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A coupled systemmodel of partial differential equations is presented in this paper, which concerns the variation of the pressure and
temperature, velocity, and density at different times and depths in high temperature-high pressure (HTHP) gas-liquid two-phase
flowwells. A new dimensional splitting technique with Eulerian generalized riemann problem (GRP) scheme is applied to solve this
set of conservation equations, where Riemann invariants are introduced as the main ingredient to resolve the generalized Riemann
problem.The basic data of “X well” (HTHPwell), 7100m deep, located in Southwest China, is used for the case history calculations.
Curve graphs of pressures and temperatures along the depth of the well are plotted at different times. The comparison with the
results of Lax Friedrichs (LxF) method shows that the calculating results are more fitting to the values of real measurement and the
new method is of high accuracy.

1. Introduction

The prediction of pressure and temperature of transient gas-
liquid flow in a wellbore is important but difficult for well
completion test because they are characterized by the depen-
dence of pressure, density, velocity, and other flowparameters
on both time and space. As for pressure prediction research,
there exist empirical formulas, such as those given by Beggs
and Brill [1], Mukherjee and Brill [2, 3], and so on. Different
researchers such as Hurlburt and Hanratty [4] and Cazarez-
Candia and Vásquez-Cruz [5] have proposed mechanistic
models, assuming that flow is under steady-state conditions;
other researchers such as Taitel et al. [6]; Ouyang and Aziz
[7] have proposed unsteady-state gas-liquid two-phase flow
models. Fontanilla and Aziz [8] and Ali [9] presented two
simultaneous ordinary differential equations for estimating
the steam pressure and quality and solved these equations
by using the fourth-order Runge-Kutta method. However,
those models can only predict the pressure profiles but not
the temperature profiles and ignored their interdependence.

Concerning both pressure and temperature in HTHP
wells, Wu et al. have presented a coupled system model of

differential equations in [10], but this model only considered
the single phase flow statement. In this paper, we build
a set of coupled partial differential equations of pressure,
temperature, density, and velocity in HTHP gas-liquid two-
phase flow wells on the base of the model which was build by
Xu et al. in [11].The numerical model, which accords with the
actual situation of the well, allows for the change of oblique
angle,different heat transfermedium in annular and the depth
of the physical properties of the formation.

We found an algorithm solving model with generalized
Riemann problem (GRP) scheme, which is an analytic
extension of the Godunov scheme in [12] and originally
designed by Li and Chen in [13] for the shallow water
equations. A direct and simple derivation of the Eulerian
generalized Riemann problem scheme is presented to get
the integration in time of the conservation laws. Riemann
invariants are applied in order to resolve the singularity
at the jump discontinuity. The approach has the advantage
that the contact discontinuity in each local wave pattern is
always fixed with speed zero, while the rarefaction and the
shock waves are located on either side. Since the extension
of this scheme to multidimensional cases is obtained using
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the dimensional splitting technique, getting the integration
in time of the conservation laws is more direct and simple.

In this paper, we use GRP method for solving this
problem and get more accurate prediction of pressure and
temperature compared with those obtained from the existing
correlations such as LxF method in [11]. The basic data for
the calculation are from Xwell, 7100m of depth in Southwest
China. The curves of the gas pressure and temperature along
the depth of the well are plotted. The results can provide a
technical reliance for the process of designing well tests in
HTHP gas-liquid wells and a dynamic analysis of production
from wells.

2. Model Formulation

Considering the two-phase flow system shown in Figure 1, the
mixture density and velocity are related to the in situ liquid
volume fraction (holdup),𝐻, as follows:

𝜌
𝑚
= 𝜌
𝑙
𝐻 + 𝜌

𝑔
(1 − 𝐻)

V
𝑚
= V
𝑙
𝐻 + V

𝑔
(1 − 𝐻)

𝑢
𝑚
= 𝑢
𝑙
𝐻 + 𝑢

𝑔
(1 − 𝐻) .

(1)

2.1. Mass Balance. Consider the flow model shown in
Figure 2. According to the fluid moves through the fixed
control volume depicted by John and Anderson in [14], we
have

∬
𝑆

𝜌
𝑚
V
𝑚
𝑑𝑠 = −

𝜕

𝜕𝑡
∭

]
𝜌
𝑚
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𝑚
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Figure 3: Control volume 2.

