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Recently, fixed point theory on graphs has been considered by many authors. In this paper, by combining some ideas in some
published papers and introducing 𝐺-type quasi-contractions, we give some fixed point results for 𝐺-type quasi-contractions on
graphs. The results improve some old results in the literature.

1. Introduction

In 2009, Ilić and Rakočević proved that quasi-contraction
maps on normal cone metric spaces have a unique fixed
point [1]. Then, Kadelburg et al. generalized their results by
considering an additional assumption [2]. Also, they proved
that quasi-contraction maps on cone metric spaces have the
property (𝑃) whenever 𝜆 ∈ (0, 1/2). Later, the authors proved
same results without the additional assumption and for 𝜆 ∈

(0, 1) by providing a new technical proof [3]. Also, there are
some works on quasi-contractive multifunctions (see, e.g.,
[4, 5]).

In 2008, Suzuki introduced a new type of mappings and
a generalization of the Banach contraction principle [6].
Later, his method extended for mappings and multifunctions
(see, e.g., [7] and the references therein and [8]). On the
other hand, Echenique gave a short constructive proof for
Tarski’s fixed point theorem in 2005 by using graphs [9]. In
2006, Espı́nola andKirk started combining fixed point theory
and graph theory [10]. In 2008, Jachymski provided some
fixed point results for Banach contractions on a graph [11].
Recently, fixed point theory on graphs has been considered
by many authors (see, e.g., [12–16]).

Let (𝑋, 𝑑) be a metric space, Δ = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}, 𝐺
a directed graph 𝐺 such that 𝑉(𝐺) = 𝑋, and the set 𝐸(𝐺)

of its edges contains all loops. We denote the conversion of
a graph 𝐺 by 𝐺

−1; that is, the graph obtained from 𝐺 by
reversing the direction of the edges. Moreover, 𝐺 denotes the

undirected graph obtained from 𝐺 by ignoring the direction
of the edges. In this paper, we consider undirected graphs.We
say that a self-map 𝑇 on𝑋 preserves the edges of𝐺whenever
(𝑥, 𝑦) ∈ 𝐸(𝐺)which implies that (𝑇𝑥, 𝑇𝑦) ∈ 𝐸 for all𝑥, 𝑦 ∈ 𝑋.
A finite path of length 𝑛 in 𝐺 from 𝑥 to 𝑦 is a sequence
{𝑥
𝑖

}
𝑛

𝑖=0

of distinct vertices such that 𝑥
0

= 𝑥, 𝑥
𝑛

= 𝑦, and
(𝑥
𝑖

, 𝑥
𝑖+1

) ∈ 𝐸(𝐺) for 𝑖 = 0, 1, . . . , 𝑛−1 (see, e.g., [12]). A graph
𝐺 is connected if there is a path between any two vertices. 𝐺
is weakly connected if 𝐺 is connected. We denote by [𝑥]

𝐺

the
set of all vertices in𝐺 that there is a path between 𝑥 and those.

In 2008, Jachymski used the notion of 𝐶-graphs for
obtaining the main results of [11]. We say that 𝐺 is a 𝐶-graph
whenever for each sequence {𝑥

𝑛

}
𝑛≥0

in 𝑋 with 𝑥
𝑛

→ 𝑥 and
(𝑥
𝑛

, 𝑥
𝑛+1

) ∈ 𝐸(𝐺) for all 𝑛 ≥ 0, there is a subsequence {𝑥
𝑛𝑘
}
𝑘≥0

such that (𝑥
𝑛𝑘
, 𝑥) ∈ 𝐸(𝐺) for all 𝑘 ≥ 0 [11]. This notion

has been used by many authors in the literature, specially
on ordered metric spaces and obtaining solutions of some
differential equations (see, e.g., [17]).

