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The (𝐺/𝐺)-expansion method and the symbolic computation system Mathematica are employed to investigate the coupled
Schrödinger-Boussinesq equations. The hyperbolic function solutions, trigonometric function solutions, and rational function
solutions to the equations are obtained. The decaying properties of several solutions are analyzed.

1. Introduction

In laser and plasma physics, the important problems under
interactions between a nonlinear complex Schrödinger field
and a real Boussinesq field have been raised. In particular, the
study of the coupled Schrödinger-Boussinesq equations has
attracted much attention of mathematicians and physicists
(see [1–3]). The existence of the global solution of the initial-
boundary problem for the equations was investigated in [1].
The existence of a periodic solution for the equations was
considered in [2]. Kılıcman and Abazari [3] used the (𝐺/𝐺)-
expansionmethod to construct periodic and soliton solutions
for the Schrödinger-Boussinesq equations 𝑖𝑢

𝑡
+𝑢
𝑥𝑥
−𝑎𝑢V = 0,

V
𝑡𝑡
− V
𝑥𝑥

+ V
𝑥𝑥𝑥𝑥

− 𝑏(|𝑢|
2
)
𝑥𝑥

= 0, where 𝑎 and 𝑏 are real
constants. The investigation of nonlinear partial differential
equations plays an important role in the study of nonlinear
physical phenomena (see [4–7]).

In this paper, we consider the following coupled
Schrödinger-Boussinesq equations:

𝑖𝐸
𝑡
+ 𝐸
𝑥𝑥
+ 𝛽
1
𝐸 = 𝑁𝐸,

3𝑁
𝑡𝑡
− 𝑁
𝑥𝑥𝑥𝑥

+ 3(𝑁
2
)
𝑥𝑥
+ 𝛽
2
𝑁
𝑥𝑥
= (|𝐸|

2
)
𝑥𝑥
,

(1)

where 𝐸(𝑥, 𝑡) is a complex unknown function, 𝑁(𝑥, 𝑡) is
a real unknown function, and 𝛽

1
and 𝛽

2
are real positive

constants. System (1) is known to describe various physical

processes in laser and plasma physics, such as formation,
Langmuir field amplitude, intense electromagnetic waves,
and modulational instabilities (see [8]). The approximate
solutions and conservation law for the coupled system (1)
have been studied in [9]. In [10], Chen and Xu used the
𝐹-expansion method to obtain a number of periodic wave
solutions expressed by various Jacobi elliptic functions for
(1). Cai et al. [11] studied same equations by the modified 𝐹-
expansion method.

In the present paper, we use the (𝐺

/𝐺)-expansion

method and the symbolic computation system Mathematica
to investigate the coupled Schrödinger-Boussinesq system (1).
Here, we state that the previous works do not obtain the
solutions presented in this paper.

The layout of this paper is as follows. In Section 2, we give
the description of the generalized (𝐺/𝐺)-expansionmethod.
In Section 3, we apply this method to solve (1). A conclusion
will be obtained in Section 4.

2. Brief Description of the (𝐺/𝐺)-Expansion
Method

To make our presentation self-contained, we recall the
(𝐺

/𝐺)-expansion method.The details can be found inWang

et al.’s work [12].
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Step 1. For a given PDEwith two independent variables 𝑡 and
𝑥

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (2)

we convert it into an ODE

𝑃 (𝑢, 𝑢

, 𝑢

, 𝑢

, . . .) = 0. (3)

Using travelling transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑘𝑡.
Equation (3) can be integrated as long as all terms contain
derivatives where integration constants are considered to be
zeros.

Step 2. Suppose that the solution of (3) can be expressed as a
polynomial in (𝐺/𝐺)

𝑢 (𝜉) =

𝑛

∑

𝑖=0

𝑎
𝑖
(
𝐺


𝐺
)

𝑖

, (4)

where 𝐺 = 𝐺(𝜉) satisfies the second-order ODE with respect
to 𝜉. Namely,

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0, (5)

where 𝑎
1
, . . . , 𝑎

𝑛
̸= 0, 𝜆, and 𝜇 are constants to be determined

later. The positive integer 𝑛 can be determined by balancing
the highest-order derivatives with highest-order nonlinear
terms appearing in (3). It is easy to check that (5) admits three
types of solutions

