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This paper is devoted to the study of the existence and uniqueness of solutions for 𝑛th order differential equations with nonlocal
integral boundary conditions. Our results are based on a variety of fixed point theorems. Some illustrative examples are discussed.
We also discuss the Caputo type fractional analogue of the higher-order problem of ordinary differential equations.

1. Introduction

Boundary value problems with nonclassical boundary condi-
tions are often used to take into account some peculiarities of
physical, chemical or other processes, which are impossible
by applying classical boundary conditions. Nonlocal condi-
tions appear when values of the function on the boundary
are connected to values inside the domain. Integral nonlocal
boundary conditions can be used when it is impossible to
directly determine the values of the sought quantity on the
boundary while the total amount or integral average on space
domain is known.

Boundary value problems with integral boundary con-
ditions constitute a very interesting and important class of
problems. They include two, three, multipoint, and nonlocal
boundary value problems as special cases. Integral boundary
value problems occur in the mathematical modeling of
a variety of physics processes and have recently received
considerable attention. For some recent work on boundary
value problems with integral boundary conditions we refer
to [1–23] and the references cited therein.

In this paper, we discuss some existence and uniqueness
results for boundary value problems of 𝑛th order ordinary
differential equations. Precisely, in the first part of the
paper we consider the following boundary value problem of

nonlinear 𝑛th-order differential equations with multipoint
integral boundary conditions

𝑢
(𝑛)

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝑢
󸀠
(0) = 0, 𝑢

󸀠󸀠
(0) = 0, . . . , 𝑢

(𝑛−2)
(0) = 0,

𝛼𝑢 (1) + 𝛽𝑢
󸀠
(1) =

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

𝑢 (𝑠) 𝑑𝑠, 0 < 𝜂𝑖 < 1,

(1)

where 𝑓 : [0, 1] × R → R is a given continuous function,
and 𝛼, 𝛽, 𝛾𝑖, 𝜂𝑖, (𝑖 = 1, 2, . . . , 𝑚) are real constants to be
chosen appropriately. Existence and uniqueness results are
proved by using a variety of fixed point theorems such as
Schaefer’s fixed point theorem, Leray-Schauder Nonlinear
Alternative, Krasnoselskii’s fixed point theorem, Banach’s
fixed point theorem, and Boyd and Wang fixed point theo-
rem for nonlinear contractions [24]. The methods used are
well known; however, their exposition in the framework of
problem (1) is new.

Next, we extend our discussion to the fractional case
by considering the problem consisting of the boundary
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conditions in (1) along with the Caputo type fractional differ-
ential equation as follows:

𝑐
𝐷

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1, 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑛 ≥ 2, 𝑛 ∈ N.

(2)

Fractional calculus has emerged as an interesting mathe-
matical modelling tool in many branches of basic sciences,
engineering, and technical sciences [25–27]. Differential and
integral operators of fractional order do share some of the
characteristics exhibited by the processes associated with
complex systems having long-memory in time. In other
words, we can say that a dynamical system or process
involving fractional derivatives takes into account its current
as well as past states.This feature has contributed significantly
to the popularity of the subject and has motivated many
researchers to focus on fractional order models. For some
recent development of the topic, for instance, see [13, 28–35].

The paper is organized as follows. In Section 2, we recall
some preliminary facts that we need in the sequel. Section 3
contains the existence and uniqueness results for the bound-
ary value problem (1). In Section 4, some illustrative examples
are presented. In Section 5, we consider the Caputo type
fractional analogue of problem (1).

2. An Auxiliary Lemma

Lemma 1. Let 𝛼 + (𝑛 − 1)𝛽 ̸= (1/𝑛)∑
𝑚

(𝑖=1) 𝛾𝑖𝜂
𝑛
𝑖 . For any 𝑦 ∈

𝐶([0, 1],R), the unique solution of the boundary value problem

𝑢
(𝑛)

(𝑡) = 𝑦 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝑢
󸀠
(0) = 0, 𝑢

󸀠󸀠
(0) = 0, . . . , 𝑢

(𝑛−2)
(0) = 0,

𝛼𝑢 (1) + 𝛽𝑢
󸀠
(1) =

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

𝑢 (𝑠) 𝑑𝑠, 0 < 𝜂𝑖 < 1,

(3)

is given by

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑦 (𝑠) 𝑑𝑠 + Λ𝑡
𝑛−1

× {

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

𝑦 (𝑠) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑦 (𝑠) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

𝑦 (𝑠) 𝑑𝑠} ,

(4)

where

Λ =

1

𝛼 + (𝑛 − 1) 𝛽 − (1/𝑛)∑
𝑚

𝑖=1 𝛾𝑖𝜂
𝑛
𝑖

. (5)

Proof. It is well known that the solution of the differential
equation in (3) can be written as

