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For circular restricted𝑁+ 1-body problems, we study the motion of a sufficiently small mass point (called the zero mass point) in
the plane of N equal masses located at the vertices of a regular polygon. By using variational minimizing methods, for some N, we
prove the existence of the noncollision periodic solution for the zero mass point with some fixed wingding number.

1. Introduction and Main Results

In this paper, we study the planar circular restricted 𝑁 + 1-
body problems. Suppose that points of positive masses 𝑚

1
=

⋅ ⋅ ⋅ = 𝑚
𝑁
= 1 move on a circular orbit around the center

of masses, and that the sufficiently small mass point, called
the zero mass point, moves on the moving plane of the
given 𝑁 equal masses and does not influence the motion of
𝑚
1
, . . . , 𝑚

𝑁
, but the motion of the zero mass point is affected

by the given 𝑁 equal mass points. Let 𝜌
𝑖
= 𝑒
√−1(2𝜋𝑖/𝑁) and

we denote the position vectors of the given𝑁 bodies by 𝑞
𝑖
(𝑡),

𝑖 = 1, . . . , 𝑁, then

𝑞
1
(𝑡) = 𝑟𝑒

√−12𝜋𝑡
𝜌
1
, . . . , 𝑞

𝑖
(𝑡) = 𝑟𝑒

√−12𝜋𝑡
𝜌
𝑖
, . . . ,

𝑞
𝑁
(𝑡) = 𝑟𝑒

√−12𝜋𝑡
,

(1)

where the radius 𝑟 > 0. It is known that 𝑞
1
(𝑡), . . . , 𝑞

𝑁
(𝑡) satisfy

the following Newtonian equations:

𝑚
𝑖
̈𝑞
𝑖
=
𝜕𝑈

𝜕𝑞
𝑖

, 𝑖 = 1, . . . , 𝑁, (2)

where

𝑈 = ∑

1≤𝑖<𝑗≤𝑁

𝑚
𝑖
𝑚
𝑗


𝑞
𝑖
− 𝑞
𝑗



. (3)

We also assume that
𝑁

∑

𝑖=1

𝑚
𝑖
𝑞
𝑖
=

𝑁

∑

𝑖=1

𝑞
𝑖
= 0. (4)

The orbit 𝑞(𝑡) ∈ 𝑅2 for the zero mass point is governed by the
gravitational forces of𝑚

1
, . . . , 𝑚

𝑁
and therefore it satisfies the

following equation:

̈𝑞 =

𝑁

∑

𝑖=1

𝑚
𝑖
(𝑞
𝑖
− 𝑞)

𝑞𝑖 − 𝑞


3
. (5)

For𝑁-body problems, there are many papers concerned
with the periodic solutions by using variational methods;
see [1–15] and the references therein. In [1], Chenciner and
Montgomery proved the existence of the remarkable figure-
“8” type periodic solution for planar Newtonian 3-body
problems with equal masses. Marchal [4] studied the fixed
end problem for Newtonian 𝑛-body problems and proved
that the minimizer for the Lagrangian action has no interior
collision. In [6], Simó used computer to discover many new
periodic solutions for Newtonian 𝑛-body problems. Zhang
and Zhou [10–12] decomposed the Lagrangian action for 𝑛-
body problems into some sum for two body problems and
[11, 12] avoided collisions by comparing the lower bound for
the Lagrangian action on the symmetry collision orbits and
the upper bound for the Lagrangian action on test orbits in
some cases.

Motivated by the above works, we use variational meth-
ods to study the circular restricted𝑁+ 1-body problem with
some fixed wingding numbers and𝑁 equal masses.

For the readers’ conveniences, we recall the definition of
the winding number, which can be found in many books on
the classical differential geometry.
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Definition 1. Let Γ : 𝑥(𝑡), 𝑡 ∈ [𝑎, 𝑏] be a given oriented
continuous closed curve, and 𝑝 be a point on the plane not
on the curve. Then, the mapping 𝜑 : Γ → 𝑆

1 given by

𝜑 (𝑥 (𝑡)) =
𝑥 (𝑡) − 𝑝

𝑥 (𝑡) − 𝑝


, 𝑡 ∈ [𝑎, 𝑏] (6)

is defined to be the position mapping of the curve Γ relative
to 𝑝, and when the point on Γ goes around the curve once, its
image point 𝜑(𝑥(𝑡))will go around 𝑆1 a number of times; this
number is called the winding number of the curve Γ relative
to 𝑝, and we denote it by deg(Γ, 𝑝). If 𝑝 is the origin, we write
deg Γ.