Under transient conditions, applied to the control volume
in Figure 3, in the limit as 𝑑𝑧 becomes very small, the volume
and surface integral in (2) becomes

𝜕

𝜕𝑡
∭

]
𝜌
𝑚
𝑑V =

𝜕

𝜕𝑡
(𝜌
𝑚
𝐴𝑑𝑧)

∬
𝑆

𝜌
𝑚
V
𝑚
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𝑚
V
𝑚
𝑑V
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+ 𝜌
𝑚
𝐴𝑑V
𝑚
+ 𝐴V
𝑚
𝑑𝜌
𝑚

= 𝑑 (𝜌
𝑚
V
𝑚
𝐴) .

(3)

Substituting (3) into (2), we get the mass balance equa-
tion:

𝜕𝜌
𝑚

𝜕𝑡
+
𝜕 (𝜌
𝑚
V
𝑚
)

𝜕𝑧
= 0. (4)

2.2. Momentum Balance. As shown in Figure 4, the integral
form of the 𝑧 component the momentum equation can be
written as follows with the external forces:

𝜕

𝜕𝑡
∭

]
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𝑚
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𝑚
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𝑆

(𝜌
𝑚
𝑢
𝑚
V
𝑚
) ⋅ 𝑑𝑆

= −∬
𝑆

(𝑃𝑑𝑆) 𝑑𝑧 − 𝜌
𝑚
𝑔 cos 𝜃𝐴𝑑𝑧 −

𝜆𝜌
𝑚
V2
𝑚

2𝑑
𝐴𝑑𝑧,

(5)

where 𝜌
𝑚
𝑔 cos 𝜃𝐴𝑑𝑧 is the force of gravity, (𝜆𝜌

𝑚
V2𝐴/2)𝑑𝑧 is

the shear stress, and
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Figure 4: Control volume 3.

Substituting (6) into (5), we obtain momentum balance
equation:

𝜕

𝜕𝑡
(𝜌
𝑚
V
𝑚
) +

𝜕

𝜕𝑧
(𝑃 + 𝜌

𝑚
V2
𝑚
) = −𝜌

𝑚
𝑔 cos 𝜃 −

𝜆𝜌
𝑚
V2
𝑚

2𝑑
. (7)

2.3. Energy Balance. For the transient flow, it leads directly
to the energy equation in terms of temperature. As shown
in Figure 5, we should consider the heat transmission within
wellbore and from wellbore to formation as transient.

According to the energy balance law, the heat variation
flowing on control volume that is equal to the combination
heat of inflow and outflow, and the heat transferring to the
second dimension, we get the energy balance equation of
transient flow:

(𝑤𝐶
𝑝
𝑇) 𝑧 − (𝑤𝐶

𝑝
𝑇) (𝑧 + 𝑑𝑧) − 2𝜋𝑟

𝑡𝑜
𝑈
𝑡𝑜
(𝑇 − 𝑇

𝑟
) 𝑑𝑧

=

𝜕 (𝜌
𝑚
𝐶
𝑝
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𝜕𝑡
𝐴𝑑𝑧,

(8)

where 𝑇
𝑟
= (𝐾
𝑒
𝑇
𝑒𝑖
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇
𝑒
𝑇wbD)/(𝐾𝑒 + 𝑟𝑡𝑜𝑈𝑡𝑜𝑇wbD) and
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𝐴. Equation (8) equals the following equation:
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. (9)

Finally, we obtain the coupled system model of partial
differential equations:
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𝜌
𝑚
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𝑔
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0
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0
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(10)

3. Format Construction

We unify the conservation equations (4), (7), and (9) which
are also included in (10) into the following formation:

𝜕𝐴
𝑚

𝜕𝑡
+
𝜕𝐵
𝑚

𝜕𝑧
= 𝐶
𝑚
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𝐶
1
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𝐶
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𝐶
3
=
2𝜋𝐾
𝑒
𝑟
𝑡𝑜
𝑈
𝑡𝑜
(𝑇
𝑒𝑖
− 𝑇)

𝐶
𝑃
(𝐾
𝑒
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇wbD)

.

