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In this paper, we introduce some almost generalized (i, ¢)-contractions in the setting of G-metric spaces. We prove some fixed
points results for such contractions. The presented theorems improve and extend some known results in the literature. An example

is also presented.

1. Introduction and Preliminaries

In 2006, a new structure of a generalized metric space was
introduced by Mustafa and Sims [1] as an appropriate notion
of a generalized metric space called a G-metric space. Fixed
point theory in this space was initiated in [2]. Particularly,
Banach contraction mapping principle was established in this
work. Since then the fixed point theory in G-metric spaces has
been studied and developed by many authors, see [1-29].

The following definitions and results will be needed in the
sequel.

Definition I (see [1]). Let X be a nonempty set, G : X x X X
X — R be a function satisfying the following properties:
(G) G(x, y,2) =0ifx = y = 2,
(G2) 0 < G(x, x, y) forall x, y € X with x # y,
(G3) G(x, x, ¥) < G(x, y,z) forall x, y,z € X with y #z,

(G4) G(x,9,2) = G(x,z,¥) = G(y,2,x) = --- (symmetry
in all three variables),

(G5) G(x, y,2) < G(x,a,a)+G(a, y,z) forall x, y,z,a € X
(rectangle inequality).

Then the function G is called a generalized metric, or, more
specially, a G-metric on X, and the pair (X, G) is called a G-
metric space.

Every G-metric on X defines a metric d; on X by

dg (%, y)=G(x,y,y)+G(yxx), ¥Yx,yeX. (1)

Example 2. Let (X, d) be a metric space. The function G : X x
X x X — [0,+00), defined by

G(x.y,2) = max{d (x,y),d(y,2),d (zx)}, ()
or
G(xyz)=d(xy)+d(p2)+d(zx), ()
forall x, y,z € X, is a G-metric on X.

Definition 3 (see [1]). Let (X, G) be a G-metric space, and let
{x,} be a sequence of points of X; therefore, we say that x,, is
G-convergent to x € X iflim, ,, ,, G(x, x,,x,,) = 0; that is,
for any € > 0, there exists N € N such that G(x, x,,, x,,,) < &,
for all n,m > N. We call x the limit of the sequence and write
x, — xorlim,_, . x, = x.
Proposition 4 (see [1]). Let (X, G) be a G-metric space. The
following are equivalent:

(1) {x,} is G-convergent to x,
(2) G(x,, x,,x) = O0asn — +00,

(3) G(x,,,x,x) = 0asn — +oo.



Definition 5 (see [1]). Let (X,G) be a G-metric space. A
sequence {x,,} is called a G-Cauchy sequence if, for any ¢ > 0,
there is N € N such that G(x,,, x,,,, x;) < € forall m,n,l > N;
that is, G(x,,, x,,,, ;) — 0asn,m,l — +oo.

Proposition 6 (see [1]). Let (X, G) be a G-metric space. Then
the following are equivalent:
(1) the sequence {x,} is G-Cauchy,

(2) for any € > 0, there exists N ¢
G(x,, X,y X,,) < & forallm,n > N.

N such that

Definition 7 (see [1]). A G-metric space (X, G) is called G-
complete if every G-Cauchy sequence is G-convergent in
(X,G).

Definition 8. Let (X, G) be a G-metric space. A mapping F :
X — X is said to be G-continuous if for any G-convergent
sequence {x,} to x, then {F(x,,)} is G-convergent to F(x).

Now, let # denote the set of functions f : [0,+c0) —
[0, +00) such that f(¢) = 0 if and only if t = 0. We denote by
¥ and @ the subsets of # such that

V¥ = {y € F : y is continuous and nondecreasing},

(4)

® = {¢ € F : ¢ is lower semicontinuous} .

There are a lot of fixed point theorems for different type
contractions in the literature. In particular, Berinde [30-32]
introduced the concept of an almost contraction in metric
spaces and studied many interesting fixed point theorems for
a Ciri¢ strong almost contraction. For other fixed point results
on generalized almost contractions, see [33-37]. In this paper,
we introduce some almost generalized (v, ¢)-contractions in
the setting of G-metric spaces, and we establish some fixed
points results for such contractions.

