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The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential
equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model.
The interpretations of the solutions to the equation are presented in terms of appliedmodel.The possibility theorem for the problem
of getting the solution having some preassigned properties by means of parametric control is proved.

1. Introduction

Since the work [1], the theory of contrasting structures has
become one of the most booming areas of research of the
singularly perturbed differential equations [2–4].

The contrasting structures having the form of nonstation-
ary fronts for parabolic partial differential equations were
studied in [5]. The theory was applied to propagation of
magnetic fronts in spiral galaxies [6–8]. Here we consider the
nonstationary fronts in theMikhailov “power-society”model
[9–12] and the possibility to control them.

In the most general case the “power-society” model has
the form of a Neumann boundary value problem for nonlin-
ear parabolic integrodifferential equation. In the absence of
some politicalmechanisms themodel is reduced to singularly
perturbed parabolic Neumann boundary value problem:

𝜕𝑝

𝜕𝑡
= 𝜀
2 𝜕
2
𝑝

𝜕𝑥2
+ 𝐹 (𝑝, 𝑥) ,

𝜕𝑝

𝜕𝑥

𝑥=0
=

𝜕𝑝

𝜕𝑥

𝑥=1
= 0,

𝑝 (𝑥, 0) = 𝑝
0
(𝑥) .

(1)

Here 𝜀 ≪ 1 is a small positive parameter. Within the “power-
society” model this parameter is small if the hierarchy is long
or if society is strong.

The steady-state problem has the form

𝜀
2 𝜕
2
𝑝

𝜕𝑥2
+ 𝐹 (𝑝, 𝑥) = 0,

𝜕𝑝

𝜕𝑥

𝑥=0
=

𝜕𝑝

𝜕𝑥

𝑥=1
= 0. (2)

Let the following conditions hold [2–4].

(1) The function 𝐹(𝑝, 𝑥) has continuous partial deriva-
tives for 0 ≤ 𝑥 ≤ 1 and 𝑝 ∈ (−∞, +∞).

(2) The degenerate equation 𝐹(𝑝, 𝑥) = 0 has three roots
𝑝 = 𝜑

1
(𝑥), 𝑝 = 𝜑

2
(𝑥), and 𝑝 = 𝜑

3
(𝑥) such that

𝜑
1
(𝑥) < 𝜑

2
(𝑥) < 𝜑

3
(𝑥), 0 ≤ 𝑥 ≤ 1.

(3) The following inequalities

𝜕𝐹

𝜕𝑝

𝑝=𝜑
1
(𝑥)

< 0,
𝜕𝐹

𝜕𝑝

𝑝=𝜑
2
(𝑥)

> 0,
𝜕𝐹

𝜕𝑝

𝑝=𝜑
3
(𝑥)

< 0 (3)

take place.
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(4) The equation

Φ (𝑥) = ∫

𝜑
3
(𝑥)

𝜑
1(𝑥)

𝐹 (𝑝, 𝑥) 𝑑𝑝 = 0 (4)

has isolated root 𝑥 = 𝑥
0
on the interval 0 < 𝑥 < 1.

Under these conditions,

(i) ifΦ(𝑥
0
) < 0, then the solution 𝑝(𝑥, 𝜀) of the problem

(2) exists such that

lim
𝜀→0

𝑝 (𝑥, 𝜀) = {
𝜑
3
(𝑥) , 0 < 𝑥 < 𝑥

0
,

𝜑
1
(𝑥) , 𝑥

0
< 𝑥 < 1,

(5)

and it is an asymptotically stable stationary solution
of problem (1);

(ii) if Φ(𝑥
0
) > 0, solution 𝑝(𝑥, 𝜀) of problem (2) exists

such that

lim
𝜀→0

𝑝 (𝑥, 𝜀) = {
𝜑
1
(𝑥) , 0 < 𝑥 < 𝑥

0
,

𝜑
3
(𝑥) , 𝑥

0
< 𝑥 < 1,

(6)

and it is an asymptotically stable stationary solution
of problem (1).

The solutions that satisfy (5) or (6) are called the step-
like contrasting structures or stationary fronts. There are
also other stable stationary solutions of the problem (1). In
particular, under Conditions 1–3 the existence of two more
solutions, one of which is close to 𝜑

1
(𝑥):

lim
𝜀→0

𝑝 (𝑥, 𝜀) = 𝜑
1
(𝑥) , 0 < 𝑥 < 𝑥

0 (7)

and the other one is close to 𝜑
3
(𝑥):

lim
𝜀→0

𝑝 (𝑥, 𝜀) = 𝜑
3
(𝑥) , 0 < 𝑥 < 𝑥

0
, (8)

is guaranteed.
There is an important problem of correspondence

between a set of initial functions and a set of steady stationary
solutions: given initial function 𝑝

0
(𝑥), what steady-state

solution will we have at 𝑡 → +∞? And there is the inverse
problem: if one of the steady states is more desirable than
others, which conditions on 𝑝

0
(𝑥) guarantee approach to this

desirable steady state?
At last, when studying mathematical models of particular

processes there is the following question which arises: if the
existing 𝑝

0
(𝑥) does not correspond to the desirably steady

state, is it possible to change the right-hand part of (1) so that
the solution would evolve to the desirable steady state?

This work is aimed at considering these problems for the
“power-society” model which describes the dynamics of the
power distribution in a hierarchy.