(11)

We define the equally spaced grid points, the interface
points, and the cells as

𝑧
𝑗
= 𝑗Δ𝑧, 𝑧

𝑗+1/2
=

𝑧
𝑗
+ 𝑧
𝑗+1

2
, 𝐶

𝑗
= [𝑧
𝑗−1/2

, 𝑧
𝑗+1/2

] .

(12)

We assume that the data at time 𝑡 = 𝑡
𝑛
are piecewise

linear with a slope 𝜎𝑛
𝑗
and we have 𝑈(𝑧, 𝑡

𝑛
) = 𝑈

𝑛

𝑗
+ 𝜎
𝑛

𝑗
(𝑧 −

𝑧
𝑗
), 𝑧 ∈ (𝑧

𝑗−1/2
, 𝑧
𝑗+1/2

).
The second-order Godunov scheme for (11) takes the

following form:𝑈𝑛+1
𝑗

= 𝑈
𝑛

𝑗
−(Δ𝑡/Δ𝑥)(𝐹(𝑈

𝑛+1/2

𝑗+1/2
)−𝐹(𝑈

𝑛+1/2

𝑗−1/2
)),

where 𝑈𝑛+1/2
𝑗+1/2

is the midpoint value or the value of 𝑈 at
the cell interface (𝑧

𝑗+1/2
, 𝑡
𝑛
) with accuracy of second order.

More specifically, the mid-point value 𝑈𝑛+1/2
𝑗+1/2

is computed
with the formulas 𝑈𝑛+1

𝑗+1/2
= 𝑈
𝑛

𝑗+1/2
+ (Δ𝑡/2) (𝜕𝑈/𝜕𝑡)

𝑛

𝑗+1/2
and

𝑈
𝑛

𝑗+1/2
= 𝑅
𝐴

(0; 𝑈
𝑛

𝑗+1/2,−
, 𝑈
𝑛

𝑗+1/2,+
). Also, 𝑅𝐴 ((𝑧 − 𝑧

𝑗+1/2
)/(𝑡 −

𝑡
𝑛
); 𝑈
𝑛

𝑗+1/2,−
, 𝑈
𝑛

𝑗+1/2,+
) is the solution of the Riemann problem

centered at (𝑧
𝑗+1/2

, 𝑡
𝑛
). Moreover, 𝑈𝑛

𝑗+1/2,−
and 𝑈𝑛

𝑗+1/2,+
are

the limiting values of initial data 𝑈(𝑧, 𝑡
𝑛
) on both sides of

(𝑧
𝑗+1/2

, 𝑡
𝑛
). We present a direct and simple derivation of

the Eulerian geralized Riemann problem (GRP) scheme and
apply Riemann invariants in order to resolve the singularity
at the jump discontinuity.

The local wave configuration is usually piecewise smooth
and consists of rarefactionwaves, shocks, and contact discon-
tinuities. As the general rarefaction waves are considered, the
initial data can be regarded as a perturbation of the Riemann
initial data 𝑈

𝐿
and 𝑈

𝑅
.
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Figure 5: The radial transfer of heat.

The GRP scheme assumes piecewise linear data for the
flow variables, which leads to the generalized Riemann
problem for (11) subject to the initial data:

𝑈 (𝑧, 0) = {

𝑈
𝐿
+ 𝑧𝑈


𝐿
, 𝑧 < 0

𝑈
𝑅
+ 𝑧𝑈


𝑅
, 𝑧 > 0,

(13)

where 𝑈
𝐿
, 𝑈
𝑅
, 𝑈


𝐿
, and 𝑈

𝑅
are constant vectors.

The initial structure of the solution is determined by the
associated Riemann solution, denoted by lim

𝑡→0
𝑈(𝜆𝑡, 𝑡) =

𝑅
𝐴

(𝜆; 𝑈
𝐿
, 𝑈
𝑅
), 𝜆 = 𝑥/𝑡.

4. Solving Process

Step 1. Set the step length. In this paper,

ℎ = 1 (m) , 𝜏 = 60 (s) . (14)

Step 2. Obtain each point’s inclination: 𝜃
𝑗
= 𝜃
𝑗−1
+ (𝜃
𝑗
 −

𝜃
𝑗

−1
)ℎ/Δ𝑠

𝑗

−1
.