2. Main Results

Let (X,G) be a G-metric space. First, we consider the
following expressions:

M (x,y,2)
= max {G (x,Tx,y),G (y, T’x, Ty) ,G (Tx, T’x, Ty) ,
G(x,Tx,2),G (2, T°x,Tz),
G(Tx,T*x,T2),G (x, y,2)}
N (x, y,2)
=min{G (x,Tx,Tx),G (y, Ty, Ty),G (2, Tz,Tz),

G(z,Tx,Tx),G(y, Tz, Tz)},
)
forall x, y,z € X.

Our first result for almost generalized (v, ¢)-contractions
is the following.
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Theorem 9. Let (X, G) be a complete G-metric space. Let T' :
X — X be a self-mapping. Suppose there existy € ¥, ¢ € D,
and L > 0 such that for all x, y, z € X,

¥ (G(Tx Ty, T2)) < y (M (x, , 2))
(6)

—¢(M(x,5,2)) + LN (x, 3,2) .

Then T has a unique fixed point; say u € X.

Proof. Let x, € X, and define a sequence {x,,} in X such that

Xp41 = Ix,, foranymneN. (7)

If for somen € N, x,,,, = x,,, then x,, = Tx,,, and the proof is
completed. Thus, we may assume that x,,,, # x,, forall n € N.
By (6) we have

l// (G (xn, xn+1’ xn+l))
= 1// (G (T.Xn_l, T-xn) Txn))
(8)
< 1// (M (xn—l’ Xns xn))

= ¢ (M (%1%, X)) + LN (x5 %, X,,)»
where
M (%1, %, X,)

= max {G (-1, TX,_1,%,,), G (xn, T’x, Txn) ,
G(Tx, 1, T°%, 1, Tx,,), G (%1, TX,, 1, %,,) 5
G (%, T?%,_1, Tx,)

G (Txn_l, T’x, 1, Txn) VG (%015 %, xn)}

= max {G (x,_1, X, X,,) » G (X, X115 Xpps1) >

G (%> X1 X41) > G (%01 X0 %) »

G (%, X115 X011) > G (%0 X5 X1 »
G (%5-15 % %,,)}
= max {G (-1, %, X,) » G (X X115 X1 )} 5
N (-1 % X,,)
= min {G (x,_,, Tx,_;, Tx,_1), G (x,,, Tx,, Tx,) ,
G (5, T, T,,) s G (5, T, 15 T, »

G (x,, Tx,, Tx,)}
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= min {G (xn—l’ Xp> xn) ’ G (xn’ Xn+1> xn+1) >
G (xn’ xn+1’ xn+1) > G (xn’ xn’ xn) >

G (xn’ Xn+1> xn+1)}

= min {G (xn—l’ xn’ xn) > G (xn’ xn+1’ xn+1) > 0} =0.

)
From (8) and (9), we get
1// (G ('xn’ Xn+1> xn+1))
= 1// (max {G (xnfl’ Xn> xn) > G (xn’ Xn+1> xn+1)})
- (/) (max {G ('xn—l’ Xy xn) ,G ('xn’ Xu+1> xn+l)}) .
(10)
If
max {G ('xn—l’ Xn> xn) 4 G (xn’ Xn+1> Xnt1 )}
(11)
=G (xn) xn+1> xn+1) >
then by (10) we have
1// (G (xn’ Xn+1> xn+1))
(12)

sy (G (xn’ Xp+1> ‘xn+1)) - ¢ (G (xn’ Xp+1> ‘xn+1)) .

Thus ¢(G(x,,, X,,,1> X,11)) = 0, and hence G(x,,, X, 1, X,,.1) =
0. Therefore, x,, = x,,,; which is a contradiction. So,

max {G (xn—1> Xn> xn) > G (xn’ Xn+1> xn+1)} =G (xn—l’ Xn> xn) .

(13)
Therefore, we get
G (X Xyt %) € G (X1, X x,) V€N, (14)
and (10) becomes
¥ (G (X X1 X))
<Y (G (xp1r X x,)) = ¢ (G (x5 X x,)) - (15)

Vn € N.