The condition that the graph is a 𝐶-graph looks quite
strong and in this reason, Aleomraninejad et al. defined
the notion of 𝑃-graphs and showed that these notions are
independent on infinite graphs (see [12]).We say that𝐺 is a𝑃-
graph whenever {𝑥

𝑛

}
𝑛≥0

is a convergent sequence to a point 𝑥
and 𝑥

𝑛

∈ [𝑥]
𝐺

for all 𝑛 ≥ 0, we have 𝑟(𝑥
𝑛

, 𝑥) → 0 [12]. Here,
𝑟(𝑥, 𝑦) is the sum of edges distance between 𝑥 and 𝑦; that is,
𝑟(𝑥, 𝑦) = ∑

𝑛

𝑖=1

𝑑(𝑥
𝑖−1

, 𝑥
𝑖

).They proved the same results for𝐶-
graphs and 𝑃-graphs (see the results of [12]). We will use only
𝐶-graphs in this paper.
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In this paper, by combining all of these ideas and
introducing 𝐺-type quasi-contractions, we give some results
about fixed points of 𝐺-type quasi-contractions on graphs.
The results improve some old results in the literature.

2. Main Results

Now,we are ready to state andprove ourmain results. In 2008,
Suzuki obtained the following interesting fixed point result
[6].

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-map on 𝑋. Define the nonincreasing function 𝜃 from
[0, 1) onto (1/2, 1] by

𝜃 (𝑟) =

{{{{{{{{

{{{{{{{{

{

1 𝑖𝑓 0 ≤ 𝑟 ≤

(√5 − 1)

2
,

(1 − 𝑟) 𝑟
−2

𝑖𝑓

(√5 − 1)

2
< 𝑟 < 2

−1/2

,

(1 + 𝑟)
−1

𝑖𝑓 2
−1/2

≤ 𝑟 < 1.

(1)

Assume that there exists 𝑟 ∈ [0, 1), such that

𝜃 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(2)

for all 𝑥, 𝑦 ∈ 𝑋. Then, there exists a unique fixed point 𝑧 of 𝑇.
Moreover, lim

𝑛→∞

𝑇
𝑛

𝑥 = 𝑧 for all 𝑥 ∈ 𝑋.

Throughout this paper, suppose that 𝐸 = 𝐸(𝐺) and 𝐺 is a
𝐶-graph.

Definition 2. Let (𝑋, 𝑑) be a metric space, 𝑇 a self map on𝑋,
and 𝐺 a graph with 𝑉(𝐺) = 𝑋. We say that 𝑇 is a 𝐺-type
quasi-contraction whenever 𝑇 preserves the edges of 𝐺 and
there exists 𝑟 ∈ [0, 1), such that

𝜃 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) implies that 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑟𝑀(𝑥, 𝑦)

(3)

for all (𝑥, 𝑦) ∈ 𝐸, where

𝑀(𝑥, 𝑦)

= max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]} .

(4)

Theorem 3. Let (𝑋, 𝑑) be a complete metric space, 𝑇 a 𝐺-
type quasi-contraction map with 𝑟

2

+ 𝑟 < 1 such that (𝑥, 𝑇𝑥),
(𝑥, 𝑇
2

𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋. Then, 𝑇 has a unique fixed
point.

Proof. Take 𝑥
0

∈ 𝑋. Since 𝜃(𝑟)𝑑(𝑥
0

, 𝑇𝑥
0

) ≤ 𝑑(𝑥
0

, 𝑇𝑥
0

), we
have

𝑑 (𝑇𝑥
0

, 𝑇
2

𝑥
0

)

≤ 𝑟max {𝑑 (𝑥
0

, 𝑇𝑥
0

) , 𝑑 (𝑇𝑥
0

, 𝑇
2

𝑥
0

) ,
1

2
𝑑 (𝑥
0

, 𝑇
2

𝑥
0

)}

≤ 𝑟max {𝑑 (𝑥
0

, 𝑇𝑥
0

) , 𝑑 (𝑇𝑥
0

, 𝑇
2

𝑥
0

)} .

(5)

Since (1/2)𝑑(𝑥
0

, 𝑇
2

𝑥
0

) ≤ (1/2)[𝑑(𝑥
0

, 𝑇𝑥
0

) + 𝑑(𝑇𝑥
0

, 𝑇
2

𝑥
0

)],
we obtain 𝑑(𝑇

2

𝑥
0

, 𝑇𝑥
0

) ≤ 𝑟𝑑(𝑥
0

, 𝑇𝑥
0

). Hence,

𝑑 (𝑇
𝑛

𝑥
0

, 𝑇
𝑛+1

𝑥
0

) ≤ 𝑟
𝑛

𝑑 (𝑥
0

, 𝑇𝑥
0

) (6)

