 𝐴

0
̸= 0. The pair (𝐴, 𝐵) is said to

have 𝑃-property if and only if

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = dist (𝐴, 𝐵) 󳨐⇒ 𝑑 (𝑥

1
, 𝑥
2
) = 𝑑 (𝑦

1
, 𝑦
2
) , (3)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
.

By using this notion, some best proximity point results
were proved for various classes of non-self-mappings. Here,
we state some of them.

Theorem 3 (see [1]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space𝑋 such that𝐴

0
is nonempty.

Let 𝑇 : 𝐴 → 𝐵 be a weakly contractive non-self-mapping; that
is,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜙 (𝑑 (𝑥, 𝑦)) ∀𝑥, 𝑦 ∈ 𝐴, (4)

where𝜙 : [0,∞) → [0,∞) is a continuous and nondecreasing
function such that 𝜙 is positive on (0,∞), 𝜙(0) = 0, and
lim
𝑡→∞

𝜙(𝑡) = ∞. Assume that the pair (𝐴, 𝐵) has the P-
property and 𝑇(𝐴

0
) ⊆ 𝐵
0
. Then, 𝑇 has a unique best proximity

point.
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Theorem 4 (see [2]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a Banach space 𝑋 such that 𝐴 is compact and 𝐴

0
is

nonempty. Let 𝑇 : 𝐴 → 𝐵 be a nonexpansive mapping; that is,
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐴. (5)

Assume that the pair (𝐴, 𝐵) has the P-property and 𝑇(𝐴
0
) ⊆

𝐵
0
. Then, 𝑇 has a best proximity point.

Theorem 5 (see [3]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space𝑋 such that𝐴

0
is nonempty.

Let 𝑇 : 𝐴 → 𝐵 be a Meir-Keeler non-self-mapping; that is, for
all 𝑥, 𝑦 ∈ 𝐴 and for any 𝜀 > 0, there exists 𝛿(𝜀) > 0 such that

𝜀 ≤ 𝑑 (𝑥, 𝑦) < 𝜀 + 𝛿 implies 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜀. (6)

Assume that the pair (𝐴, 𝐵) has the P-property and 𝑇(𝐴
0
) ⊆

𝐵
0
. Then, 𝑇 has a unique best proximity point.

Theorem 6 (see [4]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space (𝑋, 𝑑) such that 𝐴

0
̸= 0 and

(𝐴, 𝐵) satisfies the P-property. Let𝑇 : 𝐴 → 2
𝐵 be amultivalued

contraction non-self-mapping; that is,

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝑥, 𝑦) , (7)

for some 𝛼 ∈ (0, 1) and for all 𝑥, 𝑦 ∈ 𝐴. If 𝑇𝑥 is bounded and
closed in 𝐵 for all 𝑥 ∈ 𝐴 and 𝑇𝑥

0
is included in 𝐵

0
for each

𝑥
0
∈ 𝐴
0
, then 𝑇 has a best proximity point in 𝐴.

Theorem 7 (see [5]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space𝑋 such that𝐴

0
is nonempty.

Let 𝑇 : 𝐴 → 𝐵 be a Geraghty-contraction non-self-mapping;
that is,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) , 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐴, (8)

where 𝛽 : [0,∞) → [0, 1) is a function which satisfies the
following condition:

𝛽 (𝑡
𝑛
) 󳨀→ 1 󳨐⇒ 𝑡

𝑛
󳨀→ 0. (9)

Suppose that the pair (𝐴, 𝐵) has the P-property and 𝑇(𝐴
0
) ⊆

𝐵
0
. Then, 𝑇 has a unique best proximity point.

2. Main Result

In this section, we show that the existence of a best proximity
point in the main theorems of [1–5] can be obtained from
the existence of the fixed point for a self-map. We begin our
argument with the following lemmas.

Lemma 8 (see [6]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space (𝑋, 𝑑) such that 𝐴

0
is

nonempty and (𝐴, 𝐵) has the P-property. Then, (𝐴
0
, 𝐵
0
) is a

closed pair of subsets of𝑋.