Thus, by (14), the sequence {G(x,,, X,,,> X,,;)} is monotone
nonincreasing. It follows that G(x,,, x,,,;, X,,,;) — aasn —
+oo for some « > 0. Next we claim that « = 0. On taking
limit asn — +00 in (15), we obtain

v () Sy (a) - ¢ (a). (16)
Hence ¢(«) = 0 and we get « = 0. Hence
nEerG (xn’ xn+1’ xn+1) =0. (17)

Next, we show that {x,,} is a G-Cauchy sequence. On contrary,
assume that {x,} is not a G-Cauchy sequence. Then, there is

an & > 0 for which we can find subsequences {x,,)}, {x,,0)}
of {x,} with m(k) > n(k) > k such that

G (xm(k)’ Xk xn(k)) 28,
(18)
G(xm(k)—pxn(k)sxn(k)) <é&

Using (18) and (G5), we have

€ < G (Xt Xn(hy> X))
< G (Xpn(kys Xm()-1> Xm(iy-1) + G (Xm(iy—1> Xy Xny)  (19)
<e+2G (xm(k),l, xm(k), xm(k)) .

Taking limit as k — +o00 and using (17), we have

lim G (xm(k))xn(k)’xn(k)) =& (20)

k— +00

By (G5), we get

G (xm(k)’ Xn(k)> xn(k))

<G (xm(k)’ Xm(k)+1> xm(k)+1) +G (xm(k)ﬂ’ Xn(k)+1> xn(k)+1)
+ G (X115 Xy xn(k))

<G (xm(k)’ Xm(k)+1> xm(k)+1) +G (xm(k)+1’ Xn(k)+1> xn(k)+1)
+ 2G (X0y> X415 X(ky41)

<G (xm(k)’ Xin(k)+1> xm(k)+1) +G (xm(k)+1s Xim(k)> xm(k))
+G (xm(k)’ Xn(k)> xn(k)) +G (xn(k)» Xn(k)+1> xn(k)+1)
+2G (Xp0> Xy 1> iy 1)

<3G (xm(k)’ Xm(k)+1> xm(k)+1) +G (xm(k)’ Xn(k)> xn(k))

+G (xn(k)’ Xn(k)+1> xn(k)+1) +2G (xn(k)’ Xn(k)+1> xn(k)+1) .

(1)

Ontakinglimitask — +ooin the above inequality and using
(17) and (20), we obtain

WM G (X115 Xngy+1> Xn(y+1) = & (22)

k— +oo

Again, by (G5), we have

G (xn(k)’ Xim(k)+2> xn(k)+1)
<G (xn(k)> Xnk)+1> xn(k)+1) +G (xn(k)ﬂ’ Xn(k)+1> xm(k)+2)
<G (xn(k)’ Xu(k)+1> Xpy+1) + G (xm(k)+2’ Xin(k)+1> xm(k)+1)
+G (xm(k)+1’ Xnk)+1> xn(k)+1)
<G (xn(k)> Xn(k)+1> xn(k)+1) +2G (xm(k)+1’ Xm(k)+2> xm(k)+2)
+G ('xm(k)+1> Xim(k)+2> xm(k)+2)

+G (xm(k)+2’ Xn(k)+1> xn(k)+l)



<G (xn(k)’ Xn(l)+1> xn(k)+1) +2G (xm(k)+1’ Xm(k)+2> xm(k)+2)

+G(x Xm(k)+1> Xm (k)+2)xm(k)+2)+G( n(k)+1> Xn(k)> n(k))

+G( n(k)y> % (k)+1’xm(k)+2)

<G (xn(k)’ Xn(k)+1> xn(k)+1) +2G (xm(k)+1’ Xm(k)+2> xm(k)+2)

+G (xm(k)+1> Xm(k)+2> xm(k)+2)

+2G (X0 X X+ 1> Xm(iy+2) -

(23)

n(k)+1> xn(k)+1) +G (xn(k)’

Ontakinglimitask — +o0oin the above inequality and using
(17) and (22), we obtain

hm G( n(k)’ m(k)+2’ n(k +1) =¢& (24)

k— +00

We have also, by (G5),

G (xm(k)’ Xm(k)+1> xn(k))
<G (xm(k)’ Xm(k)+1> xm(k)+1) +G (xm(k)+1’ Xm(k)+1> xn(k)) >
G (xm(k)w Xm(k)+1> xn(k))

(k)) +G (xm(k)’ Xim(k)+1> xn(k)) .
(25)

< G (Xpn(iya1> Xom(ey> Xom

Ontakinglimitask — +ooin the above inequality and using
(17) and (G3), we obtain

kkl’n G(xm(k)+1’ m(k)+1’ n(k))
(26)

= kl_l}}rl G(xm(k)’ m(k)+1>xn(k))

We have also, by (G3) and (G5),

G (xn(k)’ Xm(k)+1> xm(k)+1)
<G (xn(k)’ Xin(k)+1> xn(k)+1)
<G( Xn(k)> Xn(k)+1> n(k)+1)+G( n(k)+1> Xn (k)+1’xm(k)+1)

xn(k)) <G (xm(k)’xn(k)’xm(k)ﬂ) .