Step 3. The in situ liquid volume fraction (holdup) in (1) can
be calculated from

𝐻(𝜃
𝑗
) =

0.98𝐸
𝑙

0.4846

𝐹𝑟0.0868

× {1 + (1 − 𝐸
𝑙
) ln[

4.7𝑁
0.1244

V𝑙

𝐸
𝑙

0.8692

𝐹𝑟0.5056
]

× [sin (1.8𝜃
𝑗
) −

1

3
sin3 (1.8𝜃

𝑗
)]} .

(15)

Step 4. Calculate the following parameters by Liao and Feng
in [15]:

𝑈
𝑡𝑜
= (

𝑟
𝑡𝑜

𝑟
𝑡𝑖
ℎ
𝑟

+
𝑟
𝑡𝑜
ln (𝑟
𝑡𝑜
/𝑟
𝑡𝑖
)

𝑟
𝑡𝑖
ℎ
𝑟

+
1

ℎ
𝑐
+ ℎ
𝑟

+
𝑟
𝑡𝑜
ln (𝑟
𝑐0
/𝑟
𝑐𝑖
)

𝑟cas
+
𝑟
𝑡𝑜
ln (𝑟
ℎ
/𝑟
𝑐0
)

𝑟cem
)

−1

,

𝑇wbD =
2𝜋𝐾
𝑒
(𝑇
𝑒𝑖
− 𝑇wb)

∑
𝑚

𝑗=1
(𝑄
𝑗−1
− 𝑄
𝑗
)

.

(16)

Step 5. For piecewise given initial data 𝑈𝑛(𝑧) = 𝑈𝑛
𝑗
+ 𝜎
𝑛

𝑗
(𝑧 −

𝑧
𝑗
), 𝑧 ∈ (𝑧

𝑗−1/2
, 𝑧
𝑗+1/2

), we solve the Riemann problem for
(11) to define the Riemann solution 𝑈𝑛

𝑗+1/2
= 𝑅(0; 𝑈

𝑛

𝑗
+

(Δ𝑧/2)𝜎
𝑛

𝑗
, 𝑈
𝑛

𝑗+1
− (Δ𝑧/2)𝜎

𝑛

𝑗+1
), which is the same as the

classical Godunov scheme and the Riemann solver in [16] is
used in the solution.

Step 6. Determine (𝜕𝑈/𝜕𝑡)𝑛
𝑗+1/2

and evaluate the new cell
averages 𝑈𝑛+1

𝑗
. We apply monotonic algorithm slope limiters

to suppress the local oscillations near discontinuities. We
use parameter 𝛼 = 1.9 in 𝜎𝑛+1

𝑗
= minmod (𝛼(𝑈𝑛+1

𝑗
−

𝑈
𝑛+1

𝑗−1
)/Δ𝑧, 𝜎

𝑛+1,−

𝑗
, 𝛼(𝑈
𝑛+1

𝑗+1
− 𝑈
𝑛+1

𝑗
)/Δ𝑧), where 𝑈𝑛+1,−

𝑗+1/2
=

𝑈
𝑛

𝑗+1/2
+ Δ𝑧(𝜕𝑈/𝜕𝑧)

𝑛

𝑗+1/2
and 𝜎𝑛+1,−

𝑗
= (1/Δ𝑧) (Δ𝑈)

𝑛+1,−

𝑗
=

(1/Δ𝑧) (𝑈
𝑛+1,−

𝑗+1/2
− 𝑈
𝑛+1,−

𝑗−1/2
).

5. Results and Discussion

In this simulation, we study a pipe inXwell located in Sichuan
Basin, Southwest China. All the needed parameters are given
in [17] as follows: fluid density is 1000 kg/m3; depth of the
well is 7100m; friction coefficient is 1.2; ground temperature
is 160∘C; ground thermal conductivity parameter is 2.06;
ground temperature gradient is 0.0218∘C/m. Parameters of
pipes are given in Table 1. Inclination, azimuth, and vertical
depth are given in Table 2.

Through the simulation, we use GRPmethod to calculate
the prediction of pressure and temperature of the oil in the
pipe and draw a sensitive analysis for the results.We compare
the results of pressure and temperature calculated for the well
head at 1200 s byGRP and LxF schemewith themeasurement
results, which also shows that GRP scheme is more accurate
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Table 1: Parameters of pipes.