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑦 (𝑠) 𝑑𝑠 + 𝑐0

+ 𝑐1𝑡 + 𝑐2𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐𝑛−2𝑡

𝑛−2
+ 𝑐𝑛−1𝑡

𝑛−1
,

(6)

where 𝑐𝑖, 𝑖 = 0, 1, . . . , 𝑛−1, are arbitrary real constants. Using
the boundary conditions 𝑢(0) = 𝑢

󸀠
(0) = 𝑢

󸀠󸀠
(0) = ⋅ ⋅ ⋅ =

𝑢
(𝑛−2)

(0) = 0 in (6), we get 𝑐0 = 𝑐1 = 𝑐2 = ⋅ ⋅ ⋅ = 𝑐𝑛−2 =

0 and applying the boundary condition 𝛼𝑢(1) + 𝛽𝑢
󸀠
(1) =

∑
𝑚

𝑖=1 𝛾𝑖 ∫
𝜂𝑖

0
𝑢(𝑠)𝑑𝑠, we find that

𝑐𝑛−1 = Λ(

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

𝑦 (𝑠) 𝑑𝑠 − 𝛼∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑦 (𝑠) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

𝑦 (𝑠) 𝑑𝑠) ,

(7)

where Λ is defined by (5).
Substituting the values of 𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛−2 and 𝑐𝑛−1 in (6),

we get (4).

3. Some Existence and Uniqueness Results

Let C = 𝐶([0, 1],R) denote the Banach space of all contin-
uous functions from [0, 1] → R endowed with the norm
defined by ‖𝑢‖ = sup{|𝑢(𝑡)|, 𝑡 ∈ [0, 1]}. Let 𝐿1([0, 1],R) be the
Banach space of measurable functions 𝑥 : [0, 1] → R which
are Lebesgue integrable and normed by ‖𝑥‖𝐿1 = ∫

1

0
|𝑥(𝑡)|𝑑𝑡.

In view of Lemma 1, we define an operatorF : C → C
by

(F𝑢) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ Λ𝑡
𝑛−1

{

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠} ,

(8)

where Λ is given by (5). Observe that the problem (1) has
solutions only if the operator equation F𝑢 = 𝑢 has fixed
points.

Now we are in a position to present several existence
results for the problem (1). Our first result is based on
Schaefer’s fixed point theorem.

Lemma 2 (see [36]). Let 𝑋 be a Banach space. Assume that
𝑇 : 𝑋 → 𝑋 is a completely continuous operator and the set
𝑉 = {𝑢 ∈ 𝑋 | 𝑢 = 𝜇𝑇𝑢, 0 < 𝜇 < 1} is bounded. Then, 𝑇 has a
fixed point in 𝑋.
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Theorem 3. Let 𝑓 : [0, 1] × R → R be a continuous
function. Assume that there exists a constant 𝐿1 > 0 such that
|𝑓(𝑡, 𝑢(𝑡))| ≤ 𝐿1 for 𝑡 ∈ [0, 1], 𝑢 ∈ C. Then, the boundary
value problem (1) has at least one solution.

Proof. First we show that the operator F defined by (8) is
completely continuous. Clearly, continuity of the operator
F follows from the continuity of 𝑓. Then, it follows by the
assumption |𝑓(𝑡, 𝑢(𝑡)| ≤ 𝐿1 that

|(F𝑢) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

󵄨
󵄨
󵄨
󵄨
󵄨
Λ𝑡
𝑛−1󵄨󵄨

󵄨
󵄨
󵄨
{

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝐿1 {
𝑡
𝑛

𝑛!

+

󵄨
󵄨
󵄨
󵄨
󵄨
Λ𝑡
𝑛−1󵄨󵄨

󵄨
󵄨
󵄨
(

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≤ 𝐿1 {
1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

:= 𝐿2,

(9)

which implies that ‖F𝑢‖ ≤ 𝐿2. Furthermore,

󵄨
󵄨
󵄨
󵄨
󵄨
(F𝑢)
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑛 − 1) Λ𝑡

𝑛−2󵄨󵄨
󵄨
󵄨
󵄨

× {

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝐿1 {
𝑡
𝑛−1

(𝑛 − 1)!

+ (𝑛 − 1)

󵄨
󵄨
󵄨
󵄨
󵄨
Λ𝑡
𝑛−2󵄨󵄨

󵄨
󵄨
󵄨

×(

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
(𝑛+1)

𝑖

(𝑛 + 1)

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≤ 𝐿1 {
1

(𝑛 − 1)!

+ (𝑛 − 1) |Λ|

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

:= 𝐿3.

(10)

Hence, for 𝑡1, 𝑡2 ∈ [0, 1], we have

󵄨
󵄨
󵄨
󵄨
(F𝑢) (𝑡1) − (F𝑢) (𝑡2)

󵄨
󵄨
󵄨
󵄨
≤ ∫

𝑡1

𝑡2

󵄨
󵄨
󵄨
󵄨
󵄨
(F𝑢)
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ 𝐿3 (𝑡1 − 𝑡2) .