Let

𝑅 (𝑛) = (

cos 2𝜋
𝑛

− sin 2𝜋
𝑛

sin 2𝜋
𝑛

cos 2𝜋
𝑛

) ∈ 𝑆𝑂 (2) (7)

be a counter-clockwise rotation of angle 2𝜋/𝑛 in 𝑅2.

Define

𝑊
1,2
(
𝑅

𝑍
, 𝑅
2
)

= {𝑥 (𝑡) | 𝑥 (𝑡) , �̇� (𝑡) ∈ 𝐿
2
(𝑅, 𝑅
2
) , 𝑥 (𝑡 + 1) = 𝑥 (𝑡)} .

(8)

The norm of𝑊1,2(𝑅/𝑍, 𝑅2) is

‖𝑥‖ = [∫

1

0

|𝑥|
2
𝑑𝑡]

1/2

+ [∫

1

0

|�̇�|
2
𝑑𝑡]

1/2

. (9)

We consider the Lagrangian functional of (5) as

𝑓 (𝑞) = ∫

1

0

[
1

2


̇𝑞


2

+

𝑁

∑

𝑖=1

1

𝑞 − 𝑞𝑖


] 𝑑𝑡 (10)

on Λ
±
, where

Λ
−
=
{

{

{

𝑞 ∈ 𝑊
1,2
(
𝑅

𝑍
, 𝑅
2
)



𝑞 (𝑡 +
1

2
) = 𝑅 (2) 𝑞 (𝑡) , 𝑞 (𝑡) ̸= 𝑞

𝑖
(𝑡) , ∀𝑡 ∈ [0, 1] , 𝑖 = 1, . . . , 𝑁,

deg (𝑞 − 𝑞
𝑁
) = −1, deg (𝑞

𝑗
− 𝑞
𝑁
) = 1, 𝑗 = 1, . . . , 𝑁 − 1

}

}

}

,

Λ
+
=
{

{

{

𝑞 ∈ 𝑊
1,2
(
𝑅

𝑍
, 𝑅
2
)



𝑞 (𝑡 +
1

𝑁
) = 𝑅 (𝑁) 𝑞 (𝑡) , 𝑞 (𝑡) ̸= 𝑞

𝑖
(𝑡) , ∀𝑡 ∈ [0, 1] , 𝑖 = 1, . . . , 𝑁,

deg (𝑞 − 𝑞
𝑁
) = 1, deg (𝑞

𝑗
− 𝑞
𝑁
) = 1, 𝑗 = 1, . . . , 𝑁 − 1

}

}

}

.

(11)

Our main results are the following.

Theorem2. For𝑁 = 2, 3, the minimizer of𝑓(𝑞) on the closure
Λ
−
of Λ
−
is a noncollision 1-periodic solution of (5).

Remark 3. In proving Theorem 2, we need to use test
functions. We find that when 𝑁 = 3, if the test functions
are circular orbits, we cannot get the desired results on Λ

−
.

Therefore, we select elliptic orbits as test functions.

Theorem 4. For 2 ≤ 𝑁 ≤ 32402, the minimizer of 𝑓(𝑞) on the
closure Λ

+
of Λ
+
is a noncollision 1-periodic solution of (5).

2. Preliminaries

In this section, we will list some basic lemmas and inequality
to prove our theorems.

Lemma 5 (see [8]). The radius 𝑟 for the moving orbit of 𝑁
equal mass points is

𝑟 = (
1

4𝜋
)

2/3

[

[

∑

1≤𝑗≤𝑁−1

csc( 𝜋
𝑁
𝑗)]

]

1/3

. (12)

Lemma 6 (Zhang and Zhou [9]). Suppose that 𝑔 ∈ 𝑆𝑂(𝑘)

is an element of finite order 𝑠 and it has no fixed point

other than the origin (i.e., 1 is not an eigenvalue of 𝑔). Then
∫
𝑇

0
𝑋(𝑡)𝑑𝑡 = 0 for all 𝑋(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑁
(𝑡)) ∈ 𝐸

𝑁

𝑔
, where

𝐸
𝑁

𝑔
= {(𝑥

1
, . . . , 𝑥

𝑁
) | 𝑥

𝑖
∈ 𝐻
1
(𝑅/𝑇𝑍, 𝑅

𝐾
), 𝑥
𝑖
(𝑡 + 𝑇/𝑠) =

𝑔(𝑥
𝑖
(𝑡)), ∀𝑡 ∈ [0, 𝑇], 𝑖 = 1, . . . , 𝑁}.