for all natural number 𝑛 and so {𝑇
𝑛

𝑥
0

}
𝑛≥1

is a Cauchy
sequence. Since 𝑋 is complete, {𝑇𝑛𝑥

0

}
𝑛≥1

converges to some
𝑥
∗

∈ 𝑋. Since 𝐺 is a 𝐶-Graph, there is a subsequence
{𝑇
𝑛𝑘𝑥
0

}
𝑘≥1

such that (𝑇𝑛𝑘𝑥
0

, 𝑥
∗

) ∈ 𝐸 for all 𝑘 ≥ 1. Hence,
(𝑇
𝑛𝑘+𝑗𝑥
0

, 𝑇
𝑗

𝑥
∗

) ∈ 𝐸 for all 𝑗 ≥ 1. We claim that 𝑇𝑗0𝑥∗ = 𝑥
∗

for some natural number 𝑗
0

. Arguing by contradiction, we
assume that 𝑇𝑗𝑥∗ ̸= 𝑥

∗ for all 𝑗. Fix a natural number 𝑗 and
put 𝑥
𝑛+1

= 𝑇
𝑛

𝑥
0

for all 𝑛 ≥ 1. Choose a natural number 𝑛
0

such that 𝑑(𝑥
𝑛

, 𝑥
∗

) ≤ 𝑑(𝑥
∗

, 𝑇
𝑗

𝑥
∗

)/3 for all 𝑛 ≥ 𝑛
0

. If 𝑛
𝑘

≥ 𝑛
0

,
then

𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑇𝑥
𝑛𝑘+𝑗

)

≤ 𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑥
𝑛𝑘+𝑗+1

)

≤
2

3
𝑑 (𝑥
∗

, 𝑇
𝑗

𝑥
∗

) = 𝑑 (𝑥
∗

, 𝑇
𝑗

𝑥
∗

) −
1

3
𝑑 (𝑥
∗

, 𝑇
𝑗

𝑥
∗

)

≤ 𝑑 (𝑥
∗

, 𝑇
𝑗

𝑥
∗

) − 𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑥
∗

) ≤ 𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑇
𝑗

𝑥
∗

) .

(7)

It follows that

𝑑 (𝑇𝑥
𝑛𝑘+𝑗

, 𝑇
𝑗+1

𝑥
∗

)

≤ 𝑟max {𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑇
𝑗

𝑥
∗

) , 𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑥
𝑛𝑘+𝑗+1

) ,

𝑑 (𝑇
𝑗

𝑥
∗

, 𝑇
𝑗+1

𝑥
∗

) ,

1

2
[𝑑 (𝑥
𝑛𝑘+𝑗

, 𝑇
𝑗+1

𝑥
∗

) + 𝑑 (𝑇
𝑗

𝑥
∗

, 𝑥
𝑛𝑘+𝑗+1

)]} ,

(8)

and so𝑑(𝑥∗, 𝑇𝑗+1𝑥∗) ≤ 𝑟max{𝑑(𝑥∗, 𝑇𝑗𝑥∗),𝑑(𝑇𝑗𝑥∗, 𝑇𝑗+1𝑥∗)}.
Since 𝑑(𝑇𝑗𝑥∗, 𝑇𝑗+1𝑥∗) ≤ 𝑟

𝑗

𝑑(𝑥
∗

, 𝑇𝑥
∗

), we obtain

𝑑 (𝑥
∗

, 𝑇
𝑗+1

𝑥
∗

) ≤ 𝑟
𝑗

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) (9)

for all 𝑗. Now, we assume that 𝑑(𝑥∗, 𝑇2𝑥∗) < 𝑑(𝑇
2

𝑥
∗

, 𝑇
3

𝑥
∗

);
then by (6), we have

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ≤ 𝑑 (𝑥
∗

, 𝑇
2

𝑥
∗

) + 𝑑 (𝑇𝑥
∗

, 𝑇
2

𝑥
∗

)

< 𝑑 (𝑇
2

𝑥
∗

, 𝑇
3

𝑥
∗

) + 𝑑 (𝑇𝑥
∗

, 𝑇
2

𝑥
∗

)

≤ 𝑟
2

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) + 𝑟𝑑 (𝑥
∗

, 𝑇𝑥
∗

) .