(11)

Thus, by the foregoing arguments, one can infer that the
operatorF is equicontinuous on [0, 1]. Hence, by the Arzelá-
Ascoli theorem, the operator F : C → C is completely
continuous.

Next, we consider the set

𝑉 = {𝑢 ∈ C | 𝑢 = 𝜇F𝑢, 0 < 𝜇 < 1} , (12)

and show that the set 𝑉 is bounded. Let 𝑢 ∈ 𝑉, then, 𝑢 =

𝜇F𝑢, 0 < 𝜇 < 1. For any 𝑡 ∈ [0, 1], we have

|𝑢 (𝑡)| = 𝜇 |(F𝑢) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |Λ| 𝑡
𝑛−1

{

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝐿1max
𝑡∈[0,1]

{

𝑡
𝑛

𝑛!

+ |Λ| 𝑡
𝑛−1

(

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

:= 𝑀1.

(13)

Thus, ‖𝑢‖ ≤ 𝑀1 for any 𝑡 ∈ [0, 1]. So, the set𝑉 is bounded.
Thus, by the conclusion of Lemma 2, the operator F has at
least one fixed point, which implies that the boundary value
problem (1) has at least one solution.

Our next existence result is based on Leray-Schauder
Nonlinear Alternative [37].

Lemma 4 (nonlinear alternative for single valued maps). Let
𝐸 be a Banach space, 𝐶 a closed convex subset of 𝐸, 𝑉 an open
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subset of 𝐶, and 0 ∈ 𝑉. Suppose that 𝐹 : 𝑉 → 𝐶 is
a continuous, compact (that is, 𝐹(𝑉) is a relatively compact
subset of 𝐶) map. Then, either

(i) 𝐹 has a fixed point in 𝑉, or

(ii) there is a𝑢 ∈ 𝜕𝑉 (the boundary of V in𝐶) and𝜆 ∈ (0, 1)

with V = 𝜆𝐹(V).

Theorem 5. Let 𝑓 : [0, 1]×R → R be a continuous function.
Assume that

(𝐵1) there exist a function 𝑝 ∈ 𝐿([0, 1],R+), and a
nondecreasing function 𝜓 : R+ → R+ such that
|𝑓(𝑡, 𝑢)| ≤ 𝑝(𝑡)𝜓(‖𝑢‖), ∀(𝑡, 𝑢) ∈ [0, 1] ×R;

(𝐵2) there exists a constant 𝑀 > 0 such that

𝑀(𝜓 (𝑀){

1

𝑛!

+ |Λ|

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

)

−1

> 1.

(14)

Then, the boundary value problem (1) has at least one
solution on [0, 1].

Proof. Consider the operator F : C → C defined by
(8). We show that F maps bounded sets into bounded sets
in 𝐶([0, 1],R). For a positive number 𝑟, let 𝐵𝑟 = {𝑥 ∈

𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝑟} be a bounded set in 𝐶([0, 1],R). Then,

|(F𝑢) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |Λ| 𝑡
𝑛−1

{

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝜓 (‖𝑢‖) {

1

𝑛!

+ |Λ|

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

×
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

.

(15)

Thus,

‖F𝑢‖ ≤ 𝜓 (𝑟) {

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

×
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

.

(16)

Next, we show that 𝐹 maps bounded sets into equicontin-
uous sets of 𝐶([0, 1],R). Let 𝑡1, 𝑡2 ∈ [0, 1] with 𝑡1 < 𝑡2 and
𝑢 ∈ 𝐵𝑟, where 𝐵𝑟 is a bounded set of 𝐶([0, 1],R). Then, we
obtain

󵄨
󵄨
󵄨
󵄨
(F1𝑢) (𝑡2) − (F1𝑢) (𝑡1)

󵄨
󵄨
󵄨
󵄨

≤

1

(𝑛 − 1)!

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

[(𝑡2 − 𝑠)
𝑛−1

− (𝑡1 − 𝑠)
𝑛−1

] 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑛−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ |Λ|

󵄨
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

2 − 𝑡
𝑛−1

1

󵄨
󵄨
󵄨
󵄨
󵄨

× (

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛−1

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

≤

𝜓 (𝑟)

𝑛!

(

󵄨
󵄨
󵄨
󵄨
󵄨
2(𝑡2 − 𝑡1)

𝑛󵄨󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

1 − 𝑡
𝑛

2

󵄨
󵄨
󵄨
󵄨
)

+ 𝜓 (𝑟) |Λ|

󵄨
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

2 − 𝑡
𝑛−1

1

󵄨
󵄨
󵄨
󵄨
󵄨

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

.

(17)

Obviously, the right-hand side of the above inequality
tends to zero independently of 𝑢 ∈ 𝐵𝑟 as 𝑡2 − 𝑡1 → 0. As
F satisfies the above assumptions; therefore, it follows by the
Arzelá-Ascoli theorem that 𝐹 : 𝐶([0, 1],R) → 𝐶([0, 1],R) is
completely continuous.