Lemma 9. Let (𝐴, 𝐵) be a pair of nonempty closed subsets of
a metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Assume that

the pair (𝐴, 𝐵) has the 𝑃-property. Then there exists a bijective
isometry 𝑔 : 𝐴

0
→ 𝐵
0
such that 𝑑(𝑥, 𝑔𝑥) = dist(𝐴, 𝐵).

Proof . Let 𝑥 ∈ 𝐴
0
; then there exists an element 𝑦 ∈ 𝐵

0
such

that

𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) . (10)

Assume that there exists another point ́𝑦 ∈ 𝐵
0
such that

𝑑 (𝑥, ́𝑦) = dist (𝐴, 𝐵) . (11)

By the fact that (𝐴, 𝐵) has the 𝑃-property, we conclude that
𝑦 = ́𝑦. Consider the non-self-mapping𝑔 : 𝐴

0
→ 𝐵
0
such that

𝑑(𝑥, 𝑔𝑥) = dist(𝐴, 𝐵). Clearly, 𝑔 is well defined. Moreover, 𝑔
is an isometry. Indeed, if 𝑥

1
, 𝑥
2
∈ 𝐴
0
, then

𝑑 (𝑥
1
, 𝑔𝑥
1
) = dist (𝐴, 𝐵) , 𝑑 (𝑥

2
, 𝑔𝑥
2
) = dist (𝐴, 𝐵) .

(12)

Again, since (𝐴, 𝐵) has the 𝑃-property,

𝑑 (𝑥
1
, 𝑥
2
) = 𝑑 (𝑔𝑥

1
, 𝑔𝑥
2
) ; (13)

that is, 𝑔 is an isometry.

Here, we prove that the existence and uniqueness of the
best proximity point in Theorem 3 are a sample result of the
existence of fixed point for aweakly contractive self-mapping.

Theorem 10. Let (𝐴, 𝐵) be a pair of nonempty closed subsets
of a complete metric space 𝑋 such that 𝐴

0
is nonempty. Let

𝑇 : 𝐴 → 𝐵 be a weakly contractive mapping. Assume that the
pair (𝐴, 𝐵) has the P-property and 𝑇(𝐴

0
) ⊆ 𝐵
0
. Then, 𝑇 has a

unique best proximity point.

Proof. Consider the bijective isometry 𝑔 : 𝐴
0
→ 𝐵
0
as in

Lemma 9. Since 𝑇(𝐴
0
) ⊆ 𝐵

0
, for the self-mapping 𝑔−1𝑇 :

𝐴
0
→ 𝐴
0
, we have

𝑑 (𝑔
−1
(𝑇𝑥) , 𝑔

−1
(𝑇𝑦)) = 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) , (14)

for all 𝑥, 𝑦 ∈ 𝐴
0
which implies that the self-mapping 𝑔−1𝑇 is

weakly contractive. Note that𝐴
0
is closed by Lemma 8.Thus,

𝑔
−1
𝑇 has a unique fixed point [7]. Suppose that 𝑥∗ ∈ 𝐴

0

is a unique fixed point of the self-mapping 𝑔
−1
𝑇; that is,

𝑔
−1
𝑇(𝑥
∗
) = 𝑥
∗. So, 𝑇𝑥∗ = 𝑔𝑥∗, and then

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝑥

∗
, 𝑔𝑥
∗
) = dist (𝐴, 𝐵) , (15)

fromwhich it follows that 𝑥∗ ∈ 𝐴
0
is a unique best proximity

point of the non-self weakly contractive mapping 𝑇.

Remark 11. By a similar argument, using the fact that every
nonexpansive self-mapping defined on a nonempty compact
and convex subset of a Banach space has a fixed point,
we conclude Theorem 4. Also, the existence and uniqueness
of best proximity point for Meir-Keeler non-self-mapping
𝑇 (Theorem 5) follow from the Meir-Keeler’s fixed point
theorem ([8]). Moreover, in Theorem 6, Nadler’s fixed point
theorem ([9]) ensures the existence of a best proximity point
for multivalued non-self mapping 𝑇. Finally, Theorem 7 due
to Caballero et al., is obtained from Geraghty’s fixed point
theorem ([10]).
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