Lemma 7 (Poincare-Wirtinger inequality [16]). Let 𝑞 ∈

𝑊
1,2
(𝑅/𝑇𝑍, 𝑅

𝐾
) and ∫𝑇

0
𝑞(𝑡)𝑑𝑡 = 0, and then

∫

𝑇

0

𝑞 (𝑡)


2

𝑑𝑡 ≤
𝑇
2

4𝜋2
∫

𝑇

0


̇𝑞 (𝑡)


2

𝑑𝑡. (13)

Lemma 8 (see [17]). Let𝑋 be a reflexive Banach space, 𝑆 be a
weakly closed subset of𝑋, and𝑓 : 𝑆 → 𝑅∪{+∞}. If𝑓 ̸≡ +∞

is weakly lower semicontinuous and coercive (𝑓(𝑥) → +∞ as
‖ 𝑥 ‖→ +∞), then 𝑓 attains its infimum on 𝑆.

Lemma 9 (Palais’s symmetry principle [18]). Let 𝜎 be an
orthogonal representation of a finite or compact group 𝐺, let
𝐻 be a real Hilbert space, and let 𝑓 : 𝐻 → 𝑅 satisfy 𝑓(𝜎 ⋅𝑥) =
𝑓(𝑥), ∀𝜎 ∈ 𝐺, ∀𝑥 ∈ 𝐻.

Set 𝐹 = {𝑥 ∈ 𝐻 | 𝜎 ⋅ 𝑥 = 𝑥, ∀𝜎 ∈ 𝐺}. Then the critical
point of 𝑓 in 𝐹 is also a critical point of 𝑓 in𝐻.

Remark 10. By Palais’s symmetry principle and the per-
turbation invariance for wingding numbers, we know that
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the critical point of 𝑓(𝑞) in Λ
±
is a periodic solution of

Newtonian equation (5).

Lemma 11. (1) (Gordon’s theorem [19]) Let 𝑥 ∈

𝑊
1,2
([𝑡
1
, 𝑡
2
], 𝑅
𝐾
) and 𝑥(𝑡

1
) = 𝑥(𝑡

2
) = 0. Then for any

𝑎 > 0, one has

∫

𝑡
2

𝑡
1

(
1

2
|�̇�|
2
+
𝑎

|𝑥|
) 𝑑𝑡 ≥

3

2
(2𝜋)
2/3
𝑎
2/3
(𝑡
2
− 𝑡
1
)
1/3

. (14)

(2) (Long and Zhang [20]) Let 𝑥 ∈ 𝑊1,2(𝑅/𝑇𝑍, 𝑅𝐾), and
∫
𝑇

0
𝑥𝑑𝑡 = 0, then for any 𝑎 > 0, we have

∫

𝑇

0

(
1

2
|�̇�|
2
+
𝑎

|𝑥|
) 𝑑𝑡 ≥

3

2
(2𝜋)
2/3
𝑎
2/3
𝑇
1/3
. (15)

3. Proof of Theorems

In order to get our theorems, we need two steps to complete
the proof.

Step 1. Wewill establish the existence of variational minimiz-
ers of 𝑓(𝑞) in (10) on Λ

±
.

Lemma 12. 𝑓(𝑞) in (10) attains its infimum on Λ
±
.

Proof. It is easy to check that the eigenvalue 𝜆 of𝑅(𝑛) satisfies

{{

{{

{

𝜆 = cos 2𝜋
𝑛
,

sin 2𝜋
𝑛
= 0,

(16)

which implies 𝜆 ̸= 1 for 𝑛 ≥ 2. Then by Lemma 6, we have

∫

1

0

𝑞 (𝑡) = 0 ∀𝑞 ∈ Λ
±
. (17)

So by using Lemma 7, for all 𝑞 ∈ Λ
±
, we see that an equivalent

norm of (9) on Λ
±
is

𝑞
 ≅ [∫

𝑇

0


̇𝑞


2

𝑑𝑡]

1/2

. (18)

Hence, by the definition of 𝑓(𝑞), 𝑓 is coercive on Λ
±
.

Similar to the proof of Lemma 2.4 in [13], we can get the
conclusion that 𝑓 is weakly lower semi-continuous on Λ

±
.

Therefore, by using Lemma 8, it can be concluded that
𝑓(𝑞) in (10) attains its infimum on Λ

±
.

Step 2. We will prove that the variational minimizer in
Lemma 12 is the noncollision 1-period solution of (5).

For any collision generalized solution 𝑞, we can estimate
the lower bound for the value of Lagrangian action func-
tional.