(27)

G (xm(k)’ Xn(k)>

Now, on takinglimitas k — +c0 in (27), and using (17), (20),
and (26), we obtain

f ETOOG ( Xm(k)+1> Xm(k)+1> xn(k))

(28)
= lim G( m(k

, X =E&.
K +00 m(k)+1 n(k))
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Furthermore, by (G3) and (G5), we get

G (xm(k)+1> Xn(k)+1> xn(k)+1) <G (xm(k)+1’ Xm(k)+2 xn(k)+1)
< G (X2 X +1> Xy 1)
+G (xm(k)+1’ Xm(k)+1> xn(k)+1)
< 2G (Xpry+1> Xy +2> Xm(ky+2)
+G (Xn(k)+1> Xn(k)> xn(k))
+G (xn(k)> Xim(k)+1> xm(k)+1)
< 2G (Xpry+1> Xy +2> Xy +2)

+ 2G (X0 X415 Xy 1)

+G (xn(k)’ Xm(k)+1> xm(k)+1) .
(29)

On taking limit as k — +o00 in the above inequality, and
using (17), (20), (22), and (28), we obtain

lim G (xm(k)+1’x xn(k)+1) =& (30)

k- 100 m(k)+2>

Now, we have

v (G (xm(k)+1’ Xn(k)+1> Xn(k)+1 )
=y (G (Txm(k)’ Tx 1> Txn(k)))
<y (M (xm(k)> Xn(k)> xn(k)))

= (M (K> Xy Xny))

+ LN (X,0)> Xk Xn(k))
< ¥ (max {G (X,,> TX ey X)) »
G (%> T 5> Tt )
G (Txm(k), szm(k)’ Txn(k)) »
G (Xprys TX (k> Xnh)) »
G (xn(k), szm(k)’ Txn(k)) >
G (T%mt> T Xt Tt

G (xm(k)> Xn(k)> xn(k))})
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- ¢ (max {G (xm(k)’ T (s xn(k)) >
G (%u0 T* %> Tonge)
G (TXp> T Xty Tty )
G (xm(k)’ Ty xn(k)) >
G (%u0> "% T
G (TXpmt> T Xty Tty )
G (%nr» Xn(hy» Xncio)})
+ L (min {G (%0000 T%xys TXmiiy) »
G (xn(k)’ Tx s Txn(k)) >
G (xn(k)’ Tx s Txn(k)) >
G (%> T%mrys T i) »
G (X Ty T )})
< ¥ (max {G (X X 1> Xni) -
G (xn(k)’ Xm(k)+2> xn(k)+1) ]
G (xm(k)+1’ Xm(k)+2> xn(k)+1) >
G (xm(k)’ Xn(k)> xn(k))})
-¢ (max {G (xm(k)> Xm(k)+1> xn(k)) >
G (xn(k)’ Xm(k)+2 xn(k)+1) >
G (xm(k)+1’ Xm(k)+2> xn(k)+1) >
G (xm(k)> Xn(k)> Xn(k) )y
+ L (min {G (X000 Xk +1> Xmey+1) >
G (xn(k)’ Xn(k)+1> xn(k)+1) >

G (xn(k)’ Xm(k)+1> xm(k)+1) }) .
(31)

Letting k — +00, and using (17), (20), (22), (24), (28), and
(30), and the properties of ¢ and v, we have

Y& <y - (32)

Thus ¢(e) = 0 and hence € = 0, a contradiction. Thus {x,} is
a G-Cauchy sequence in X.