We base our study on the theory of contrasting structures
[2–5], especially on the Butuzov-Nedelko theorem [13]. Some
other issues related to nonstationary fronts were studied in
[14–16].

2. Nonstationary Fronts and
Interpretation in the Nonlinear Singularly
Perturbed ‘‘Power-Society’’ Model

This section deals with mathematical modeling of the pro-
cesses of power dynamics in the hierarchical structures. The
model was firstly introduced by Mikhailov, 1994, and the
books by Samarskii and Mikhailov 1997 and Mikhailov 2005
should also be mentioned.

Here the hierarchy is a ranked set of instances. Each
instance has a particular set of powers.The amount of powers
changes with time, and we call such variability the power
dynamics. We suppose that there exists a numerical variable
which specifies the amount of powers of a particular instance.
The power dynamics appear through (a) the self-streamlining
of the hierarchy and (b) the influence of the society.

Let us denote the rank of the instance in the hierarchy by
𝑥 so that 𝑥 = 0 at the top of the hierarchy and 𝑥 = 1 at the
bottom. Denote by 𝑝(𝑥, 𝑡) the amount of powers of instance
at time 𝑡.

The equation of the “power-society” model [1, 2] has the
form (1), and 𝐹(𝑝, 𝑥) is called the reaction of a civil society.
The paper [1] has shown that if 𝐹(𝑝, 𝑥) = −𝑘

1
(𝑝 − 𝑝

0
(𝑥))

(where 𝑘
1
= const > 0 and the function 𝑝

0
(𝑥) is the attractive

power profile), then the solution 𝑝 = 𝑝
0
(𝑥) of the stationary

degenerated equation 𝐹(𝑝, 𝑥) = 0 is stable. This means that
the solution 𝑝(𝑥, 𝑡, 𝜀) of (1) tends to 𝑝

0
(𝑥) when 𝑡 → +∞,

0 < 𝑥 < 1. So for sufficiently large values of 𝑡 the power profile
is close to 𝑝

0
(𝑥).

It was very important in the paper [1] that only one
attractive profile is supposed to exist. Here we consider the
case of two stable power profiles 𝜑

1
(𝑥) and 𝜑

3
(𝑥), and each

of them is attractive. We call 𝜑
1
(𝑥) the participatory profile

and 𝜑
3
(𝑥) the iron-hand profile. Both of them are stable due

to inequalities (3).
Henceforth we consider the function 𝐹(𝑝, 𝑥) having the

cubic nonlinearity. So we consider the equation

𝜕𝑝

𝜕𝑡
= 𝜀
2 𝜕
2
𝑝

𝜕𝑥2
− 𝑘
1
(𝑥) (𝑝 − 𝜑

1
(𝑥)) (𝑝 − 𝜑

2
(𝑥)) (𝑝 − 𝜑

3
(𝑥)) ,

(9)

with boundary value conditions

𝜕𝑝

𝜕𝑥

𝑥=0
=

𝜕𝑝

𝜕𝑥

𝑥=1
= 0. (10)

The following conditions are supposed to hold.

Condition 1. The functions 𝑘
1
(𝑥), 𝜑

𝑖
(𝑥), 𝑖 = 1, 2, 3, have the

continuous derivatives for 0 ≤ 𝑥 ≤ 1.

Condition 2. Inequalities 𝑘
1
(𝑥) > 0, 𝜑

1
(𝑥) < 𝜑

2
(𝑥) < 𝜑

3
(𝑥)

hold true for 0 ≤ 𝑥 ≤ 1.

We also notice that though 𝜑
1
(𝑥) > 0 because of the

politological meaning of the function 𝜑
𝑖
(𝑥), this condition

must not be required from the mathematical point of view.
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Making the substitution (see [17])

𝑝 = 𝑞
𝜑
3
(𝑥) − 𝜑

1
(𝑥)

2
+

𝜑
3
(𝑥) + 𝜑

1
(𝑥)

2
, (11)

we obtain the equation for the function 𝑢(𝑥, 𝑡, 𝜀):

𝜕𝑞

𝜕𝑡
= 𝜀
2 𝜕
2
𝑞

𝜕𝑥2
− 𝛾 (𝑥) (𝑞

2
− 1) (𝑞 − 𝜑 (𝑥))

+ 𝜀
2 𝜕𝑞

𝜕𝑥
Φ
1
(𝑥) + 𝜀

2
Φ
2
(𝑞, 𝑥) .

(12)

Here

𝛾 (𝑥) = 𝑘
1
(𝑥) (

𝜑
3
(𝑥) − 𝜑

1
(𝑥)

2
)

2

> 0,

𝜑 (𝑥) =
2𝜑
2
(𝑥) − 𝜑

3
(𝑥) − 𝜑

1
(𝑥)

𝜑
3
(𝑥) − 𝜑

1
(𝑥)

(13)

(notice that −1 < 𝜑(𝑥) < 1),

Φ
1
(𝑥) =

2 (𝜑


3
(𝑥) − 𝜑



1
(𝑥))

𝜑
3
(𝑥) − 𝜑

1
(𝑥)

,

Φ
2
(𝑞, 𝑥) = 𝑞

𝜑


3
(𝑥) − 𝜑



1
(𝑥)

𝜑
3
(𝑥) − 𝜑

1
(𝑥)

+
𝜑


3
(𝑥) + 𝜑



1
(𝑥)

𝜑
3
(𝑥) − 𝜑

1
(𝑥)

.