Lemma 13. For 𝜕Λ
−
= {𝑞 ∈ 𝑊

1,2
(𝑅/𝑍, 𝑅

2
) | 𝑞(𝑡 + 1/2) =

𝑅(2)𝑞(𝑡), ∃1 ≤ 𝑖
0
≤ 𝑁, 𝑡

0
∈ [0, 1] 𝑠.𝑡. 𝑞

𝑖
0

(𝑡
0
) = 𝑞(𝑡

0
)}, we

have
inf
𝑞∈𝜕Λ

−

𝑓 (𝑞)

≥
3

2
(4𝜋)
2/3
𝑁
−1/3

+ (
𝑁 − 1

𝑁
)
3

2
(2𝜋)
2/3
𝑁
2/3
−
1

2
(2𝜋)
2
𝑟
2

≜ 𝑑
0
.

(19)

Proof. It follows from (4) that
𝑁

∑

𝑖=1

̇𝑞
𝑖
= 0, (20)

which implies
𝑁

∑

𝑖=1


̇𝑞 − ̇𝑞
𝑖



2

=

𝑁

∑

𝑖=1

(

̇𝑞


2

+

̇𝑞
𝑖



2

− 2 ⟨ ̇𝑞, ̇𝑞
𝑖
⟩)

= 𝑁

̇𝑞


2

+

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

− 2⟨ ̇𝑞,

𝑁

∑

𝑖=1

̇𝑞
𝑖
⟩

= 𝑁

̇𝑞


2

+

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

.

(21)

Therefore,


̇𝑞


2

=
1

𝑁

𝑁

∑

𝑖=1

(

̇𝑞 − ̇𝑞
𝑖



2

−

̇𝑞
𝑖



2

) . (22)

Hence,

𝑓 (𝑞) = ∫

1

0

[
1

2


̇𝑞


2

+

𝑁

∑

𝑖=1

1

𝑞 − 𝑞𝑖


] 𝑑𝑡

=
1

𝑁
∫

1

0

𝑁

∑

𝑖=1

[
1

2


̇𝑞 − ̇𝑞
𝑖



2

+
𝑁

𝑞 − 𝑞𝑖


] 𝑑𝑡

−
1

2𝑁
∫

1

0

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

𝑑𝑡.

(23)

If 𝑞 ∈ Λ
−
is a collision solution, then there exists 𝑡

0
∈ [0, 1]

and 1 ≤ 𝑖
0
≤ 𝑁 s.t 𝑞(𝑡

0
) = 𝑞
𝑖
0

(𝑡
0
). Since 𝑞

𝑖
(𝑡+1/2) = 𝑅(2)𝑞

𝑖
(𝑡),

one has 𝑞(𝑡
0
+ 𝑘/2) = 𝑞

𝑖
0

(𝑡
0
+ 𝑘/2), ∀0 ≤ 𝑘 ≤ 2. So, by (1) of

Lemma 11, we get

1

𝑁
∫

1

0

[
1

2


̇𝑞 − ̇𝑞
𝑖
0



2

+
𝑁


𝑞 − 𝑞
𝑖
0



] 𝑑𝑡

=
2

𝑁
∫

1/2

0

[
1

2


̇𝑞 − ̇𝑞
𝑖
0



2

+
𝑁


𝑞 − 𝑞
𝑖
0



] 𝑑𝑡

≥
3

2
(4𝜋)
2/3
𝑁
−1/3

.

(24)
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For noncollision pair 𝑞, 𝑞
𝑖
(𝑖 ̸= 𝑖
0
), we claim ∫

1

0
(𝑞(𝑡) −

𝑞
𝑖
(𝑡))𝑑𝑡 = 0. In fact, it follows from (1) that 𝑞

𝑖+1
(𝑡) = 𝑞

𝑖
(𝑡 +

1/𝑁), which implies

𝑞
𝑖
(𝑡) = 𝑞

1
(𝑡 +

𝑖 − 1

𝑁
) . (25)

Therefore, by (4), we have

∫

1

0

𝑞
1
(𝑡) 𝑑𝑡

= ∫

1/𝑁

0

𝑞
1
(𝑡) 𝑑𝑡 + ⋅ ⋅ ⋅ + ∫

1

(𝑁−1)/𝑁

𝑞
1
(𝑡) 𝑑𝑡

= ∫

1/𝑁

0

𝑞
1
(𝑡) 𝑑𝑡 + ⋅ ⋅ ⋅ + ∫

1/𝑁

0

𝑞
1
(𝑡 +

𝑁 − 1

𝑁
)𝑑𝑡

= ∫

1/𝑁

0

𝑁

∑

𝑖=1

𝑞
𝑖
(𝑡) 𝑑𝑡

= 0.