Now, since (X, G) is G-complete, there are x € X such
that {x,} is G-convergent to x; that is

lim G(x,, x,x)= lim G(x,,x,x)=0. (33)

n—+00 n—+00

By (6), we get

1// (G (xn+1> xn+1’ Tx))
=y (G(Tx,, Tx,, Tx))

sy (M (xn’ Xn> x)) - ¢ (M (xn’xn’ x)) +LN (xn’ xn"x) >
(34)

where
M (x,, x,,, x) = max {G (x,, Tx,, x,),G (xn, T’x,, Txn) ,
G (Txn, T’x,, Txn) ,G (%, Tx,, X)
G(x,T*x,, Tx),
G (Txn, T’x,, Tx) LG (%, X0 x)}
= max {G (x,, X1 %) » G (X0 X120 X)) »
G ('xn+1’ Xps2> Xpi1) > G ('xn’ Xn+1> x) >
G (%, %42, Tx) , G (X515 Xpps2> TX)
G (%, %, %)}
N (x,, x,,, x) = min {G (x,,, Tx,, Tx,), G (x,, Tx,, Tx,) ,
G(x,Tx,Tx),G (x,Tx,, Tx,),
G (x,, Tx, Tx)}
= min {G (x,,, X, 1> X1 ) » G (%, Tx, Tx),

G (%, X115 Xp11) > G (%, Tx, Tx)} .

(35)
Lettingn — +00 in (35), we get
im M (x,, x,x) = G (x,x,Tx),
(36)

Jim N (%, X, x) = 0.

On letting n — +00 in (34), and using the properties of ¥
and ¢ and (36), we obtain

Y (G (x,x,Tx)) < v (G (x,x,Tx)) — ¢ (G (x,x,Tx)). (37)

Therefore G(x, x, Tx) = 0 and hence x = Tx. Thus x is a fixed
point of T'.

Now our purpose is to check that such point is unique.
Suppose that there are two fixed points of T; say x, y € X
such that x # y. By (6), we have

v (G (x %))
=y (G(Tx,Tx,Ty)) (38)

<y (M (x.%7)) - (M (x.x,9) + LN (x.%5),



where

M (x,x, y) = max {G (x,Tx,x),G (x, T’x, Tx) ,

G (Tx, Tx, Tx) ,G(x,Tx, y),

G(y, Tx,Ty),
G(Tx, T’x,Ty),G (x, x, y)} (39)
=max {G(x,x,y),G (. x,y)},
N (x, x, y) = min {G (x, Tx, Tx) ,G (x, Tx, Tx),
G(y, Ty, Ty),G(y,Tx,Tx),
G(x,Ty,Ty)} = 0.
Similarly, we can prove that
v (G(x 3, y))
=y (G(Tx, Ty, Ty)) (40)
<y (M(x,p,y) = ¢(M(x,y,)) + LN (x,y,y),
where
M (x, 3, y) = max {G (x,x,5),G (. % y)} "

N (x,y,y) =0.
If
max{G (x,%,y),G(y:% )} =G(x.xy).  (42)
By (38) and (39), we get
v(G(xx) <y (G(xxy)-¢(G(xxy), (43)
a contradiction. Then
max {G (x,%,7),G (5, % y)} =G (x. 3, y).  (44)
By (40) and (41), we get
v (G(x,2.9) <y (G(x,9.9) ¢ (G(x. 3. y)), (45)

a contradiction. Thus, x = y, and hence the fixed point of T
is unique. O

As consequence of Theorem 9, we present the following
corollaries.

Corollary 10. Let (X, G) be a complete G-metric space. Let T :
X — X be a self mapping. Suppose there exist k € [0, 1) and
L > 0 such that for all x, y,z € X

G(Tx, Ty, Tz) < kM (x, y,z) + LN (x, y,z). (46)
Then T has a unique fixed point; say u € X.

Proof. It suffices to take y(t) = t and ¢(t) = (1 — k)(¢) in
Theorem 9. O
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Corollary 11. Let (X, G) be a complete G-metric space. Let T :
X — X be a self mapping. Suppose there exist k € [0, 1) and
L > 0 such that for all x, y,z € X

G(Tx,Ty,Tz) <kG(x,y,z) + LN (x, y,2). (47)

Then T has a unique fixed point; say u € X.
Proof. Note that G(x, y,z) < M(x, y,z) in Corollary 10. [

Remark 12. Corollary 11 is a generalization of Mustafa’s result

[2].
Our second main result is given as follows.
Theorem 13. Let (X, G) be a complete G-metric space. Let T :
X — X be a self mapping. Suppose there exist w € ¥, ¢ € ©
and L > 0 such that for all x, y € X:
v (G(Tx, Ty, T?x))

<y (M (x,9,%)) = ¢ (M" (x, %)) + LN (x, , ),
(48)

where

M* (x, y,x)
= max {G (x.Tx,y),G (y, T’x, Ty) ,G (Tx, T x, Ty) ,
G(x,Tx,Tx),G (Tx, T’x, sz) ,G(x, y, Tx)} ,
N* (x, y,x)
=min {G (x,Tx,Tx),G (., Ty, Ty),G (y, Tx, Tx)}
(49)
forall x, y € X. Then T has a unique fixed point; say u € X.