(14)

Function 𝑢(𝑥, 𝑡, 𝜀) satisfies boundary conditions

[𝜑
3
(0) − 𝜑

1
(0)]

𝜕𝑞

𝜕𝑥

𝑥=0

+ [𝜑


3
(0) − 𝜑



1
(0)]𝑞

𝑥=0 + 𝜑


3
(0) + 𝜑



1
(0) = 0,

[𝜑
3
(1) − 𝜑

1
(1)]

𝜕𝑞

𝜕𝑥

𝑥=1

+ [𝜑


3
(1) − 𝜑



1
(1)]𝑞

𝑥=1 + 𝜑


3
(1) + 𝜑



1
(1) = 0.

(15)

Consider stationary (𝜕/𝜕𝑡 = 0) equation related to (12):

𝜀
2
𝑞

= 𝛾 (𝑥) (𝑞

2
− 1) (𝑞 − 𝜑 (𝑥))

− 𝜀
2 𝜕𝑞

𝜕𝑥
Φ
1
(𝑥) − 𝜀

2
Φ
2
(𝑞, 𝑥) .

(16)

Using the boundary functions method [18] we construct the
asymptotic contrast solution of the problem (16) and (15).The
first-order asymptotic expansion has the form

𝑞 (𝑥, 𝑡, 𝜀) = 𝑞
0
(𝑥) + 𝜀𝑞

1
(𝑥) + Π

0
𝑞 (𝜏)

+ 𝜀Π
1
𝑞 (𝜏) + 𝜀𝑄𝑞 (𝜏

0
, 𝜏
1
) ,

(17)

where 𝑞
0
(𝑥) and 𝑞

1
(𝑥) are the regular terms of asymptotic

expansion, Π
0
𝑞(𝜏) and Π

1
𝑞(𝜏) are zero- and first-order tran-

sition layer functions, 𝜏 = (𝑥 − 𝑥
∗
)/𝜀 is a stretched variable,

𝑥
∗

= 𝑥
∗
(𝜀) is a transition point in a small vicinity of which

the transition layer is localized, and 𝑄𝑞(𝜏
0
, 𝜏
1
) is function

describing the boundary layers near the points 𝑥 = 0, 𝑥 = 1

and 𝜏
0

= 𝑥/𝜀, 𝜏
1

= (1 − 𝑥)/𝜀. The transition point has the
following asymptotic form:

𝑥
∗
= 𝑥
0
+ 𝜀𝑥
1
+ 𝜀
2
𝑥
2
+ ⋅ ⋅ ⋅ . (18)

Using the boundary functions method procedure [3, 4] we
obtain that the principal term 𝑥

0
of the expansion (18) can be

found from the equation

𝜑 (𝑥
0
) = 0. (19)

The full principal order function 𝑞(𝜏) = 𝑞
0
(𝑥
0
) + Π
0
𝑞(𝜏) can

be found from equation

𝑞

= 𝛾 (𝑥

0
) 𝑞 (𝑞
2
− 1) , (20)

𝑞 (−∞) = 1, 𝑞 (+∞) = −1. (21)

From (20) and (21) we have

𝑞 =

1 − exp [√2𝛾 (𝑥
0
)𝜏]

1 + exp [√2𝛾 (𝑥
0
)𝜏]

. (22)

So the principal term of the stationary power profile has the
form

𝑝st (𝑥, 𝜀) =

1 − exp [√2𝛾 (𝑥
0
) (𝑥 − 𝑥

0
) /𝜀]

1 + exp [√2𝛾 (𝑥
0
) (𝑥 − 𝑥

0
) /𝜀]

×
𝜑
3
(𝑥) − 𝜑

1
(𝑥)

2
+

𝜑
3
(𝑥) + 𝜑

1
(𝑥)

2
.

(23)

The power profile 𝑝st(𝑥, 𝜀) is close to the iron-hand profile
𝜑
3
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
and to the participatory profile 𝜑

1
(𝑥)

when 𝑥
0
< 𝑥 ≤ 1. In the vicinity of the transition point 𝑥

0
we

have 𝜕𝑝/𝜕𝑥 ≅ 𝜀
−1. We call such power profiles the contrast

power profiles.
Equation (19) can be written in the form

𝜑
2
(𝑥
0
) =

𝜑
3
(𝑥
0
) + 𝜑
1
(𝑥
0
)

2
. (24)

We call the function ℎ
1
(𝑥) = 𝜑

2
(𝑥) − 𝜑

1
(𝑥) the participatory

domain’s width and function ℎ
3
(𝑥) = 𝜑

3
(𝑥) − 𝜑

2
(𝑥) the

iron-hand domain’s width. Then (20) can be interpreted in
the following way: at the transition point 𝑥

0
of the stationary

contrast power profile (SCPP) the participatory domain’s width
is equal to the iron-hand domain’s width ℎ

1
(𝑥
0
) = ℎ
3
(𝑥
0
).

The stability of contrast structures of (9) was investigated
by Bozhevol’nov and Nefëdov [5] and Vasil’eva et al. [6]. In
terms of the “power-society” model the stability result can be
interpreted as follows.