(26)

Since 𝑞
1
(𝑡 + 1) = 𝑞

1
(𝑡), by (25) and (26), we obtain

∫

1

0

𝑞
𝑖
(𝑡) 𝑑𝑡 = ∫

1

0

𝑞
1
(𝑡 +

𝑖 − 1

𝑁
)𝑑𝑡 = ∫

1

0

𝑞
1
(𝑡) 𝑑𝑡 = 0. (27)

Combined with (17) and (27), we have ∫1
0
(𝑞(𝑡) − 𝑞

𝑖
(𝑡))𝑑𝑡 = 0.

Hence, by (2) of Lemma 11, we can get

1

𝑁
∫

1

0

∑

𝑖 ̸= 𝑖
0

[
1

2


̇𝑞 − ̇𝑞
𝑖



2

+
𝑁

𝑞 − 𝑞𝑖


] 𝑑𝑡

≥ (
𝑁 − 1

𝑁
)
3

2
(2𝜋)
2/3
𝑁
2/3
.

(28)

For the other term of 𝑓, using the expression for the orbits
𝑞
1
, . . . , 𝑞

𝑁
as in (1), one has

−
1

2𝑁
∫

1

0

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

𝑑𝑡 = −
1

2
(2𝜋)
2
𝑟
2
. (29)

Therefore, it follows from (24), (28), and (29) that

inf
𝑞∈𝜕Λ

−

𝑓 (𝑞)

≥
3

2
(4𝜋)
2/3
𝑁
−1/3

+ (
𝑁 − 1

𝑁
)
3

2
(2𝜋)
2/3
𝑁
2/3
−
1

2
(2𝜋)
2
𝑟
2

≜ 𝑑
0
.

(30)

Lemma 14. For 𝜕Λ
+
= {𝑞 ∈ 𝑊

1,2
(𝑅/𝑍, 𝑅

2
) | 𝑞(𝑡 + 1/𝑁) =

𝑅(𝑁)𝑞(𝑡), ∃1 ≤ �̃�
0
≤ 𝑁, �̃�

0
∈ [0, 1] 𝑠.𝑡. 𝑞

�̃�
0

(�̃�
0
) = 𝑞(�̃�

0
)}, we

have

inf
𝑞∈𝜕Λ

+

𝑓 (𝑞)

≥
3

2
(2𝜋)
2/3
𝑁
1/3
+ (

𝑁 − 1

𝑁
)
3

2
(2𝜋)
2/3
𝑁
2/3
−
1

2
(2𝜋)
2
𝑟
2

≜ 𝑑
1
.

(31)

Proof. Similar to the proof of Lemma 13, Lemma 14
holds.

Proof of Theorem 2. In order to get Theorem 2, we are going
to find a test loop 𝑞 ∈ Λ

−
such that 𝑓(𝑞) = 𝑑

2
. Then the

minimizer of 𝑓 on Λ
−
must be a noncollision solution if 𝑑

2
<

𝑑
0
.
Let 𝑎 > 0, 𝑏 > 0, 𝜃 ∈ [0, 2𝜋) and

𝑞 − 𝑞
𝑁
= (𝑎 cos (−2𝜋𝑡 + 𝜃) , 𝑏 sin (−2𝜋𝑡 + 𝜃))𝑇.

(32)

Hence,

𝑞 − 𝑞
1
= (𝑟 cos 2𝜋𝑡 − 𝑟 cos(2𝜋𝑡 + 2𝜋

𝑁
)

+ 𝑎 cos (−2𝜋𝑡 + 𝜃) , 𝑟 sin 2𝜋𝑡

− 𝑟 sin(2𝜋𝑡 + 2𝜋
𝑁
) + 𝑏 sin(−2𝜋𝑡 + 𝜃))

𝑇

,

...

(33)

𝑞 − 𝑞
𝑖
= (𝑟 cos 2𝜋𝑡 − 𝑟 cos(2𝜋𝑡 + 𝑖

𝑁
2𝜋)

+ 𝑎 cos (−2𝜋𝑡 + 𝜃) , 𝑟 sin 2𝜋𝑡

− 𝑟 sin(2𝜋𝑡 + 𝑖

𝑁
2𝜋) + 𝑏 sin(−2𝜋𝑡 + 𝜃))

𝑇

,

...