(10)
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This is a contradiction, since 𝑟2 + 𝑟 < 1. So, we have

𝑑 (𝑥
∗

, 𝑇
2

𝑥
∗

) ≥ 𝑑 (𝑇
2

𝑥
∗

, 𝑇
3

𝑥
∗

) = 𝜃 (𝑟) 𝑑 (𝑇
2

𝑥
∗

, 𝑇
3

𝑥
∗

) ,

(11)

and by (3), we obtain

𝑑 (𝑇
3

𝑥
∗

, 𝑇𝑥
∗

)

≤ 𝑟max {𝑑 (𝑥
∗

, 𝑇
2

𝑥
∗

) , 𝑑 (𝑇
2

𝑥
∗

, 𝑇
3

𝑥
∗

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

1

2
[𝑑 (𝑇
2

𝑥
∗

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑇
3

𝑥
∗

)]} .

(12)

By considering the above inequality and (9), we deduce that

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ≤ 𝑑 (𝑥
∗

, 𝑇
3

𝑥
∗

) + 𝑑 (𝑇𝑥
∗

, 𝑇
3

𝑥
∗

)

≤ 𝑟
2

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) + 𝑟𝑑 (𝑥
∗

, 𝑇𝑥
∗

)

≤ (𝑟
2

+ 𝑟) 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) < 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

(13)

that is a contradiction.Therefore, there exists 𝑗
0

∈ N such that
𝑇
𝑗0𝑥
∗

= 𝑥
∗. Since {𝑇𝑛𝑥∗}

𝑛≥1

is a Cauchy sequence, we obtain
𝑥
∗

= 𝑇𝑥
∗. In fact, if 𝑥∗ ̸= 𝑇𝑥

∗, from 𝑑(𝑇
𝑛𝑗0𝑥
∗

, 𝑇
𝑛𝑗0+1𝑥

∗

) =

𝑑(𝑥
∗

, 𝑇𝑥
∗

) for all 𝑛 ≥ 1, it follows that {𝑇
𝑛

𝑥
∗

}
𝑛≥1

is not
a Cauchy sequence. Thus, 𝑥

∗ is a fixed point of 𝑇. The
uniqueness of the fixed point follows easily.

Question 1. DoesTheorem 3 hold for each 𝑟 ∈ [0, 1)?

Theorem 4. Let (𝑋, 𝑑) be a complete metric space. Then, the
following statements are equivalent

(i) 𝐺 is weakly connected,

(ii) for each 𝐺-type quasi-contraction map 𝑇 : 𝑋
𝑇

→ 𝑋
𝑇

and 𝑥, 𝑦 ∈ 𝑋, the sequences {𝑇𝑛𝑥}
𝑛≥1

and {𝑇
𝑛

𝑦}
𝑛≥1

are
Cauchy equivalent, where𝑋

𝑇

= {𝑥 ∈ 𝑋 : (𝑥, 𝑇𝑥) ∈ 𝐸},

(iii) for each 𝐺-type quasi-contraction map 𝑇 : 𝑋 → 𝑋,
𝑐𝑎𝑟𝑑(𝐹𝑖𝑥𝑇) ≤ 1.

Proof. (i) ⇒ (ii) Let 𝑇 : 𝑋 → 𝑋 be a 𝐺-type quasi-
contraction map and 𝑥, 𝑦 ∈ 𝑋. Since 𝑦 ∈ [𝑥]

̃

𝐺

, there is a
path {𝑥

0

= 𝑥, . . . , 𝑥
𝑁

= 𝑦} in 𝐺 from 𝑥 to 𝑦. Since (𝑥
𝑖−1

, 𝑥
𝑖

) ∈

𝐸(𝐺), (𝑇𝑛𝑥
𝑖−1

, 𝑇
𝑛

𝑥
𝑖

) ∈ 𝐸(𝐺) for all 𝑛 and 𝑖 = 1, . . . , 𝑁. Let
1 ≤ 𝑖 ≤ 𝑁. Put 𝑥

𝑖−1

= 𝑎 and 𝑥
𝑖

= 𝑏. If one of the following
inequalities holds

𝜃 (𝑟) 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎)

≤ 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏) or 𝜃 (𝑟) 𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑏)

≤ 𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛−1

𝑎) .