SCPP, which are close to the iron-hand profile at the top
ranks of the hierarchy (𝑝 ≈ 𝜑

3
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
) and to

the participatory profile at the bottom ranks (𝑝 ≈ 𝜑
1
(𝑥)when

𝑥
0

< 𝑥 ≤ 1), are stable if the iron-hand domain’s width is
greater than the participatory domain’s width at the top ranks
of the hierarchy (ℎ

3
(𝑥) > ℎ

1
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
) and less

at the bottom ranks (ℎ
3
(𝑥) < ℎ

1
(𝑥) when 𝑥

0
< 𝑥 ≤ 1). If

ℎ
3
(𝑥) < ℎ

1
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
and ℎ

3
(𝑥) > ℎ

1
(𝑥) when

𝑥
0
< 𝑥 ≤ 1 then the SCPP is unstable.
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Remark 1. Similar statement holds for the so-called confeder-
ative SCPP which are close to the participatory profile at the
top ranks of the hierarchy and to the iron-hand profile at the
bottom ranks (𝑝 ≈ 𝜑

1
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
and 𝑝 ≈ 𝜑

3
(𝑥)

when 𝑥
0

< 𝑥 ≤ 1). They are stable if ℎ
3
(𝑥) < ℎ

1
(𝑥) when

0 ≤ 𝑥 < 𝑥
0
and ℎ

3
(𝑥) > ℎ

1
(𝑥) when 𝑥

0
< 𝑥 ≤ 1 and unstable

if ℎ
3
(𝑥) > ℎ

1
(𝑥) when 0 ≤ 𝑥 < 𝑥

0
and ℎ

3
(𝑥) < ℎ

1
(𝑥) when

𝑥
0
< 𝑥 ≤ 1.

Consider again nonstationary equation (9). Suppose that
at time 𝑡 = 𝑡

0
contrasting structure has appeared with the

transition layer at the vicinity of the point 𝑥 = 𝜉. Then for
𝑡 > 𝑡
0
the solution is a nonstationary contrast structure: 𝑝 ≈

𝜑
3
(𝑥) when 𝑥 < 𝑅(𝑡, 𝜀) and 𝑝 ≈ 𝜑

1
(𝑥) when 𝑥 > 𝑅(𝑡, 𝜀),

where the transition point 𝑅(𝑡, 𝜀) depends on time. We call
such power profile the nonstationary contrast power profile
(NCPP).

Let us construct the asymptotic NCPP.
Like in Section 3, make the substitution (6) and consider

(7). It was shown in [7] that the principal term of the
nonstationary contrast structure looks similar to one of the
stationary contrast structure (18):

𝑞 =
1 − exp [√2𝛾 (𝑅) (𝑥 − 𝑅) /𝜀]

1 + exp [√2𝛾 (𝑅) (𝑥 − 𝑅) /𝜀]
, (25)

where the function 𝑅 = 𝑅(𝑡, 𝜀) can be found from the
equation

𝑑𝑅

𝑑𝑡
= −𝜀√2𝛾 (𝑅)𝜑 (𝑅) . (26)

So the principal term of NCPP has the form

𝑝 (𝑥, 𝑡, 𝜀) =
1 − exp [√2𝛾 (𝑅) (𝑥 − 𝑅) /𝜀]

1 + exp [√2𝛾 (𝑅) (𝑥 − 𝑅) /𝜀]

×
𝜑
3
(𝑥) − 𝜑

1
(𝑥)

2
+

𝜑
3
(𝑥) + 𝜑

1
(𝑥)

2
.

(27)

Power profile 𝑝(𝑥, 𝑡, 𝜀) is close to the iron-hand profile 𝜑
3
(𝑥)

when 0 ≤ 𝑥 < 𝑅 and to the participatory profile 𝜑
1
(𝑥) when

𝑅 < 𝑥 ≤ 1. The value of 𝑑𝑅/𝑑𝑡 represents the speed of the
transition layer. In terms of the “power-society” model the
expression for 𝑑𝑅/𝑑𝑡 has the form

𝑑𝑅

𝑑𝑡
= −𝜀√

𝑘
1
(𝑅)

2
[2𝜑
2
(𝑅) − 𝜑

3
(𝑅) − 𝜑

1
(𝑅)] (28)

or

𝑑𝑅

𝑑𝑡
= 𝜀√

𝑘
1
(𝑅)

2
[ℎ
3
(𝑅) − ℎ

1
(𝑅)] . (29)

Consider now some important cases of using formula (29);
see also [17].

2.1. Attraction to the “Iron-Hand” Profile (1). Let the “iron-
hand” domain’s width be larger than participatory domain’s

width: ℎ
3
(𝑥) > ℎ

1
(𝑥) for any 𝑥 ∈ [0, 1]. This means that

the iron-hand profile looks more attractive from the society’s
point of view. Then SCPP do not exist because (24) has no
roots. After appearing at time 𝑡

0
the contrast structure begins

to move according to formula (29). Evidently 𝑑𝑅/𝑑𝑡 > 0, and
after small time of order 𝜀

−1 transition point 𝑅(𝑡, 𝜀) comes
to the right end of the segment [0, 1]. So the power profile
appears close to the iron-hand profile for any 𝑥 ∈ [0, 1].
Notice that if at time 𝑡 = 0 function 𝑝(𝑥, 0, 𝜀) is entirely in
the participatory domain then for any 𝑡 the power profile is
close to the participatory profile even if ℎ

3
(𝑥) > ℎ

1
(𝑥). For

appearing the power profile close to the iron-hand profile
function 𝑝(𝑥, 0, 𝜀) must be located in the iron-hand domain
on at least one point in the interval (0, 1). This statement is
based on the theorem proved by Bozhevol’nov and Nefedov
[5].