Let 𝑢 be a solution. Then, for 𝑡 ∈ [0, 1], and using the
computations in proving thatF is bounded, we have

|𝑢 (𝑡)| = |𝜆 (F𝑢) (𝑡)|

≤ 𝜓 (‖𝑢‖) {

1

𝑛!

+ |Λ|

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

×
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

.

(18)
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In consequence, we have

‖𝑢‖(𝜓 (‖𝑢‖)

× {

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

)

−1

≤ 1.

(19)
In view of (𝐵2), there exists 𝑀 such that ‖𝑢‖ ̸=𝑀. Let us

set
𝑊 = {𝑢 ∈ 𝐶 ([0, 1] ,R) : ‖𝑢‖ < 𝑀} . (20)

Note that the operator 𝐹 : 𝑊 → 𝐶([0, 1],R) is
continuous and completely continuous. From the choice of
𝑊, there is no 𝑢 ∈ 𝜕𝑊 such that 𝑢 = 𝜆𝐹(𝑢) for some 𝜆 ∈

(0, 1). Consequently, by the nonlinear alternative of Leray-
Schauder-type (Lemma 4), we deduce that 𝐹 has a fixed point
𝑢 ∈ 𝑊 which is a solution of the problem (1). This completes
the proof.

To prove the next existence result, we need the following
fixed point theorem.

Lemma 6 (see [36]). Let𝑋 be a Banach space. Assume thatΩ
is an open bounded subset of𝑋with 0 ∈ Ω and let𝑇 : Ω → 𝑋

be a completely continuous operator, such that
‖𝑇𝑢‖ ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝜕Ω. (21)

Then, 𝑇 has a fixed point in Ω.

Theorem 7. Let 𝑓 : [0, 1] × R → R be continuous and there
exists 𝛿, 𝑟 > 0 with |𝑓(𝑡, 𝑢)| ≤ 𝛿|𝑢|, 0 < |𝑢| < 𝑟 and

{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} 𝛿 < 1. (22)

Then, the boundary value problem (1) has at least one solution.

Proof. Define Ω = {𝑢 ∈ C|‖𝑢‖ < 𝑟} and take 𝑢 ∈ C such that
‖𝑢‖ = 𝑟; that is, 𝑢 ∈ 𝜕Ω. As before, it can be shown thatF is
completely continuous and

‖F𝑢‖ ≤ max
𝑡∈[0,1]

{

𝑡
𝑛

𝑛!

+ |Λ| 𝑡
𝑛−1

× (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} 𝛿 ‖𝑢‖

= {

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} 𝛿 ‖𝑢‖ ,

(23)

which, in view of (22), implies that ‖F𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈

𝜕Ω. Therefore, by Lemma 6, the operator F has at least one
fixed point, which corresponds to at least one solution of the
boundary value problem (1).

Our next existence result is based on Krasnoselskii’s fixed
point theorem [38].

Theorem 8 (Krasnoselskii’s fixed point theorem). Let 𝑀 be
a closed, bounded, convex, and nonempty subset of a Banach
space𝑋. Let𝐴 and𝐵 be the operators such that (i)𝐴𝑢+𝐵V ∈ 𝑀

whenever 𝑢, V ∈ 𝑀; (ii) 𝐴 is compact and continuous; (iii) 𝐵
is a contraction mapping. Then, there exists 𝑧 ∈ 𝑀 such that
𝑧 = 𝐴𝑧 + 𝐵𝑧.

Theorem 9. Suppose that 𝑓 : [0, 1] ×R → R is a continuous
function and satisfies the following assumptions:

(𝐴1) |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ 𝐿‖𝑢 − V‖, ∀𝑡 ∈ [0, 1], 𝐿 > 0,
𝑢, V ∈ R.
(𝐴2) |𝑓(𝑡, 𝑢)| ≤ 𝜇(𝑡), ∀(𝑡, 𝑢) ∈ [0, 1] × R, and 𝜇 ∈

𝐶([0, 1],R+).
Then, the boundary value problem (1) has at least one

solution on [0, 1] if

𝐿{|Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} < 1. (24)

Proof. Letting sup𝑡∈[0,1]|𝜇(𝑡)| = ‖𝜇‖, we choose a real number
𝑟 satisfying the inequality

𝑟 ≥
󵄩
󵄩
󵄩
󵄩
𝜇
󵄩
󵄩
󵄩
󵄩
{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} ,

(25)
and consider 𝐵𝑟 = {𝑢 ∈ C : ‖𝑢‖ ≤ 𝑟}. We define the operators
𝜒 and 𝜑 on 𝐵𝑟 as

𝜒 (𝑢) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝜑 (𝑢) (𝑡) = Λ𝑡
𝑛−1

× {

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

𝑓 (𝑠, 𝑢 (𝑠)) } 𝑑𝑠.

(26)

For 𝑢, V ∈ 𝐵𝑟, we find that
󵄩
󵄩
󵄩
󵄩
𝜒𝑢 + 𝜑𝑢

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝜇
󵄩
󵄩
󵄩
󵄩
{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≤ 𝑟.