(14)

Then, we have

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏)

≤ 𝑟max {𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏) , 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎) ,

𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑏) ,

1

2
[𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑏) + 𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑎)]} := 𝑟𝑢
𝑛

.

(15)

If 𝑢
𝑛

∈ {𝑑(𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎), 𝑑(𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑏)}, then

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ≤ 𝑟
𝑛max {𝑑 (𝑎, 𝑇𝑎) , 𝑑 (𝑏, 𝑇𝑏)} . (16)

If 𝑢
𝑛

= (1/2)[𝑑(𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑏) + 𝑑(𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑎)], then

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏)

≤ 𝑟𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑏) or 𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏)

≤ 𝑟𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑎) .

(17)

Without loss of generality, suppose that 𝑑(𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ≤

𝑟𝑑(𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑏). Then,

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ≤ 𝑟𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑏)

≤ 𝑟𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎) + 𝑟𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ,

(18)

and so 𝑑(𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ≤ (𝑟/(1 − 𝑟))𝑑(𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎) ≤ (𝑟
𝑛

/(1 −

𝑟))𝑑(𝑎, 𝑇𝑎). Hence,

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏) ≤
𝑟
𝑛

1 − 𝑟
max {𝑑 (𝑎, 𝑇𝑎) , 𝑑 (𝑏, 𝑇𝑏)} . (19)

Now, suppose that both of the inequalities (14) do not hold. If

𝜃 (𝑟) 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎) > 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏) , (20)

then

𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏) < 𝜃 (𝑟) 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛

𝑎)

≤ 𝜃 (𝑟) 𝑟
𝑛−1

𝑑 (𝑎, 𝑇𝑎) ,

(21)

and so

𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛

𝑏)

≤ 𝑑 (𝑇
𝑛

𝑎, 𝑇
𝑛−1

𝑎) + 𝑑 (𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏) + 𝑑 (𝑇
𝑛−1

𝑏, 𝑇
𝑛

𝑏)

≤ 3𝑟
𝑛−1max {𝑑 (𝑎, 𝑇𝑎) , 𝑑 (𝑏, 𝑇𝑏)} .

(22)
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If 𝑢
𝑛

= 𝑑(𝑇
𝑛−1

𝑎, 𝑇
𝑛−1

𝑏), then we can continue in a similar
process for 𝑛 − 1. In the general case, we get 𝑑(𝑇𝑛𝑎, 𝑇𝑛𝑏) ≤

(3𝑟
𝑛−1

/(1−𝑟))max{𝑑(𝑎, 𝑇𝑎), 𝑑(𝑏, 𝑇𝑏)} and so 𝑑(𝑇
𝑛

𝑎,𝑇𝑛𝑏) →

0. Thus,

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤

𝑁

∑

𝑖=1

𝑑 (𝑇
𝑛

𝑥
𝑖−1

, 𝑇
𝑛

𝑥
𝑖

)

≤
3𝑟
𝑛−1

1 − 𝑟
≤

𝑁

∑

𝑖=1

max {𝑑 (𝑥
𝑖−1

, 𝑇𝑥
𝑖−1

) , 𝑑 (𝑥
𝑖

, 𝑇𝑥
𝑖

)}

≤ 3𝑁
3𝑟
𝑛−1

1 − 𝑟
max
1≤𝑖≤𝑁

𝑑 (𝑥
𝑖−1

, 𝑇𝑥
𝑖−1

) .

(23)

Therefore, {𝑇𝑛𝑥}
𝑛≥1

and {𝑇
𝑛

𝑦}
𝑛≥1

are Cauchy equivalent.
(ii) ⇒ (iii) Let 𝑥, 𝑦 ∈ Fix𝑇. By using (ii) and the above

process, we obtain easily that 𝑥 = 𝑦.
(iii) ⇒ (i) If 𝐺 is not weakly connected, then there exists

𝑥
0

such that 𝑋 \ [𝑥
0

]
̃

𝐺

is not empty. Take 𝑦
0

∈ 𝑋 \ [𝑥
0

]
̃

𝐺

and
define

𝑇𝑥 =
{

{

{

𝑥
0

, 𝑥 ∈ [𝑥
0

]
̃

𝐺

,

𝑦
0

, 𝑥 ∈ 𝑋 \ [𝑥
0

]
̃

𝐺

.