2.2. Attraction to the “Iron-Hand” Profile (2). Let point 𝑥
0
∈

(0, 1) exist such that ℎ
1
(𝑥
0
) = ℎ

3
(𝑥
0
), ℎ
1
(𝑥) > ℎ

3
(𝑥) when

𝑥 < 𝑥
0
and ℎ

1
(𝑥) < ℎ

3
(𝑥) when 𝑥 > 𝑥

0
. Then unstable SCPP

exist having transition layer in the vicinity of the point 𝑥
0
. Let

function 𝑝(𝑥, 0, 𝜀) be in the iron-hand domain for 𝑥 < 𝜉 and
in the participatory domain for 𝑥 > 𝜉where 𝑥

0
< 𝜉 < 1. Then

the power profile𝑝(𝑥, 𝑡, 𝜀) is attracted to the iron-hand profile
for 𝑥 < 𝜉 and to the participatory profile for 𝑥 > 𝜉. After
appearing at time 𝑡

0
the contrast structure begins to move

according to formula (29) and initial condition 𝑅(0, 𝜀) = 𝜉.
As 𝜉 > 𝑥

0
then 𝑑𝑅/𝑑𝑡 > 0. So after small time of order 𝜀

−1

transition point 𝑅(𝑡, 𝜀) comes to the right end of the segment
[0, 1]. So the power profile appears close to the iron-hand
profile for any 𝑥 ∈ [0, 1].

2.3. Attraction to the Participatory Profile (1). Let ℎ
3
(𝑥) <

ℎ
1
(𝑥) for any 𝑥 ∈ [0, 1]. This means that the participatory

profile looks more attractive from the society’s point of view.
Then SCPP do not exist because (24) has no roots. After
appearing at time 𝑡

0
the contrast structure begins to move

according to formula (29). Evidently 𝑑𝑅/𝑑𝑡 < 0 and after
small time of order 𝜀

−1 transition point 𝑅(𝑡, 𝜀) comes to the
left end of the segment [0, 1]. So the power profile appears
close to the participatory profile for any 𝑥 ∈ [0, 1]. Notice that
if at time 𝑡 = 0 function 𝑝(𝑥, 0, 𝜀) is entirely in the iron-hand
domain then for any 𝑡 the power profile is close to the iron-
hand profile even if ℎ

3
(𝑥) > ℎ

1
(𝑥). For appearing the power

profile close to the participatory profile function 𝑝(𝑥, 0, 𝜀)

must be smooth and located in the participatory domain
on at least one point in the interval (0, 1). This statement is
based on the theorem proved by Bozhevol’nov and Nefedov
[5].

2.4. Attraction to the Participatory Profile (2). Let point 𝑥
0
∈

(0, 1) exist such that ℎ
1
(𝑥
0
) = ℎ

3
(𝑥
0
), ℎ
1
(𝑥) > ℎ

3
(𝑥) when

𝑥 < 𝑥
0
and ℎ

1
(𝑥) < ℎ

3
(𝑥) when 𝑥 > 𝑥

0
. Then unstable

SCPP exist having transition layer in the vicinity of the point
𝑥
0
. Let function 𝑝(𝑥, 0, 𝜀) be in the iron-hand domain for

𝑥 < 𝜉 and in the participatory domain for 𝑥 > 𝜉 where
𝑥
0

< 𝜉 < 1. Then according to (3) power profile 𝑝(𝑥, 𝑡, 𝜀)

is attracted to the iron-hand profile for 𝑥 < 𝜉 and to the
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participatory profile for 𝑥 > 𝜉. After appearing at time 𝑡
0
the

contrast structure begins to move according to formula (26)
and initial condition𝑅(0, 𝜀) = 𝜉. As 𝜉 < 𝑥

0
then𝑑𝑅/𝑑𝑡 < 0. So

after small time of order 𝜀−1 transition point 𝑅(𝑡, 𝜀) comes to
the left end of the segment [0, 1]. So the power profile appears
close to the participatory profile.

2.5. Attraction to SCPP. Let point 𝑥
0
∈ (0, 1) exist such that

ℎ
1
(𝑥
0
) = ℎ

3
(𝑥
0
), ℎ
1
(𝑥) < ℎ

3
(𝑥) when 𝑥 < 𝑥

0
and ℎ

1
(𝑥) >

ℎ
3
(𝑥) if 𝑥 > 𝑥

0
. Then the stable SCPP exist having transition

layer in the vicinity of the point 𝑥
0
. If there is 𝜉 ∈ (0, 1)

such that the initial function 𝑝
0
(𝑥) satisfies 𝑝

0
(𝑥) > 𝜑

2
(𝑥),

0 < 𝑥 < 𝜉, and 𝑝
0
(𝑥) < 𝜑

2
(𝑥), 𝜉 < 𝑥 < 1, then the contrasting

structure appears after a short time 𝑡
0
such that 𝑝(𝑥) ≈ 𝜑

3
(𝑥)

for 0 < 𝑥 < 𝜉 and 𝑝(𝑥) ≈ 𝜑
1
(𝑥) for 𝜉 < 𝑥 < 1. Then the

contrasting structure begins to move according to formula
(29) and initial condition 𝑅(𝑡

0
, 𝜀) = 𝜉. So if 𝜉 < 𝑥

0
then

𝑑𝑅/𝑑𝑡 > 0 and if 𝜉 > 𝑥
0
then 𝑑𝑅/𝑑𝑡 < 0. So when 𝑡 → ∞,

the transition point 𝑅(𝑡, 𝜀) tends to the stationary transition
point 𝑥

0
.Thus the SCPP having transition layer in the vicinity

of point 𝑥
0
appears.