(27)
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Thus, 𝜒𝑢 + 𝜑𝑢 ∈ 𝐵𝑟. In view of (𝐴1) and (24), 𝜑 is
a contraction mapping. Continuity of 𝑓 implies that the
operator 𝜒 is continuous. Also, 𝜒 is uniformly bounded on
𝐵𝑟 as

󵄩
󵄩
󵄩
󵄩
𝜒𝑢

󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝜇
󵄩
󵄩
󵄩
󵄩

𝑛!

. (28)

Now, we prove the compactness of the operator 𝜒. In view
of (𝐴1), we define

sup
(𝑡,𝑢)∈[0,1]×𝐵𝑟

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
= 𝑓, (29)

and consequently, for 𝑡1, 𝑡2 ∈ [0, 1], 𝑡1 < 𝑡2, we have
󵄨
󵄨
󵄨
󵄨
(𝜒𝑢) (𝑡1) − (𝜒𝑢) (𝑡2)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

(𝑛 − 1)!

∫

𝑡1

0

[(𝑡2 − 𝑠)
𝑛−1

− (𝑡1 − 𝑠)
𝑛−1

] 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+

1

(𝑛 − 1)!

∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑛−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑓

𝑛!

(

󵄨
󵄨
󵄨
󵄨
󵄨
2(𝑡2 − 𝑡1)

𝑛󵄨󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

1 − 𝑡
𝑛

2

󵄨
󵄨
󵄨
󵄨
) ,

(30)

which is independent of 𝑢. Thus, 𝜒 is relatively compact on
𝐵𝑟. Hence, by the Arzelá-Ascoli theorem, 𝜒 is compact on
𝐵𝑟. Thus, all the assumptions of Theorem 8 are satisfied. So,
the conclusion ofTheorem 8 implies that the boundary value
problem (1) has at least one solution on [0, 1].

Next, we discuss the uniqueness of solutions for the prob-
lem (1). This result relies on Banach’s fixed point theorem.

Theorem 10. Assume that 𝑓 : [0, 1]×R → R is a continuous
function satisfying the condition (𝐴1).

If

𝐿{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} < 1, (31)

then, the boundary value problem (1) has a unique solution.

Proof. Fixing

sup
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
= 𝑀 < ∞, (32)

and selecting

𝑅 ≥

𝑀𝑄

1 − 𝐿𝑄

,

𝑄 =

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

) ,

(33)

we show thatF𝐵𝑅 ⊂ 𝐵𝑟, where 𝐵𝑅 = {𝑢 ∈ C : ‖𝑢‖ ≤ 𝑅}. For
𝑢 ∈ 𝐵𝑅, we have for 𝑡 ∈ [0, 1],
|(F𝑢) (𝑡)|

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 + |Λ| 𝑡

𝑛−1

× (

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)}

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

(
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, 0)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+ |Λ| 𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

× (
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

(
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, 0)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

× (
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 0)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠)}

≤ (𝐿𝑟 + 𝑀)

× sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑑𝑠 + |Λ| 𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

𝑑𝑠)}
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≤ (𝐿𝑟 + 𝑀){

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≤ 𝑅.

(34)

Thus, we get F𝑢 ∈ 𝐵𝑅. Now, for 𝑢, V ∈ C and for each
𝑡 ∈ [0, 1], we obtain

|(F𝑢) (𝑡) − (FV) (𝑡)|

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨

󵄨
𝑑𝑠

+ |Λ| 𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠)}

≤ 𝐿{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1 𝛾𝑖𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

× ‖𝑢 − V‖ .
(35)

Since

𝐿{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} < 1, (36)

F is a contraction; therefore, the conclusion of the theorem
follows by the contraction mapping principle (Banach fixed
point theorem).

We give another uniqueness result for the problem (1) by
usingBanach’s fixed point theoremandHölder’s inequality. In
the following, we denote by 𝐿1/𝑝([0, 1],R

+
) the space of 1/𝑝-

Lebesgue measurable functions from [0, 1] to R+ with norm
‖𝜇‖𝑝 = (∫

1

0
|𝜇(𝑠)|
1/𝑝

𝑑𝑠)

𝑝

.

Theorem 11. Let 𝑓 : [0, 1]×R → R be a continuous function
satisfying the following Lipschitz condition:

(𝐴3) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝑚(𝑡)|𝑥 − 𝑦|, for all (𝑡, 𝑥), (𝑡, 𝑦) ∈

[0, 1] ×R, where 𝑚 ∈ 𝐿1/𝛾([0, 1],R
+
), 𝛾 ∈ (0, 1).

Then, the boundary value problem (1) has a unique solu-
tion, provided that

‖𝑚‖𝑝 {
1

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+ |Λ|(

1

𝑛!

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1−𝛾

𝑖
(

1 − 𝛾

𝑛 + 1 − 𝛾

)

1−𝛾

+

|𝛼|

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 2)!