𝐺


𝐺
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

√𝛼

2
(
𝑐
1
sinh (1/2)√𝛼𝜉 + 𝑐

2
cosh (1/2)√𝛼𝜉

𝑐
1
cosh (1/2)√𝛼𝜉 + 𝑐

2
sinh (1/2)√𝛼𝜉

)−
𝜆

2
,

𝛼 > 0,

√−𝛼

2
(
−𝑐
1
sin (1/2)√−𝛼𝜉+𝑐

2
cos (1/2)√−𝛼𝜉

𝑐
1
cos (1/2)√−𝛼𝜉+𝑐

2
sin (1/2)√−𝛼𝜉

)−
𝜆

2
,

𝛼 < 0,

𝑐
2

𝑐
1
+ 𝑐
2
𝜉
−
𝜆

2
, 𝛼 = 0,

(6)

in which 𝛼 = 𝜆
2
− 4𝜇.

Step 3. By substituting (4) into (3) and using (5), collecting all
terms with the same order of (𝐺/𝐺) together, the left-hand
side of (3) can be written as a polynomial in (𝐺/𝐺). Letting
each coefficient of this polynomial be zero yields a system of
algebraic equations for 𝑎

1
, . . . , 𝑎

𝑛
, 𝑘, 𝜆, and 𝜇.

Step 4. Since the general solutions of (5) have been known,
substituting 𝑎

𝑖
, . . . , 𝑎

𝑛
, 𝑘, 𝜆, and 𝜇 into (4), we can obtain

travelling wave solutions of the nonlinear evolution equation
(2).

3. Solutions of the Coupled
Schrödinger-Boussinesq Equations

Following the procedure described in Section 2, we adopt the
ansatz solution of (1) in the form

𝐸 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) 𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0), (7)

where 𝑢(𝑥, 𝑡) is a real function, 𝑘, 𝑙 are constants to be
determined, and 𝜉

0
is an arbitrary constant. Substituting (7)

into (1) yields

𝑢
𝑡
+ 2𝑘𝑢

𝑥
= 0, (8)

𝑢
𝑥𝑥
− (𝑙 + 𝑘

2
− 𝛽
1
) 𝑢 = 𝑁𝑢, (9)

3𝑁
𝑡𝑡
− 𝑁
𝑥𝑥𝑥𝑥

+ 3(𝑁
2
)
𝑥𝑥
+ 𝛽
2
𝑁
𝑥𝑥
= (𝑢
2
)
𝑥𝑥
. (10)

We take

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) = 𝑢 (𝑥 − 2𝑘𝑡 + 𝜉
1
) , (11)

where 𝜉
1
is an arbitrary constant. Substituting (11) into (9),

one gets

𝑁(𝑥, 𝑡) =
𝑢

(𝜉)

𝑢 (𝜉)
− (𝑙 + 𝑘

2
− 𝛽
1
) . (12)

Suppose that

𝑁(𝑥, 𝑡) = V (𝜉) = V (𝑥 − 2𝑘𝑡 + 𝜉
1
) . (13)

It follows from (9), (10), (11), and (13) that

𝑢

− (𝑙 + 𝑘

2
− 𝛽
1
) 𝑢 − 𝑢V = 0, (14)

−V + (12𝑘2 + 𝛽
2
) V + 3V2 − 𝑢2 = 0. (15)

Balancing 𝑢 with 𝑢V in (14) and V with 𝑢2 in (15) leads to
𝑚 = 1, 𝑛 = 2. Thus we can search for the solutions of (14) and
(15) in the following forms:

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
(
𝐺


𝐺
) + 𝑎
2
(
𝐺


𝐺
)

2

, 𝑎
2

̸= 0, (16)

V (𝜉) = 𝑏
0
+ 𝑏
1
(
𝐺


𝐺
) + 𝑏
2
(
𝐺


𝐺
)

2

, 𝑏
2

̸= 0. (17)

Substituting (16) and (17) into (14) and (15), using (5), and
setting the coefficients of (𝐺/𝐺)𝑖 (𝑖 = 0, . . . , 4) to be zero,
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we obtain the algebraic system