3. Parametric Optimization

The total amount of power of the hierarchy is �̃�(𝑡, 𝜀) =

∫
1

0
𝑝(𝑥, 𝑡, 𝜀). It was shown in [19] that there exists the optimal

value 𝑃
0
of the total power which provides a maximum of

steady-state consumption per capita (in frame of the “power-
society-economics” model [19]). So we should introduce the
control parameter into the “power-society” model to make it
controllable. So the problem would be to find the value of the
control parameter under which �̃�(𝑡, 𝜀) → 𝑃

0
, when 𝑡 → ∞,

𝜀 → 0.
Generally speaking, the model could be formulated such

that the control is considered to be a function of time or
𝑥. In any case, the control describes the exogenous impact
on the political system, such as a political pressure through
media and political institutions. We restrict ourselves to the
parametric control.

Definition 2. The value 𝑃
0
is called the asymptotically achiev-

able amount of the total power if there exists an admissible
value of control parameter 𝑢 such that the steady-state total
power 𝑃

𝑢
(𝜀) satisfies 𝑃

𝑢
(𝜀) → 𝑃

0
when 𝑡 → ∞, 𝜀 → 0.

So consider the “power-society” model with nonlinear
reaction of civil society:

𝑓 (𝑝, 𝑥, 𝑡, 𝑢) = −𝑘
1
(𝑥) (𝑝 − 𝜑

1
(𝑥))

× (𝑝 − (𝜑
2
(𝑥) + 𝛾𝑢)) (𝑝 − 𝜑

3
(𝑥)) .

(30)

Here 𝑘
1
(𝑥) > 0, the functions 𝑘

1
(𝑥), 𝜑

1
(𝑥), 𝜑

2
(𝑥), and 𝜑

3
(𝑥)

have continuous derivatives, and 𝛾 is a constant. Thus the
lowest and the biggest roots 𝜑

1
(𝑥), 𝜑

3
(𝑥) of the degenerate

equation 𝐹(𝑝, 𝑥, 𝑢) = 0 do not depend on the control, but

there is an impact from the control to the “middle” root𝜑
2
(𝑥).

So the model has the form

𝜕𝑝

𝜕𝑡
= 𝜀
2 𝜕
2
𝑝

𝜕𝑥2
− 𝑘
1
(𝑥) (𝑝 − 𝜑

1
(𝑥))

× (𝑝 − (𝜑
2
(𝑥) + 𝛾𝑢)) (𝑝 − 𝜑

3
(𝑥)) ,

(31)

𝜕𝑝

𝜕𝑥

𝑥=0
=

𝜕𝑝

𝜕𝑥

𝑥=1
= 0, 𝑝

𝑡=0 = 𝑝
0
(𝑥) . (32)

The initial function 𝑝
0
(𝑥) is supposed to be smooth and

satisfying 𝜑
1
(𝑥) < 𝑝

0
(𝑥) < 𝜑

3
(𝑥). In other words, the

initial distribution of power is between the iron-hand and
participatory profiles.

The steady-state equation for (31) has the form

𝜀
2 𝜕
2
𝑝

𝜕𝑥2
= 𝑘
1
(𝑥)(𝑝 − 𝜑

1
(𝑥)) (𝑝 − (𝜑

2
(𝑥) + 𝛾𝑢))(𝑝 − 𝜑

3
(𝑥)),

𝜕𝑝

𝜕𝑥

𝑥=0
=

𝜕𝑝

𝜕𝑥

𝑥=1
= 0.

(33)

Let us stress here that the control influences the relation
between the width of the iron-hand domain and the width of
the participatory domain.

Let the following conditions be fulfilled.

Condition 3. We have −1 ≤ 𝑢 ≤ 1.

Condition 4. We have 𝜑
1
(𝑥) < 𝜑

2
(𝑥) − 𝛾 < 𝜑

2
(𝑥) + 𝛾 < 𝜑

3
(𝑥)

for 0 ≤ 𝑥 ≤ 1.

Condition 5. We have 𝐻

(𝑥) < 0 for 0 ≤ 𝑥 ≤ 1, and here

𝐻(𝑥) = 𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2𝜑

2
(𝑥).

Conditions 3 and 4 introduce the normalization of the
control such that for any admissible control 𝑢 ∈ [−1; 1] the
root 𝜑

2
(𝑥) + 𝛾𝑢 is between the 𝜑

1
(𝑥) and 𝜑

3
(𝑥). The steady-

state solution has no more than one transition point due to
Condition 5.

If the control parameter 𝑢 is increased, the root of the
equation 𝜑

1
(𝑥) + 𝜑

3
(𝑥) − 2(𝜑

2
(𝑥) + 𝛾𝑢) = 0 will move to the

left. This means greater support to the participation ideas. If
it exists. Analogically, the less the value of 𝑢 is, the more to
the right the root of this equation is.