(

1 − 𝛾

𝑛 − 1 − 𝛾

)

1−𝛾

)} < 1.

(37)

Proof. For 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ [0, 1] together with
Hölder’s inequality, we have

|(F𝑢) (𝑡) − (FV) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨

󵄨
𝑑𝑠

+ |Λ| 𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨
󵄨
𝑑𝑠)

≤ [

1

(𝑛 − 1)!

(∫

1

0

(1 − 𝑠)
(𝑛−1)/(1−𝛾)

𝑑𝑠)

1−𝛾

× (∫

1

0

(𝑚 (𝑠))
1/𝛾

𝑑𝑠)

𝛾

+ |Λ| 𝑡
𝑛−1

(

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨

1

𝑛!

× (∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛/(1−𝛾)

𝑑𝑠)

1−𝛾

× (∫

1

0

(𝑚 (𝑠))
1/𝛾

𝑑𝑠)

𝛾
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+ |𝛼|

1

(𝑛 − 1)!

× (∫

1

0

(1 − 𝑠)
(𝑛−1)/(1−𝛾)

𝑑𝑠)

1−𝛾

× (∫

1

0

(𝑚 (𝑠))
1/𝛾

𝑑𝑠)

𝛾

𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

1

(𝑛 − 2)!

× (∫

1

0

(1 − 𝑠)
(𝑛−2)/(1−𝛾)

𝑑𝑠)

1−𝛾

× (∫

1

0

(𝑚 (𝑠))
1/𝛾

𝑑𝑠)

𝛾

)] ‖𝑢 − V‖

≤ ‖𝑚‖𝑝 {
1

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+ |Λ|(

1

𝑛!

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1−𝛾

𝑖
(

1 − 𝛾

𝑛 + 1 − 𝛾

)

1−𝛾

+

|𝛼|

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 2)!

(

1 − 𝛾

𝑛 − 1 − 𝛾

)

1−𝛾

)}

× ‖𝑢 − V‖ .

(38)

By the given condition (37), it follows that F is a
contractionmapping. Hence, the Banach fixed point theorem
applies andF has a fixed point which is the unique solution
of the problem (1). This completes the proof.

Finally, we discuss the uniqueness of solutions for the
problem (1) by using a fixed point theorem for nonlinear
contractions due to Boyd and Wong.

Definition 12. Let 𝐸 be a Banach space and let 𝐺 : 𝐸 → 𝐸

be a mapping. 𝐺 is said to be a nonlinear contraction if there
exists a continuous nondecreasing function Ψ : R+ → R+

such that Ψ(0) = 0 and Ψ(𝜉) < 𝜉 for all 𝜉 > 0 with the
following property:

󵄩
󵄩
󵄩
󵄩
𝐺𝑥 − 𝐺𝑦

󵄩
󵄩
󵄩
󵄩
≤ Ψ (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) , ∀𝑥, 𝑦 ∈ 𝐸. (39)

Lemma 13 (see Boyd and Wong [24]). Let 𝐸 be a Banach
space and let 𝐺 : 𝐸 → 𝐸 be a nonlinear contraction. Then,
𝐺 has a unique fixed point in 𝐸.

Theorem 14. Assume that

(𝐴4) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ ℎ(𝑡)(|𝑥 − 𝑦|/(𝐻
∗
+ |𝑥 − 𝑦|)), 𝑡 ∈

[0, 1], 𝑥, 𝑦 ≥ 0, where ℎ : [0, 1] → R+ is continuous,
where

𝐻
∗
= ‖ℎ‖𝐿1 {

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)} .

(40)

Then, the boundary value problem (1) has a unique solu-
tion.

Proof. We consider the operatorF : C → C defined by (8).
Let Ψ : R+ → R+ be the continuous nondecreasing

function satisfying Ψ(0) = 0 and Ψ(𝜉) < 𝜉 for all 𝜉 > 0 which
is defined by

Ψ (𝜉) =

𝐻
∗
𝜉

𝐻
∗
+ 𝜉

, ∀𝜉 ≥ 0. (41)

For 𝑥, 𝑦 ∈ C, 𝑠 ∈ [0, 1], we have

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
≤

‖ℎ‖𝐿1

𝐻
∗

Ψ (
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) , (42)

and so

󵄨
󵄨
󵄨
󵄨
F𝑥 (𝑡) −F𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

ℎ (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝐻
∗
+
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝑑𝑠

+ |Λ| {

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨

× ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑛

𝑛!

ℎ (𝑠)

×

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝐻
∗
+
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝑑𝑠

+ |𝛼| ∫

1

0

(1 − 𝑠)
𝑛−1

(𝑛 − 1)!

ℎ (𝑠)

×

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝐻
∗
+
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝑑𝑠

+
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
∫

1

0

(1 − 𝑠)
𝑛−2

(𝑛 − 2)!