(34)

𝑞 − 𝑞
𝑁−1

= (𝑟 cos 2𝜋𝑡 − 𝑟 cos(2𝜋𝑡 + 𝑁 − 1
𝑁

2𝜋)

+ 𝑎 cos (−2𝜋𝑡 + 𝜃) , 𝑟 sin 2𝜋𝑡

− 𝑟 sin(2𝜋𝑡 + 𝑁 − 1
𝑁

2𝜋)+ 𝑏 sin(−2𝜋𝑡 + 𝜃))
𝑇

.

(35)
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It is easy to see that 𝑞 ∈ Λ
−
and


̇̃𝑞 − ̇𝑞
1



2

= (2𝜋)
2
{
𝑎
2
+ 𝑏
2

2
−
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 2𝜋

𝑁
) − (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡 + 2𝜋
𝑁
− 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos(2𝜋
𝑁
+ 𝜃)]} ,

(36)

𝑞 − 𝑞1
 = {

𝑎
2
+ 𝑏
2

2
+
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 2𝜋

𝑁
) + (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡 + 2𝜋
𝑁
− 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos(2𝜋
𝑁
+ 𝜃)]}

1/2

,

...
(37)


̇̃𝑞 − ̇𝑞
𝑖



2

= (2𝜋)
2
{
𝑎
2
+ 𝑏
2

2
−
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) − (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡+ 𝑖
𝑁
2𝜋 − 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos( 𝑖
𝑁
2𝜋 + 𝜃)]} ,

(38)

𝑞 − 𝑞𝑖
 = {

𝑎
2
+ 𝑏
2

2
+
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡 + 𝑖

𝑁
2𝜋 − 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos( 𝑖
𝑁
2𝜋 + 𝜃)]}

1/2

,

...
(39)


̇̃𝑞 − ̇𝑞
𝑁



2

= (2𝜋)
2
(
𝑎
2
+ 𝑏
2

2
−
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)) ,

(40)

𝑞 − 𝑞𝑁
 =
√
𝑎
2
+ 𝑏
2

2
+
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃), (41)


̇𝑞
1



2

= ⋅ ⋅ ⋅ =

̇𝑞
𝑁



2

= (2𝜋)
2
𝑟
2
. (42)

Therefore by (36)–(42), we get

𝑓 (𝑞)

=
1

𝑁
∫

1

0

𝑁

∑

𝑖=1

[
1

2


̇̃𝑞 − ̇𝑞
𝑖



2

+
𝑁

𝑞 − 𝑞𝑖


] 𝑑𝑡 −
1

2𝑁
∫

1

0

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

𝑑𝑡

= (𝑎
2
+ 𝑏
2
) 𝜋
2
+ (2𝜋)

2
𝑟
2

+ 2𝜋
2
(𝑎 − 𝑏) 𝑟 [cos 𝜃 − 1

𝑁

𝑁

∑

𝑖=1

cos( 𝑖
𝑁
2𝜋 + 𝜃)]

+

𝑁

∑

𝑖=1

∫

1

0

{
𝑎
2
+ 𝑏
2

2
+
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡 + 𝑖

𝑁
2𝜋 − 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos( 𝑖
𝑁
2𝜋 + 𝜃)]}

−1/2

𝑑𝑡

−
1

2
(2𝜋)
2
𝑟
2

= 2𝜋
2
(
𝑎
2
+ 𝑏
2

2
+ 𝑟
2
)

+ 2𝜋
2
(𝑎 − 𝑏) 𝑟 [cos 𝜃 − 1

𝑁

𝑁

∑

𝑖=1

cos( 𝑖
𝑁
2𝜋 + 𝜃)]

+

𝑁

∑

𝑖=1

∫

1

0

{
𝑎
2
+ 𝑏
2

2
+
𝑎
2
− 𝑏
2

2
cos (4𝜋𝑡 − 2𝜃)

+ 𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + (𝑎 + 𝑏) 𝑟

× [cos (4𝜋𝑡 − 𝜃) − cos(4𝜋𝑡 + 𝑖

𝑁
2𝜋 − 𝜃)]

+ (𝑎 − 𝑏) 𝑟 [cos 𝜃 − cos( 𝑖
𝑁
2𝜋 + 𝜃)]}

−1/2

𝑑𝑡

= 𝑑
2
(𝑎, 𝑏, 𝜃) .

(43)

In order to estimate 𝑑
2
, we have computed the numerical

values of 𝑑
2
= 𝑓(𝑞) over some selected test loops. The

computation of the integral that appears in (43) has been done
using the function {𝑞𝑢𝑎𝑑} of Mathematica 7.1 with an error
less than 10−6. The results of the numerical explorations are
given in Table 1.
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Table 1: Parameters of test loops for Theoerm 2.