6𝑎
2
− 𝑎
2
𝑏
2
= 0,

2𝑎
1
+ 10𝑎
2
𝜆 − 𝑎
2
𝑏
1
− 𝑎
1
𝑏
2
= 0,

8𝑎
2
𝜇 + 3𝑎

1
𝜆 + 4𝑎

2
𝜆
2
− 𝑙𝑏
2
− 𝑘
2
𝑏
2

+ 𝛽
1
𝑏
2
− 𝑎
2
𝑏
0
− 𝑎
1
𝑏
1
− 𝑎
0
𝑏
2
= 0,

6𝑎
2
𝜆𝜇 + 2𝑎

1
𝜇 + 𝑎
1
𝜆
2
− 𝑙𝑏
1
− 𝑘
2
𝑏
1
+ 𝛽
1
𝑏
1
− 𝑎
1
𝑏
0
− 𝑎
0
𝑏
1
= 0,

2𝑎
2
𝜇
2
+ 𝑎
1
𝜆𝜇 − 𝑙𝑏

0
− 𝑘
2
𝑏
0
+ 𝛽
1
𝑏
0
− 𝑎
0
𝑏
0
= 0,

6𝑏
2
− 3𝑏
2

2
+ 𝑎
2

2
= 0,

2𝑏
1
+ 10𝑏
2
𝜆 − 6𝑏

1
𝑏
2
+ 2𝑎
1
𝑎
2
= 0,

8𝑏
2
𝜇 + 3𝑏

1
𝜆 + 4𝑏

2
𝜆
2
− 12𝑘

2
𝑏
2
+ 𝛽
2
𝑏
2

− 3𝑏
2

1
+ 6𝑏
0
𝑏
2
+ 𝑎
2

1
+ 2𝑎
0
𝑎
2
= 0,

6𝑏
2
𝜆𝜇 + 2𝑏

1
𝜇 + 𝑏
1
𝜆
2
− 12𝑘

2
𝑏
1
− 𝛽
2
𝑏
1
− 6𝑏
0
𝑏
1
+ 2𝑎
0
𝑎
1
= 0,

2𝑏
2
𝜇
2
+ 𝑏
1
𝜆𝜇 − 12𝑘

2
𝑏
0
− 𝛽
2
𝑏
0
− 3𝑏
2

0
+ 𝑎
2

0
= 0.

(18)

Solving this system with the Mathematica, we find

𝑎
0
= ± (√2𝜆

2
+ 2√2𝜇) ,

𝑎
1
= ±6√2𝜆,

𝑎
2
= ±6√2,

𝑏
0
= 𝜆
2
+ 2𝜇,

𝑏
1
= 6𝜆,

𝑏
2
= 6,

𝑘 = ±
1

6
√3 (𝛽

2
+ 𝜆2 − 4𝜇),

𝑙 =
1

12
(12𝛽
1
+ 𝛽
2
+ 𝜆
2
∓ 12√2𝜆

2
− 4𝜇 ± 48√2𝜇) ,

(19)

or

𝑎
0
= ±6√2𝜇,

𝑎
1
= ±6√2𝜆,

𝑎
2
= ±6√2, 𝑏

0
= 6𝜇,

𝑏
1
= 6𝜆,

𝑏
2
= 6,

𝑘 = ±
1

6
√3 (𝛽

2
− 𝜆2 + 4𝜇),

𝑙 =
1

12
(12𝛽
1
+ 𝛽
2
− 𝜆
2
± 12√2𝜆

2
+ 4𝜇 ∓ 48√2𝜇) ,

(20)

where 𝜆 and 𝜇 are arbitrary constants.

By using (19) and (20), the solutions (16) and (17) are
written as

𝑢 (𝜉) = ± (√2𝜆
2
+ 2√2𝜇) ± 6√2𝜆(

𝐺


𝐺
) ± 6√2(

𝐺


𝐺
)

2

,

V (𝜉) = 𝜆
2
+ 2𝜇 + 6𝜆(

𝐺


𝐺
) + 6(

𝐺


𝐺
)

2

,

(21)

where 𝜉 = 𝑥 ± (1/3)√3(𝛽
2
+ 𝜆2 − 4𝜇)𝑡 + 𝜉

1
, or

𝑢 (𝜉) = ±6√2𝜇 ± 6√2𝜆(
𝐺


𝐺
) ± 6√2(

𝐺


𝐺
)

2

,

V (𝜉) = 6𝜇 + 6𝜆(
𝐺


𝐺
) + 6(

𝐺


𝐺
)

2

,

(22)

where 𝜉 = 𝑥 ± (1/3)√3(𝛽
2
− 𝜆2 + 4𝜇)𝑡 + 𝜉

1
.