ℎ (𝑠)

×

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝐻
∗
+
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

𝑑𝑠}

≤

𝐻
∗ 󵄩󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

𝐻
∗
+
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

,

(43)

where we have used (40). By the definition ofΨ, it follows that
‖F𝑥 − F𝑦‖ ≤ Ψ(‖𝑥 − 𝑦‖). This shows thatF is a nonlinear
contraction.Thus, by Lemma 13, the operatorF has a unique
fixed point in C, which in turn is a unique solution of the
problem (1).
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4. Example

Example 1. Consider the boundary value problem

𝑢
󸀠󸀠󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝑢
󸀠
(0) = 0,

𝑢 (1) + 𝑢
󸀠
(1) =

3

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

𝑢 (𝑠) 𝑑𝑠, 0 < 𝜂𝑖 < 1,

(44)

where 𝑛 = 3, 𝛼 = 1, 𝛽 = 1, 𝜂1 = 1/4, 𝜂2 = 1/2, 𝜂3 =

3/4, 𝛾1 = 1, 𝛾2 = 1/3, and 𝛾3 = 2/3.

We find that

Λ =

1

𝛼 + (𝑛 − 1) 𝛽 − (1/𝑛)∑
𝑚

𝑖=1 𝛾𝑖𝜂
𝑛
𝑖

≈ 0.346362,

𝜌 =

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

) ≈ 0.400976.

(45)

(a) Let

𝑓 (𝑡, 𝑢) =

𝑒
−𝑡

2 (1 + 𝑒
𝑡
)

⋅

|𝑢|

1 + |𝑢|

, 𝑡 ∈ [0, 1] , 𝑢 ∈ R. (46)

Since |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ (1/4)|𝑢 − V|, then, (𝐴1) is
satisfied with 𝐿 = 1/4. Since

𝐿{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≈ 0.100244 < 1,

(47)

therefore, by Theorem 10, the problem (44) with 𝑓

given by (46) has a unique solution.

(b) Let

𝑓 (𝑡, 𝑢 (𝑡)) = 𝑡
2tan−1𝑢 (𝑡) + 𝑢 (𝑡) , 𝑡 ∈ [0, 1] . (48)

Choose 𝛾 = 1/2 ∈ (0, 1). Since

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
= 𝑡
2 󵄨󵄨
󵄨
󵄨
󵄨
tan−1𝑥 − tan−1𝑦󵄨󵄨󵄨󵄨

󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤ (𝑡
2
+ 1)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
,

(49)

then, (𝐴3) is satisfied with𝑚(𝑡) = (𝑡
2
+ 1) ∈ 𝐿2([0, 1],

R+). We can show that

‖𝑚‖𝑝 = (∫

1

0

(𝑠
2
+ 1)

2
𝑑𝑠)

1/2

≈ 1.366260,

‖𝑚‖𝑝 {
1

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+ |Λ|(

1

𝑛!

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1−𝛾

𝑖
(

1 − 𝛾

𝑛 + 1 − 𝛾

)

1−𝛾

+

|𝛼|

(𝑛 − 1)!

(

1 − 𝛾

𝑛 − 𝛾

)

1−𝛾

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 2)!

(

1 − 𝛾

𝑛 − 1 − 𝛾

)

1−𝛾

)}

≈ 0.692906 < 1.

(50)

Thus, byTheorem 11, the problem (44) with𝑓 defined
by (48) has a unique solution.
(c) Let

𝑓 (𝑡, 𝑢) =

𝑡

10𝜋

sin (𝜋𝑢) +

(𝑡 + 1) 𝑢
2

1 + 𝑢
2

, 𝑡 ∈ [0, 1] . (51)

Clearly,

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡

10𝜋

sin (𝜋𝑢) +

(𝑡 + 1) 𝑢
2

1 + 𝑢
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (𝑡 + 1) (

‖𝑢‖

10

+ 1) .

(52)

Choosing 𝑝(𝑡) = 𝑡 + 1, 𝜓(‖𝑥‖) = (‖𝑥‖/10) + 1, we
obtain

𝑀

{

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩𝐿1

>

𝑀

10

+ 1,

(53)

which implies that 𝑀 > 0.639955. Hence, by
Theorem 5, the boundary value problem (44) with 𝑓

defined by (51) has at least one solution on [0, 1].
(d) Let

𝑓 (𝑡, 𝑢) =

𝑡 |𝑢|

1 + |𝑢|

, 0 < 𝑡 < 1. (54)

We choose ℎ(𝑡) = (1 + 𝑡) and find that

𝐻
∗
= ‖ℎ‖𝐿1 {

1

𝑛!

+ |Λ| (

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛+1
𝑖

(𝑛 + 1)!

+

|𝛼|

𝑛!

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

(𝑛 − 1)!

)}

≈ 0.601464.

(55)
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Clearly,

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡 (|𝑥| −
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
)

1 + |𝑥| +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑥|

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

0.601464
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

0.601464 +
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

.