Diameter Thickness Weight Expansion Coefficient Young Modulus
88.9 9.53 18.9 0.0000115 215 0.3 1400
88.9 7.34 15.18 0.0000115 215 0.3 750
88.9 6.45 13.69 0.0000115 215 0.3 4200
73 7.82 12.8 0.0000115 215 0.3 600
73 5.51 9.52 0.0000115 215 0.3 150

Table 2: Parameters of azimuth, inclination, and vertical depth.

Number Measured Inclination Azimuth Vertical
depth

1 0 0 120.33 0
2 303 1.97 121.2 302.87
3 600 1.93 120.28 599.73
4 899 0.75 126.57 898.59
5 1206 1.25 124.9 1205.45
6 1505 1.04 124.62 1504.32
7 1800 0.49 123.75 1799.18
8 2105 2.49 125.27 2104.04
9 2401 1.27 123.13 2399.91
10 2669 2.44 120.12 2667.79
11 3021 0.14 127.39 3019.63
12 3299 1.18 122.60 3297.50
13 3605 2.05 123.25 3603.36
14 3901 0.16 121.45 3899.22
15 4183 2.92 121.24 4181.09
16 4492 2.73 129.22 4489.95
17 4816.07 1.98 121.61 4813.87
18 5099.07 2.74 129.93 5096.74
19 5394.07 0.13 120.46 5391.61
20 5706.07 0.63 129.59 5703.47
21 5983.07 2.09 120.14 5980.34
22 6302.07 2.69 122.91 6299.19
23 6597.07 2.45 129.41 6594.06
24 6911.12 0.15 124.88 6907.96

in the real calculation. We obtain series of results contained
in tables and figures and analyze these results as follows.

When the bottom pressure is 70MPa, temperatures are
plotted in Figure 6 at different depths and shown in detail
in Table 3. When the output keeps constant, the temperature
increases with the increasing depth of the well and when the
depth fixed, the temperature increases with the increasing
time. In addition, it can be seen from the figure that the
temperature changes quickly in the early stage but stabilizes
over time, especially after 1200 s.

It is established that, when depth is constant, the pressure
shown in Figure 7 and Table 4 increased with an increase
of the time. When the output keeps constant, the pressure
increased with the increasing depth of the well. This is
because, with time increasing, the flow increases and then the
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Figure 6: Temperature distribution at different depths.
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Figure 7: Pressure distribution at different depths.

frictional heat leads to an increase in the pressure. It can also
be seen that the pressure changes quickly in the early stage
but stabilizes over time.

As shown in Table 5, for the comparative results of the
well head temperature at 1200 s, the relative error between
the calculation results and the measurement results of GRP
scheme method is 5.12% and by LxF method is 6.70%, while
the relative error between the results in pressure predition at
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Table 3: Temperature at different depths on 300 s, 900 s, 1200 s, and
3600 s.

Depth Time
300 s 900 s 1200 s 3600 s

0 81.22 115.29 124.19 132.27
300 85.45 121.38 127.55 133.34
600 92.67 125.54 131.76 136.56
900 95.54 129.48 134.96 138.87
1200 101.16 133.77 137.58 141.94
1500 106.49 136.66 140.77 143.15
1800 111.76 140.67 143.23 145.17
2100 116.98 143.54 146.29 147.39
2400 121.86 145.66 148.49 149.14
2700 126.89 148.45 150.78 151.93
3000 131.55 151.78 152.99 153.85
3300 136.85 153.74 154.86 155.91
3600 140.88 154.02 154.46 157.87
3900 144.67 157.12 158.73 159.45
4200 148.25 159.34 160.87 161.88
4500 152.74 161.53 161.65 162.65
4800 155.77 162.55 162.72 163.45
5100 159.75 163.42 163.49 164.56
5400 162.36 164.56 164.87 165.24
5700 164.32 165.74 165.45 166.57
6000 166.36 166.56 167.67 167.97
6300 167.91 168.77 168.87 169.65
6600 168.23 169.45 169.57 169.81
6900 170.24 170.56 171.78 171.52

the same time calculated byGRP schememethod is 8.81% and
by LxF method is 9.73%, which shows that the distribution
prediction of the two-phase flow is more accurate in actual
calculation by GRP scheme method.