Substituting general solutions of (5) into (21) and (22), we
obtain three types of travelling wave solutions of the coupled
Schrödinger-Boussinesq equations as follows.

3.1.TheHyperbolic Function Solutions to (1) If 𝛼 = 𝜆
2
−4𝜇 > 0.

Consider
𝐸
1
(𝑥, 𝑡)

= ±
√2𝛼

2

× [3(
𝑐
1
sinh (1/2)√𝛼𝜉 + 𝑐

2
cosh (1/2)√𝛼𝜉

𝑐
1
cosh (1/2)√𝛼𝜉 + 𝑐

2
sinh (1/2)√𝛼𝜉

)

2

−1]

× 𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
1
(𝑥, 𝑡)

=
𝛼

2
[3(

𝑐
1
sinh (1/2)√𝛼𝜉 + 𝑐

2
cosh (1/2)√𝛼𝜉

𝑐
1
cosh (1/2)√𝛼𝜉𝑒𝑔 + 𝑐

2
sinh (1/2)√𝛼𝜉

)

2

−1] ,

(23)

where 𝑘 = ±(1/6)√3(𝛽
2
+ 𝛼), 𝑙 = (1/12)(12𝛽

1
+ 𝛽
2
+ 𝜆
2
∓

12√2𝜆
2
− 4𝜇 ± 48√2𝜇, 𝑐

1
, 𝑐
2
are arbitrary constants, and

𝐸
2
(𝑥, 𝑡)

= ±
3√2𝛼

2

× [(
𝑐
1
sinh (1/2)√𝛼𝜉 + 𝑐

2
cosh (1/2)√𝛼𝜉

𝑐
1
cosh (1/2)√𝛼𝜉 + 𝑐

2
sinh (1/2)√𝛼𝜉

)

2

−1]

× 𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
2
(𝑥, 𝑡)

=
3𝛼

2
[(

𝑐
1
sinh (1/2)√𝛼𝜉 + 𝑐

2
cosh (1/2)√𝛼𝜉

𝑐
1
cosh (1/2)√𝛼𝜉 + 𝑐

2
sinh (1/2)√𝛼𝜉

)

2

−1] ,

(24)
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where 𝑘 = ±(1/6)√3(𝛽
2
− 𝛼), 𝑙 = (1/12)(12𝛽

1
+ 𝛽
2
− 𝜆
2
±

12√2𝜆
2
+ 4𝜇 ∓ 48√2𝜇).

Remark 1. When 𝜉 → ∞, we find |𝐸
1
(𝑥, 𝑡)| → ±√2𝛼,

𝑁
1
(𝑥, 𝑡) → 𝛼, |𝐸

2
(𝑥, 𝑡)| → 0,𝑁

2
(𝑥, 𝑡) → 0.

Remark 2. If 𝑐
1

̸= 0, 𝑐
2
= 0, 𝜆 > 0, 𝜇 = 0, we find envelope

solitary wave solutions for (1). Namely, 𝐸
1
(𝑥, 𝑡) and 𝑁

1
(𝑥, 𝑡)

become

𝐸
1
(𝑥, 𝑡) = ±

√2

2
𝜆
2
(3tanh2 𝜆

2
𝜉 − 1) 𝑒

𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
1
(𝑥, 𝑡) =

1

2
𝜆
2
(3tanh2 𝜆

2
𝜉 − 1) .

(25)

𝐸
2
(𝑥, 𝑡) and𝑁

2
(𝑥, 𝑡) are turned into

𝐸
2
(𝑥, 𝑡) = ±

3√2

2
𝜆
2
(tanh2 𝜆

2
𝜉 − 1) 𝑒

𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
2
(𝑥, 𝑡) =

3

2
𝜆
2
(tanh2 𝜆

2
𝜉 − 1) .