(56)

Hence, by Theorem 14, the boundary value problem
(44) with 𝑓 defined by (54) has a unique solution on
[0, 1].

5. Fractional Case

In this section, we consider a Caputo type fractional analogue
of problem (1) given by

𝑐
𝐷

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1, 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑛 ≥ 2, 𝑛 ∈ N,

𝑥 (0) = 0, 𝑥
󸀠
(0) = 0, 𝑥

󸀠󸀠
(0) = 0, . . . , 𝑥

(𝑛−2)
(0) = 0,

𝛼𝑢 (1) + 𝛽𝑢
󸀠
(1) =

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝑛𝑖

0

𝑢 (𝑠) 𝑑𝑠, 0 < 𝜂𝑖 < 1,

(57)

where 𝑐𝐷𝑞 denotes the Caputo fractional derivative of order
𝑞. Before proceeding further, we recall some basic definitions
of fractional calculus [25–27].

Definition 15. For an at least 𝑛-times continuously differen-
tiable function 𝑔 : [0,∞) → R, the Caputo derivative of
fractional order 𝑞 is defined as

𝑐
𝐷
𝑞
𝑔 (𝑡) =

1

Γ (𝑛 − 𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑔
(𝑛)

(𝑠) 𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(58)

where [𝑞] denotes the integer part of the real number 𝑞.

Definition 16. The Riemann-Liouville fractional integral of
order 𝑞 is defined as

𝐼
𝑞
𝑔 (𝑡) =

1

Γ (𝑞)

∫

𝑡

0

𝑔 (𝑠)

(𝑡 − 𝑠)
1−𝑞

𝑑𝑠, 𝑞 > 0, (59)

provided that the integral exists.
It is well known [26] that the general solution of the

fractional differential equation
𝑐
𝐷
𝑞
𝑢 (𝑡) = 𝑦 (𝑡) ,

0 < 𝑡 < 1, 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑛 ≥ 2, 𝑛 ∈ N,

(60)

with 𝑦 ∈ 𝐶([0, 1],R) can be written as

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠 + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡

𝑛−1
,

(61)

where 𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛−1 are arbitrary constants. Using the
boundary conditions for the problem (57), we find that 𝑐0 =
𝑐1 = 𝑐2 = ⋅ ⋅ ⋅ = 𝑐𝑛−2 = 0 and

𝑐𝑛−1 = Λ(

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(∫

𝑠

0

(𝑠 − 𝑟)
𝑞−1

Γ (𝑞)

𝑦 (𝑟) 𝑑𝑟) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠

− 𝛽∫

1

0

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

𝑦 (𝑠) 𝑑𝑠) ,

(62)

whereΛ = [𝛼+(𝑛−1)𝛽−(1/𝑛)∑
𝑚

𝑖=1 𝛾𝑖𝜂
𝑛
𝑖 ]
−1. Substituting these

values in (61) yields

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠

+ Λ𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(∫

𝑠

0

(𝑠 − 𝑟)
𝑞−1

Γ (𝑞)

𝑦 (𝑟) 𝑑𝑟) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

𝑦 (𝑠) 𝑑𝑠) .

(63)

Integrating the second term in (63) with respect to 𝑠 after
interchanging the order of integration, we obtain

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠

+ Λ𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑟)
𝑞

Γ (𝑞 + 1)

𝑦 (𝑟) 𝑑𝑟

− 𝛼∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)

𝑦 (𝑠) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

𝑦 (𝑠) 𝑑𝑠) .

(64)

Replacing 𝑦(𝑠) with 𝑓(𝑠, 𝑢(𝑠)) in (64), the solution of the
problem (57) is given by

𝑢 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ Λ𝑡
𝑛−1
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× (

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑞

Γ (𝑞 + 1)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) .

(65)

In relation to the problem (57), we define an operatorF𝑞 :
𝐶([0, 1],R) → 𝐶([0, 1],R) by

(F𝑞𝑢) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ Λ𝑡
𝑛−1

× (

𝑚

∑

𝑖=1

𝛾𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑠)
𝑞

Γ (𝑞 + 1)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− 𝛼∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−𝛽∫

1

0

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) .

(66)

By taking 𝑞 = 𝑛 in (66), the resulting operator reduces
to the one given by (8) for a 𝑛th order classical boundary
value problem.Thus, all the results for the fractional problem
(57), analogous to the classical problem (1), can be obtained
with the aid of the operator F𝑞 given by (66). For example,
Theorem 10 has the following fractional analogue.

Theorem 17. Assume that 𝑓 : [0, 1] ×R → R is a continuous
function satisfying the condition (𝐴1).

If

𝐿{

1

Γ (𝑞 + 1)

+ |Λ|(

∑
𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝛾𝑖
󵄨
󵄨
󵄨
󵄨
𝜂
𝑞+1

𝑖

Γ (𝑞 + 2)

+

|𝛼|

Γ (𝑞 + 1)

+

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

Γ (𝑞)

)}

< 1,

(67)

then, the boundary value problem (57) has a unique solution.
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