(24)

Clearly, Fix𝑇 = {𝑥
0

, 𝑦
0

}. Now, we show that 𝑇 is a 𝐺-type
quasi-contraction. For this reason, let (𝑥, 𝑦) ∈ 𝐸. Since [𝑥]

̃

𝐺

=

[𝑦]
̃

𝐺

, either 𝑥, 𝑦 ∈ [𝑥
0

]
̃

𝐺

or 𝑥, 𝑦 ∈ 𝑋\[𝑥
0

]
̃

𝐺

. In both cases, we
get 𝑇𝑥 = 𝑇𝑦. Thus, 𝑇 is a𝐺-type quasi-contraction which has
two fixed points.This contradiction completes the proof.

Theorem 5. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a 𝐺-type quasi-contraction and orbitally 𝐺-continuous self-
map on 𝑋. Then,

(i) for each 𝑥 ∈ 𝑋
𝑇

, 𝑇|
[𝑥]

𝐺

is a Picard operator,

(ii) 𝑐𝑎𝑟𝑑(𝐹𝑖𝑥𝑇) = 𝑐𝑎𝑟𝑑{[𝑥]
̃

𝐺

: 𝑥 ∈ 𝑋
𝑇

}.

Proof. Let 𝑥 ∈ 𝑋
𝑇

. Then, 𝑇𝑥 ∈ [𝑥]
̃

𝐺

. It is easy to check that
{𝑇
𝑛

}
𝑛≥1

is a Cauchy sequence. Let lim
𝑛→∞

𝑇
𝑛

𝑥 = 𝑥
∗. Since

𝐺 is a 𝐶-Graph, there exists a subsequence {𝑇
𝑛𝑘𝑥}
𝑛≥1

such
that (𝑇𝑛𝑘𝑥, 𝑥∗) ∈ 𝐸(𝐺) for all 𝑘. Thus, (𝑇𝑛𝑘+1𝑥, 𝑇𝑥∗) ∈ 𝐸(𝐺)

for all 𝑘. Since (𝑇
𝑛𝑘𝑥, 𝑇

𝑛𝑘+1𝑥) ∈ 𝐸(𝐺), 𝑇𝑥∗ ∈ [𝑥]
̃

𝐺

. Since 𝑇

is orbitally 𝐺-continuous, lim
𝑛→∞

𝑇
𝑛𝑘+1𝑥 = 𝑥

∗ which yields
𝑥
∗

= 𝑇𝑥
∗. To prove (ii), define the mapping 𝜋 by 𝜋(𝑥) = [𝑥]

̃

𝐺

for all 𝑥 ∈ Fix𝑇. It is sufficient to show that 𝜋 is a bijection
from Fix𝑇 onto C = {[𝑥]

̃

𝐺

: 𝑥 ∈ 𝑋
𝑇

}. Since Δ ⊆ 𝐸(𝐺), we
get Fix𝑇 ⊆ 𝑋

𝑇

which yields 𝜋(Fix𝑇) ⊆ C. On the other
hand, if 𝑥 ∈ 𝑋

𝑇

, then lim
𝑛→∞

𝑇
𝑛

𝑥 ∈ [𝑥]
̃

𝐺

⋂ Fix𝑇 which
implies that 𝜋(lim

𝑛→∞

𝑇
𝑛

𝑥) = [𝑥]
̃

𝐺

. Thus, 𝜋 is a surjection
from Fix𝑇 ontoC. Now, if 𝑥

1

, 𝑥
2

∈ Fix𝑇with 𝜋(𝑥
1

) = 𝜋(𝑥
2

),
then 𝑥

2

∈ [𝑥
1

]
̃

𝐺

and so by using (i) we obtain

lim
𝑛→∞

𝑇
𝑛

𝑥
2

∈ [𝑥
1

]
̃

𝐺

⋂ Fix 𝑇 = {𝑥
1

} , (25)

which implies that 𝑥
2

= 𝑥
1

. Therefore, 𝑇 is an injective and
this completes the proof.

We need the following results for our last result.