(26)

3.2. The Trigonometric Function Solutions to (1) If 𝛼 < 0.
Consider
𝐸
3
(𝑥, 𝑡)

= ±
√2𝛼

2

× [3(
−𝑐
1
sin (1/2)√−𝛼𝜉 + 𝑐

2
cos (1/2)√−𝛼𝜉

𝑐
1
cos (1/2)√−𝛼𝜉 + 𝑐

2
sin (1/2)√−𝛼𝜉

)

2

+ 1]

× 𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
3
(𝑥, 𝑡)

=−
𝛼

2
[3(

−𝑐
1
sin (1/2)√−𝛼𝜉 + 𝑐

2
cos (1/2)√−𝛼𝜉

𝑐
1
cos (1/2)√−𝛼𝜉 + 𝑐

2
sin (1/2)√−𝛼𝜉

)

2

+1] ,

(27)

where 𝑘 = ±(1/6)√3(𝛽
2
+ 𝛼), 𝑙 = (1/12)(12𝛽

1
+ 𝛽
2
+ 𝜆
2
∓

12√2𝜆
2
− 4𝜇 ± 48√2𝜇), and

𝐸
4
(𝑥, 𝑡)

= ±
3𝛼

2

× [(
−𝑐
1
sin(1/2)√−𝛼𝜉 + 𝑐

2
cos(1/2)√−𝛼𝜉

𝑐
1
cos(1/2)√−𝛼𝜉 + 𝑐

2
sin(1/2)√−𝛼𝜉

)

2

+ 1]

× 𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
4
(𝑥, 𝑡)

=−
3𝛼

2
[(

−𝑐
1
sin(1/2)√−𝛼𝜉 + 𝑐

2
cos(1/2)√−𝛼𝜉

𝑐
1
cos(1/2)√−𝛼𝜉 + 𝑐

2
sin(1/2)√−𝛼𝜉

)

2

+1] ,

(28)

where 𝑘 = ±(1/6)√3(𝛽
2
− 𝛼), 𝑙 = (1/12)(12𝛽

1
+ 𝛽
2
− 𝜆
2
±

12√2𝜆
2
+ 4𝜇 ∓ 48√2𝜇).

3.3.The Rational Function Solutions to (1) If 𝛼 = 0. We obtain

𝐸
5
(𝑥, 𝑡) = ±

6√2𝑐
2

2

(𝑐
1
+ 𝑐
2
𝜉)
2
𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
5
(𝑥, 𝑡) =

6𝑐
2

2

(𝑐
1
+ 𝑐
2
𝜉)
2
,

(29)

where 𝑘 = ±(1/6)√3(𝛽
2
+ 𝛼), 𝑙 = (1/12)(12𝛽

1
+ 𝛽
2
+ 𝜆
2
∓

12√2𝜆
2
− 4𝜇 ± 48√2𝜇), and

𝐸
6
(𝑥, 𝑡) = 𝐸

9,10
(𝑥, 𝑡) = ±

6√2𝑐
2

2

(𝑐
1
+ 𝑐
2
𝜉)
2
𝑒
𝑖(𝑘𝑥+𝑙𝑡+𝜉0),

𝑁
6
(𝑥, 𝑡) = 𝑁

9,10
(𝑥, 𝑡) =

6𝑐
2

2

(𝑐
1
+ 𝑐
2
𝜉)
2
,

(30)

where

𝑘 = ±
1

6
√3 (𝛽

2
− 𝛼), (31)

𝑙 =
1

12
(12𝛽
1
+ 𝛽
2
+ 𝜆
2
± 12√2𝜆

2
+ 4𝜇 ∓ 48√2𝜇) . (32)

4. Conclusion

The (𝐺/𝐺)-expansionmethod is effectively employed to deal
with the coupled Schrödinger-Boussinesq equations. The
hyperbolic function solutions, the trigonometric function
solutions, and the rational function solutions to the equations
in the case of 𝛼 > 0, 𝛼 < 0, and 𝛼 = 0 are obtained.
In particular, the well-known soliton solutions are only the
special case of the hyperbolic-type solutions. We find several
properties of solutions when 𝜉 → ∞.
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