6. Conclusion

In this paper, considering the variation of pressure, tempera-
ture, velocity; and density at different times and depths in gas-
liquid two-phase flow, we present a system model of partial
differential equations according to mass, momentum, and
energy. We establish an algorithm solving model with a new
difference method with a direct Eulerian GRP scheme which
is proven to be efficient for the numerical implementation in
this paper. The basic data of the X well (HTHP well), 7100m
deep in Sichuan Basin, Southwest China, was used for case
history calculations, and a sensitivity analysis is completed
for the model. The gas-liquid’s pressure and temperature
curves along the depth of the well are plotted, and the
curves intuitively reflect the flow law and the characteristics
of heat transfer in formation. The results can provide the
technical reliance for the process of designing well tests in
high temperature-high pressure gas-liquid two-phase flow
wells and dynamic analysis of production. Furthermore, the
works in this paper can raise safety and reliability of deep
completion test and will yield notable economic and social

Table 4: Pressure at different depths on 300 s, 900 s, 1200 s, and
3600 s.

Depth Time
300 s 900 s 1200 s 3600 s

0 42.55 46.62 50.24 51.34
300 43.23 47.53 50.64 52.67
600 44.86 48.71 50.46 53.47
900 45.87 49.13 51.41 54.69
1200 46.73 50.43 52.32 54.79
1500 48.46 51.24 53.36 55.53
1800 49.43 52.43 54.47 56.12
2100 50.34 53.83 55.42 57.37
2400 51.96 56.92 54.37 57.85
2700 53.53 57.22 55.45 58.97
3000 54.44 58.46 56.78 59.34
3300 55.24 59.97 57.47 60.95
3600 56.76 59.94 58.95 61.22
3900 57.33 60.98 59.04 62.29
4200 58.93 61.22 60.29 63.33
4500 59.34 62.45 61.24 64.48
4800 60.89 63.43 62.23 64.33
5100 61.56 64.19 63.22 64.78
5400 63.35 65.24 64.18 65.34
5700 64.69 65.45 65.12 66.34
6000 65.45 66.79 66.15 67.56
6300 66.99 67.49 67.11 67.47
6600 67.46 68.52 68.22 68.58
6900 69.28 69.46 69.92 69.55

Table 5: Comparative results of the well head at 1200 s.

Well-head Temperature Pressure
Measurement results 180.65 76.10
Results by GRP method
(relative error) 171.78 (5.12%) 69.92 (8.81%)

Results by LxF method
(relative error) 169.30 (6.70%) 69.36 (9.73%)

benefits and avoid or lessen accidents caused by improper
technical design.

Nomenclature

𝐴: A total length of conduit (m2)
𝐶
𝐽
: Joule-Thompson coefficient (K/pa)

𝐶
𝑝
: Heat capacity (J/kg⋅K)

𝐷: A hydraulic diameter (m)
𝐺: Acceleration constant of gravity (m/s2)
𝐾
𝑒
: Formation conductivity (J/m⋅K)

𝑃: Pressure (KPa)
𝑟
𝐷
: Dimensionless radius

𝑟
𝑡𝑜
: Outer radius of conduit (m)

𝑇: Temperature (K)
𝑡
𝐷
: Dimensionless time
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𝑇
𝑒
: Temperature of the stratum (K)

𝑇wb: Wellbore temperature (K)
𝑇wbD: Dimensionless wellbore temperature (K)
𝑇
𝑟
: Temperature of the second surface (K)

𝑇
𝑒𝑖
: Initial temperature of formation (K)

𝑈
𝑡𝑜
: Overall-heat-transfer coefficient (W/m⋅K)

𝑉: Velocity (m/s)
𝑍: A total length of conduit (m)
𝑧: The distance coordinate in the direction

along the conduit
ℎ
𝑐
: Heat transfer coefficient for natural

convection based on outside tubing surface
and the temperature difference between
outside tubing and inside casing surface

ℎ
𝑟
: Heat transfer coefficient for radiation based

on the outside tubing surface and the
temperature difference between the outside
tubing and inside casing surface

𝐾cas: Thermal conductivity of the casing material
at the average casing temperature

𝐾cem: Thermal conductivity of the cement at the
average cement temperature and pressure

𝜆 : The friction coefficient, dimensionless
𝛾
𝑔
: Euler constant 1.781

𝜌 : Density (kg/m3)
𝜃 : Inclination angle flow conduit.
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