Lemma 6 (see [18]). Let𝑋 be a nonempty set and let𝑇 : 𝑋 →

𝑋 be a mapping. Then, there exists a subset 𝑌 ⊆ 𝑋 such that
𝑇𝑌 = 𝑇𝑋 and 𝑇 : 𝑌 → 𝑋 is one-to-one.

Lemma 7 (see [8]). Let 𝑋 be a nonempty set and that the
mappings 𝑓, 𝑇 : 𝑋 → 𝑋 have a unique point of coincidence V
in 𝑋. If 𝑇 and 𝑓 are weakly compatible, then 𝑇 and 𝑓 have a
unique common fixed point.

Theorem 8. Let (𝑋, 𝑑) be a metric space, and let 𝑓 and 𝑇 be
two self-maps on 𝑋 such that 𝑇𝑋 ⊆ 𝑓𝑋 and 𝑓𝑋 is complete.
Suppose that 𝑓 and 𝑇 satisfy the following conditions:

(i) (𝑓𝑥, 𝑓𝑦) ∈ 𝐸(𝐺) implies that (𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺),
(ii) if (𝑓𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) and 𝑇𝑥 = 𝑓𝑦 for some 𝑦 ∈ 𝑋, then

(𝑓𝑥, 𝑇𝑦) ∈ 𝐸(𝐺),
(iii) there exists 𝑟 ∈ [0, 1) such that 𝑟

2

+ 𝑟 < 1 and
𝜃(𝑟)𝑑(𝑓𝑥, 𝑇𝑥) ≤ 𝑑(𝑓𝑥, 𝑓𝑦) implies that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑟max {𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, 𝑇𝑥) , 𝑑 (𝑓𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑓𝑥, 𝑇𝑦) + 𝑑 (𝑓𝑦, 𝑇𝑥)]} .

(26)

Then, 𝑇 and 𝑓 have a unique coincidence point. Moreover, if
𝑇 and 𝑓 are weakly compatible, then 𝑇 and 𝑓 have a unique
fixed point.

Proof. By using Lemma 6, there exists 𝑌 ⊂ 𝑋 such that 𝑓 :

𝑌 → 𝑋 is one-to-one and 𝑓𝑌 = 𝑓𝑋. Define the self-map
ℎ : 𝑓𝑌 → 𝑓𝑌 by ℎ(𝑓𝑥) = 𝑇𝑥. Clearly, ℎ is well defined and
ℎ preserves the edges of 𝐺. In fact, (𝑓𝑥, 𝑓𝑦) ∈ 𝐸(𝐺) implies
that (ℎ𝑓𝑥, ℎ𝑓𝑦) ∈ 𝐸(𝐺). Note that 𝜃(𝑟)𝑑(𝑓𝑥, ℎ𝑓𝑥) ≤ 𝑑(𝑓𝑥, 𝑓𝑦)

implies that

𝑑 (ℎ𝑓𝑥, ℎ𝑓𝑦)

≤ 𝑟max { 𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, ℎ𝑓𝑥) , 𝑑 (𝑓𝑦, ℎ𝑓𝑦) ,

1

2
[𝑑 (𝑓𝑥, ℎ𝑓𝑦) + 𝑑 (𝑓𝑦, ℎ𝑓𝑥)]} .

(27)

Also, (𝑓𝑥, ℎ𝑓𝑥) and (𝑓𝑥, ℎ
2

𝑓𝑥) lie in 𝐸(𝐺) for all 𝑥 ∈ 𝑌. To
see this, take ℎ𝑓𝑥 = 𝑇𝑥. Then, 𝑇𝑥 = 𝑓𝑦 for some 𝑦 ∈ 𝑌 and
so ℎ
2

𝑓𝑥 = 𝑇𝑦. By using (ii), (𝑓𝑥, 𝑇𝑦) ∈ 𝐸(𝐺). Since 𝑓𝑌 is
complete, by using Theorem 3, ℎ has a unique fixed point in
𝑓𝑌, namely, ℎ𝑓𝑥∗ = 𝑓𝑥

∗. Thus, 𝑥∗ is a coincidence point of
𝑓 and 𝑇. Note that the assumption (iii) shows the uniqueness
of the coincidence point of 𝑓 and 𝑇. Now, by using Lemma 7,
it is easy to see that if 𝑓 and 𝑇 are weakly compatible, then 𝑓

and 𝑇 have a unique fixed point.
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