Consider the following problem. Let the desirable (opti-
mal) value of total power be 𝑃

0
. Is there a value of control

parameter 𝑢, under which the steady-state solution (33) is
such that 𝑃

𝑢
(𝜀) = ∫

1

0
𝑝(𝑥, 𝜀)𝑑𝑥 → 𝑃

0
when 𝜀 → 0?

From the practical point of view, such a formulation of
the problem can be justified in the following way. We know
from the “power-society-economics” model that the optimal
value of the total power is some 𝑃

0
, so we should try to tune

the political system to provide this optimal value of power for
the steady-state regime.
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Several cases should be distinguished.
Let us start our consideration from the situation in which

both equations

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) + 𝛾) = 0, (34)

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) − 𝛾) = 0 (35)

have roots in the interval (0; 1). Let us denote these roots by 𝑎

and 𝑏, respectively. Here we have 𝑎 < 𝑏 in view of Condition
5.

The points 𝑥 = 𝑎 and 𝑥 = 𝑏 are themain asymptotic terms
for the boundaries of the range within which the transition
point of the stationary front is located.

Therefore, the value

𝑃
𝑎𝑠

(𝑢) = lim
𝜀→0

𝑃 (𝑢, 𝜀) = lim
𝜀→0

∫

1

0

𝑝 (𝑥, 𝑢, 𝜀) 𝑑𝑥 (36)

satisfies the inequality

∫

𝑎

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑎

𝜑
1
(𝑥) 𝑑𝑥 ≤ 𝑃

𝑎𝑠
(𝑢)

≤ ∫

𝑏

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑏

𝜑
1
(𝑥) 𝑑𝑥.

(37)

Thus, in this case, 𝑃
0
is asymptotically achievable, if

inequality

∫

𝑎

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑎

𝜑
1
(𝑥) 𝑑𝑥 ≤ 𝑃

0

≤ ∫

𝑏

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑏

𝜑
1
(𝑥) 𝑑𝑥

(38)

holds true.
The steady-state problem (32) and (33) has also solutions

without transition layers: the iron-hand profile and the
participatory one. So the values of total power

𝑃
0
= ∫

1

0

𝜑
3
(𝑥) 𝑑𝑥, 𝑃

0
= ∫

1

0

𝜑
1
(𝑥) 𝑑𝑥, (39)

are also asymptotically achievable.
So, if both (34) and (35) have roots in the interval (0; 1)

then the set of asymptotically achievable values comprises the
closed interval (38) and two isolated values (39): one of them
is to the left of this closed interval, and the other one is to the
right of it.

Now let us consider the situation in which (34) has a root
𝑥 = 𝑎 ∈ (0; 1) and (35) has no roots on (0; 1).

In other words, 𝜑
2
(𝑥) − 𝛾 < (𝜑

1
(𝑥) + 𝜑

3
(𝑥))/2 for any 𝑥.

So the values of 𝑃
0
in the closed interval

∫

𝑎

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑎

𝜑
1
(𝑥) 𝑑𝑥 ≤ 𝑃

0
≤ ∫

1

0

𝜑
3
(𝑥) 𝑑𝑥 (40)

are asymptotically achievable.

Let now (35) have the root 𝑥 = 𝑏 ∈ (0; 1), and let (34)
have no roots in the interval. That is, at 𝑢 = 1, for any 𝑥, the
middle root 𝜑

2
(𝑥) + 𝛾 is larger than half-sum of 𝜑

1
(𝑥) and

𝜑
3
(𝑥). Then the asymptotically achievable values are given by

the inequality

∫

1

0

𝜑
1
(𝑥) 𝑑𝑥 ≤ 𝑃

0
≤ ∫

𝑏

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑏

𝜑
1
(𝑥) 𝑑𝑥. (41)

At last, consider the case inwhich neither of the equations has
a root in the interval (0; 1). Then the following three subcases
are possible:

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) + 𝛾) < 0,

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) − 𝛾) < 0 for any 𝑥,

(42)

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) + 𝛾) > 0,

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) − 𝛾) > 0 for any 𝑥,

(43)

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) + 𝛾) > 0,

𝜑
1
(𝑥) + 𝜑

3
(𝑥) − 2 (𝜑

2
(𝑥) − 𝛾) < 0 for any 𝑥.

(44)

It can be easily shown (see [2], e.g.) that in subcases
(42) and (43) a steady-state front does not exist for any
control parameter. So only the values of 𝑃

0
given by (39) are

asymptotically achievable.
In the subcase (44) for any given 𝑥

0
∈ (0; 1), such 𝑢 exists

that the problem (32) and (33) has the stationary front with
the transition point in the 𝜀-vicinity of 𝑥

0
. Therefore, any 𝑃

0

from closed interval

∫

1

0

𝜑
1
(𝑥) 𝑑𝑥 ≤ 𝑃

0
≤ ∫

1

0

𝜑
3
(𝑥) 𝑑𝑥 (45)

is asymptotically achievable.
The above speculations can be summarized as follows.