𝑁 𝑎 𝑏 𝜃 𝑑
0

𝑑
2

2 0.11 0.29 𝜋/2 9.813298 9.753899
2 0.13 0.25 𝜋 9.813298 9.753243
2 0.13 0.27 𝜋 9.813298 9.643849
2 0.15 0.21 𝜋 9.813298 9.790068
2 0.15 0.23 𝜋/5 9.813298 9.746803
2 0.17 0.19 𝜋 9.813298 9.751237
2 0.17 0.21 𝜋/5 9.813298 9.625193
2 0.19 0.17 𝜋 9.813298 9.784859
2 0.19 0.19 𝜋 9.813298 9.564603
2 0.21 0.21 𝜋 9.813298 9.279445
2 0.23 0.15 𝜋 9.813298 9.793205
2 0.23 0.23 𝜋/5 9.813298 9.109854
2 0.25 0.13 𝜋/2 9.813298 9.730925
2 0.25 0.25 𝜋/5 9.813298 9.038706
3 0.15 0.67 𝜋/30 11.523843 11.505860
3 0.15 0.69 𝜋/30 11.523843 11.444212
3 0.17 0.65 𝜋/30 11.523843 11.493238
3 0.17 0.67 𝜋/20 11.523843 11.452135
3 0.17 0.69 𝜋/20 11.523843 11.400124
3 0.19 0.63 𝜋/30 11.523843 11.519350
3 0.19 0.65 𝜋/20 11.523843 11.455969
3 0.19 0.67 𝜋/20 11.523843 11.386608
3 0.61 0.23 𝜋 11.523843 11.516685
3 0.63 0.19 𝜋 11.523843 11.489791
3 0.63 0.21 𝜋 11.523843 11.436105
3 0.65 0.17 𝜋 11.523843 11.461786
3 0.65 0.19 𝜋 11.523843 11.392115
3 0.65 0.21 𝜋 11.523843 11.349366
3 0.67 0.15 𝜋 11.523843 11.472422
3 0.67 0.17 𝜋 11.523843 11.383978
3 0.67 0.19 𝜋 11.523843 11.324970
3 0.69 0.13 𝜋 11.523843 11.522980
3 0.69 0.15 𝜋 11.523843 11.412094
3 0.69 0.17 𝜋 11.523843 11.334189

For the parameters 𝑎, 𝑏, and 𝜃 given in Table 1, we all
have 𝑑

2
< 𝑑
0
. For 4 ≤ 𝑁 ≤ 1000, we do not find

suitable parameters 𝑎 ∈ [0.01, 2𝑟), 𝑏 ∈ [0.01, 2𝑟), and 𝜃 =
𝜋, 𝜋/2, 𝜋/3, . . . , 𝜋/29, 𝜋/30 such that 𝑑

2
< 𝑑
0
, where 𝑟 is the

radius of the first 𝑁 bodies with equal masses. Hence we
only consider the case 𝑁 = 2, 3. This completes the proof of
Theorem 2.

Proof of Theorem 4. To get Theorem 4, we are going to find a
test loop 𝑞 ∈ Λ

+
such that 𝑓(𝑞) = 𝑑

3
. Then the minimizer of

𝑓 on Λ
+
must be a noncollision solution if 𝑑

3
< 𝑑
1
.

Let 𝑎 > 0, 𝜃 ∈ [0, 2𝜋), and

𝑞 − 𝑞
𝑁
= 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

. (44)

Hence,

𝑞 − 𝑞
1

= 𝑞
𝑁
+ 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

− 𝑞
1

= 𝑟𝑒
√−12𝜋𝑡

(1 − 𝑒
√−1(2𝜋/𝑁)

) + 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

,

...

(45)

𝑞 − 𝑞
𝑖

= 𝑞
𝑁
+ 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

− 𝑞
𝑖

= 𝑟𝑒
√−12𝜋𝑡

(1 − 𝑒
√−1(𝑖/𝑁)2𝜋

) + 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

,

...

(46)

𝑞 − 𝑞
𝑁−1

= 𝑞
𝑁
+ 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

− 𝑞
𝑁−1

= 𝑟𝑒
√−12𝜋𝑡

(1 − 𝑒
√−1((𝑁−1)/𝑁)2𝜋

) + 𝑎𝑒
√−12𝜋𝑡

𝑒
√−1𝜃

.