Proof. Let x, be an arbitrary point in X and define a sequence
{x,} in X such that

X, = Ix,, foranymneN. (50)

If for somen € N, x,,; = x,,, then x,, = Tx,, and the proof is
completed. Thus, we may assume that x,,,, # x,, foralln € N.
By (48), we have
14 (G (xn’ Xni1> xn+1))
=y (G (Txn_l, Tx,, szn_l))
sy (M* (xnfl’ Xn> xnfl)) - ¢ (M* (xn—b Xn> xnfl))

+ LN* (xn—l’ xn>xn71) >

(51)
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where
M (%1, X5 Xy
= max {G (x,_1-TX,_1,%,),G (xn, T’x, Txn) ,
G(Tx, 1, T?%, 1, T, ), G (%1, T,y 1, T, 1)
G (Txn,l, T°x, szn,l) LG (%15 X0 Txn,l)}
= max {G (x,,1, %, X,) » G (X, X115 Xpi1) »
G (%, X115 %011)» G (X1 X0 %) 5
G (%, X115 %011) » G (X015 X0 %)
= max {G (%,_1, %> %) » G (% X 1> %)}
N* (xn—l’ Xn> xn—l)
= min{G (x,_,,Tx,_,Tx,_,), G(x,,Tx,, Tx,),
G(x,,Tx,_1,Tx,_;)}
= min {G (%15 X, %,) s G (%> X1 X41) > G (%, %, X, )}

=0.
(52)

From (51) and (52), we get
1// (G (xn’ Xn+1> xn+1))
< Ir’/ (max {G (xn—l’ Xn> xn) > G (xm Xn+1> xn+1)})

- ¢ (maX {G (xn—l’ Xu> xn) G (xn’ Xn+1> xn+l)}) .

(53)

If

max {G (xn—l’ Xn> xn) > G (xn’ Xnt1> Xn+1 )}
(54)
=G (xn’ xn+1> xn+1) >
then by (53) we have
W (G (xn’ Xn+1> xn+1))

(55)

sy (G (xn’ Xn+1> xn+1)) - (»b (G (xn’ Xun+1> xn+1)) .

Thus y(G(x,,, X,,,1> X,,1)) = 0 and hence G(x,, x,,,1, X,,,;) =
0. Therefore, x,, = x,,,,, which is a contradiction. So,

max {G (xn—l’ Xn> xn) > G (xw Xn+1> Xn+1)} =G (xn—l’ X an) )
56

Therefore, we get
G (%, X115 X11) < G (%5 %0 X,)  VmEN, (57)
and (53) becomes
¥ (G (o X1 Xi1)) < ¥ (G (%01 %0 X))
—$(G(xpp X x,))  (58)

Vn e N.

Thus, by (57), the sequence {G(x,,, X,,,1> X,,;1)} is monotone
nonincreasing. It follows that G(x,,, x,,,, x,,,1) — gasn —
+0o for some g > 0. Next we claim that g = 0. On taking
limit asn — +00 in (58), we obtain

v(9)<y(9)-¢(9)- (59)
Hence ¢(g) = 0 and we get g = 0. Then

hm G (xn, xYl+1’ xn+1) =0. (60)

n—+00

Next, we show that {x,,} is a G-Cauchy sequence. On contrary,
assume that {x, } is not a G-Cauchy sequence. Then, there is
an & > 0 for which we can find subsequences {x,,4)}, {x,,0)}
of {x,} with m(k) > n(k) > k such that

G (Xmry> Xn(ry> Xn(ry) = &
(61)
G(Xm(k)—l’xn(k)’xn(k)) <é&
Using (61) and (G5), we have
& < G (Xp(h)> Xn(hy> Xnch))
< G (X Xmk)-1> Xm)-1) + G (X1 Xn(hy> X)) (62)
<E+ 2G (.xm(k)_l, xm(k), xm(k)) .