Theorem3. Consider the problem (32) and (33)with paramet-
ric control. Let the following conditions be satisfied:

(1) 𝑘
1
(𝑥), 𝜑

1
(𝑥), 𝜑

2
(𝑥), 𝜑

3
(𝑥) ∈ 𝐶

1
[0, 1],

(2) −1 ≤ 𝑢 ≤ 1,
(3) 𝜑
1
(𝑥) < 𝜑

2
(𝑥) − 𝛾 < 𝜑

2
(𝑥) + 𝛾 < 𝜑

3
(𝑥),

(4) 𝐻

(𝑥) < 0, where 𝐻(𝑥) = 𝜑

1
(𝑥) + 𝜑

3
(𝑥) − 2𝜑

2
(𝑥).

Then the set of asymptotically achievable values is not empty.

After the provided analysis of a steady-state problem (32)
and (33), we go back to the initial parabolic partial problem
(31) and (32).

Let some value 𝑃
0
be asymptotically achievable in the

corresponding stationary problem. It means that there is a
value of parametric control 𝑢, at which the problem (31), (32)
has the steady-state solution for which the total power 𝑃

𝑢
(𝜀)

of the hierarchy asymptotically tends to 𝑃
0
when 𝜀 → 0.

However for the �̃�
𝑢
(𝑡, 𝜀) = ∫

1

0
𝑝
𝑢
(𝑥, 𝑡, 𝜀)𝑑𝑥we have �̃�

𝑢
(𝑡, 𝜀) →

𝑃
𝑢
(𝜀) just for some class of initial functions 𝑝0(𝑥).
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Thus, there is a problem to determine the class of initial
power distributions for which, under the found value para-
metric control, the solution of the parabolic partial problem
converges to the proper steady-state solution at 𝑡 → ∞.

The answer is given by the following theorem.

Theorem4. (1) Let all the conditions ofTheorem 3 be satisfied;
(2) let 𝑃

0
be an asymptotically achievable value of total

power (denote by 𝑢 = 𝑢
0
the corresponding value of parametric

control);
(3) let the point 𝑥

0
∈ (0; 1) exist such that

𝑃
0
= ∫

𝑥
0

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑥
0

𝜑
1
(𝑥) 𝑑𝑥; (46)

(4) let the points 𝑥
1
∈ (0; 𝑥

0
), 𝑥
2
∈ (𝑥
0
; 1) exist such that

𝑝
0
(𝑥
1
) > 𝜑
2
(𝑥
1
) + 𝛾𝑢

0
, 𝑝

0
(𝑥
2
) < 𝜑
2
(𝑥
2
) + 𝛾𝑢

0
.

(47)

Then the solution 𝑝
𝑢
0

(𝑥, 𝑡, 𝜀) of the parabolic partial problem
(31) and (32) is such that the total power

𝑄
𝑢
0
(𝑡, 𝜀) = ∫

1

0

𝑝
𝑢
0
(𝑥, 𝑡, 𝜀) 𝑑𝑥 (48)

converges to

𝑃
0
: lim
𝜀→∞

lim
𝑡→∞

𝑃 (𝑡, 𝑢
0
, 𝜀) = 𝑃

0
. (49)

Proof. It is easy to see that under these conditions the
Butuzov-Nedelko theorem is fulfilled [13]. Therefore, at the
chosen value of control 𝑢 = 𝑢

0
, the solution 𝑝

𝑢
0

(𝑥, 𝑡, 𝜀) of the
problem (31) and (32) has a passage to the limit

lim
𝑡→∞

𝑝
𝑢
0
(𝑥, 𝑡, 𝜀) = 𝑝st,𝑢

0
(𝑥, 𝜀) , (50)

where 𝑝st(𝑥, 𝜀) is the steady state solution for which

lim
𝑡→∞

𝑝st,𝑢
0
(𝑥, 𝜀) = {

𝜑
3
(𝑥) , 𝑥 < 𝑥

0
,

𝜑
1
(𝑥) , 𝑥 > 𝑥

0
.

(51)

By integrating (50) from 𝑥 = 0 to 𝑥 = 1 we get

lim
𝑡→∞

∫

1

0

𝑝
𝑢
0
(𝑥, 𝑡, 𝜀) 𝑑𝑥 = ∫

1

0

𝑝st,𝑢
0
(𝑥, 𝜀) 𝑑𝑥. (52)

Passing to a limit 𝜀 → 0, we get

lim
𝜀→0

lim
𝑡→∞

∫

1

0

𝑝
𝑢
0
(𝑥, 𝑡, 𝜀) 𝑑𝑥 = lim

𝜀→0

∫

1

0

𝑝st,𝑢
0
(𝑥, 𝜀) 𝑑𝑥

= ∫

𝑥
0

0

𝜑
3
(𝑥) 𝑑𝑥 + ∫

1

𝑥
0

𝜑
1
(𝑥) 𝑑𝑥

= 𝑃
0
.

(53)

Thus lim
𝜀→0

lim
𝑡→∞

𝑃(𝑡, 𝑢
0
, 𝜀) = 𝑃

0
. Theorem 4 is proved.

4. Conclusion

It is shown that the theory of contrasting structures in singu-
larly perturbed boundary value problems allows for investi-
gating the properties of nonstationary fronts in the singularly
perturbed “power-society” model. Depending on the initial
condition, these fronts evolve to one of the asymptotically sta-
ble steady-state distributions of power within a government
hierarchy.

There are some reasons to introduce a concept of desirable
steady-state total amount of power of the hierarchy. The
possibility theorem is proved for the problem of getting this
amount by means of parametric control. The results can be
used in investigating governing hierarchical systems.
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