(47)

It is easy to see that 𝑞 ∈ Λ
+
and


�̇� − ̇𝑞
1



2

= (2𝜋)
2
{𝑟
2
(2 − 2 cos 2𝜋

𝑁
) + 𝑎
2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 2𝜋
𝑁
)]} ,

(48)

𝑞 − 𝑞1
 = {𝑟

2
(2 − 2 cos 2𝜋

𝑁
) + 𝑎
2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 2𝜋
𝑁
)]}

1/2

,

...

(49)


�̇� − ̇𝑞
𝑖



2

= (2𝜋)
2
{𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + 𝑎

2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 𝑖

𝑁
2𝜋)]} ,

(50)

𝑞 − 𝑞𝑖
 = {𝑟

2
(2 − 2 cos 𝑖

𝑁
2𝜋) + 𝑎

2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 𝑖

𝑁
2𝜋)]}

1/2

,

...

(51)


�̇� − ̇𝑞
𝑁



2

= (2𝜋)
2
𝑎
2
,

𝑞 − 𝑞𝑁
 = 𝑎,

(52)


̇𝑞
1



2

= ⋅ ⋅ ⋅ =

̇𝑞
𝑁



2

= (2𝜋)
2
𝑟
2
. (53)
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Therefore by (48)–(53), we get

𝑓 (𝑞)

=
1

𝑁
∫

1

0

𝑁

∑

𝑖=1

[
1

2


�̇� − ̇𝑞
𝑖



2

+
𝑁

𝑞 − 𝑞𝑖


] 𝑑𝑡

−
1

2𝑁
∫

1

0

𝑁

∑

𝑖=1


̇𝑞
𝑖



2

𝑑𝑡

= 2𝜋
2
𝑎
2
+ (2𝜋)

2
𝑟
2

+ (2𝜋)
2
[arcos𝜃 − 𝑎𝑟

𝑁

𝑁

∑

𝑖=1

cos(𝜃 − 𝑖

𝑁
2𝜋)]

+ 𝑎
−1
+

𝑁−1

∑

𝑖=1

{𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + 𝑎

2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 𝑖

𝑁
2𝜋)]}

−1/2

−
1

2
(2𝜋)
2
𝑟
2

= 2𝜋
2
(𝑎
2
+ 𝑟
2
)

+ (2𝜋)
2
[arcos𝜃 − 𝑎𝑟

𝑁

𝑁

∑

𝑖=1

cos(𝜃 − 𝑖

𝑁
2𝜋)]

+ 𝑎
−1
+

𝑁−1

∑

𝑖=1

{𝑟
2
(2 − 2 cos 𝑖

𝑁
2𝜋) + 𝑎

2

+2𝑎𝑟 [cos 𝜃 − cos(𝜃 − 𝑖

𝑁
2𝜋)]}

−1/2

= 𝑑
3
(𝑎, 𝜃) .

(54)

In order to estimate 𝑑
3
, we have computed the numerical

values of 𝑑
3
= 𝑓(𝑞) over some selected test loops. The

results of the numerical explorations show that by choosing
some 𝑎 ∈ [0.11, 12.50] and 𝜃 = 𝜋, one has 𝑑

3
< 𝑑
1

for 2 ≤ 𝑁 ≤ 32402. From the computational data, let
𝜃 = 𝜋, 𝜋/2, 𝜋/3, . . . , 𝜋/19, 𝜋/20, and we find that 𝑑

3
< 𝑑
1

holds for 2 ≤ 𝑁 ≤ 19 with some 𝑎 ∈ [0.11, 0.90].
But for 20 ≤ 𝑁 ≤ 32402, no matter how we choose
the value of 𝑎 ∈ [0.11, 12.50], we obtain 𝑑

3
< 𝑑
1
only

if 𝜃 = 𝜋. For 𝑁 = 32403, the computational data
shows that 𝑑

3
≫ 𝑑
1
for all 𝑎 ∈ [0.11, 10.00] and 𝜃 =

𝜋, 𝜋/2, 𝜋/3, . . . , 𝜋/99, 𝜋/100. Then combined with Figure 1, it
is easy to see that 𝑎.𝑒. 𝑑

3
> 𝑑
1
for all 𝑎 ∈ [0.11, 12.50] and 𝜃 =

𝜋, 𝜋/2, 𝜋/3, . . . , 𝜋/99, 𝜋/100. The same holds for 𝑁 = 32404

from Figure 2 and the computational data. Moreover, we can
get the same conclusions for 32405 ≤ 𝑁 ≤ 100000. Hence,
we only consider the case 2 ≤ 𝑁 ≤ 32402. This completes the
proof of Theorem 4.
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Figure 1:𝑁 = 32403.
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Figure 2:𝑁 = 32404.
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