Taking limit as k — +o00 and using (60), we have

lim G (xm(k)> Xn(k)> xn(k)) =¢& (63)

k — +00

By (G5), and using (60) and (63), we obtain, as stated in the
proof of Theorem 9,

UM G (X115 Xngoy+ 1 Xn(iy+1) = & (64)

k — +00

Again, by (G5), and using (60) and (64), similarly as in the
proof of Theorem 9, we obtain

kLiTPOOG (xn(k)’ Xm(i)+2> xn(k)+1) =& (65)
Furthermore, by (G3) and (G5), we get
G (xm(k)+1> Xn(k)+1> xn(k)+1)

< G (X e1> X420 Xnio+1)
<G (xm(k)+2’ Xin(k)+1 xm(k)+1)

+ G (Xu(ky+ 1> Xim(ky+1> Xy 1)
< 2G (%) 1> X 12> Xmiy+2)

+G (xn(k)+1’ Xn(k)> xn(k)) +G (xn(k)’ Xm(k)+1> xm(k)+1)
< 2G (X 1> Xm(y2> X2

+2G (X (> X (1> Xn(iy+1)

+G (xn(k)’ Xim(k)+1> xm(k)+1) .
(66)
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By the proof of Theorem 9, we have stated that S Y (M™ (%15 Xon(iy 11> Xn(iy-1))
kET?mG( m(k)+1> Xm(k)+1> X n(k)) =& (67) -¢ (M* (xn(k)—l’xm(k)ﬂ’ xn(k)—l))
So, on taking limit as k — +o00 in (66), and using (60), (64), +LN" (xn(k)—l’ Xm(k)+1> xn(k)—l)
and (67), we obtain
< ¥ (max {G (%,9-1> TXn(e)-1> X 1) »
kl_lglooG( m(k)+1> X m(k)+2’xn(k)+1) =& (68)

2

G (xm(k)+1> T X )-1> Txm(k)+1> >
Furthermore, by (G3) and (G5), we get ,

G (Txn(k)—l’ T % 1)1 Txm(k)+1) >

G (xn(k)—l’ Xn(k)> xm(k)+1)
G (xn(k)fl’ Txn(k)fl’ Txn(k)fl) >
<G (xn(k)—l’ Xn(k)> xn(k)) +G (xn(k)’ Xn(k)> Xm(k)+1) ) 5

G (Txn(k)—l’ T xy40-1>T xn(k)—l) >
<G (xn(k)—l’ Xy Xn(ry) + G (xm(k)+1’ Xon(k)» Xim(iy)
G (xn(k)—p Xm(k)+1> Txn(k)—l)} )
+G (xm(k)’ Xn(k)> xn(k)) ( (G )
= ¢ (max (G (Xk)-1> TX(k)-1> Xom(ky1) 5
<G (xn(k)fl’ Xn(k)> xn(k)) +2G (xm(k)’ Xm(k)+1> xm(k)+1)

Glx T*x Tx
(k)+1> (k)-1> (k)+1) >
+G (xm(k)’ xn(k)) xn(k)) > ( m ni ml )

G(Tx, g 1 T* %001, Tx ,
G(xm(k)’xn(k)’xn(k)) ( n(k)-1 n(k)-1 m(k)+1)

G(x S Tx, 01> 1% 1) »
< G (X Xy 41> Xmy+1) + G (Xomiy 15 Xn(hy> X)) (1> T TXgtg1)

2 2
<G (xm(k)’xm(k)ﬂ’ xm(k)+1) +G (xn(k)’ Xn(k)-1> xn(k)—l) G (Txn(k)—l’ T %912 T x"(k)—l) ’

+ G (X115 Xl Xomiy+1) - G (%915 X 1> Try-1)})

(69) .

+ Lmin {G (Xg9-1> T(-1> TXnge-1) »
On taking limit as k — +00 in above inequalities, and usin

8 d & G (X 1> Tx

,Tx ,
(60) and (63), we have (k)+1 m(k)+1)

G (xm(k)+1’ Tx 501> TX (-1 )}
kLerOOG( 1 Xy Xy 1) = - (70)

<1//(maX{G( n(k)-1> % n(k)’xm(k)ﬂ)’

Also, by (G3) and (G5), we get
y (G3) (G5) g G(x (K)+1> Xn(k)+1> X k)+2)

G (X115 Xntio> Xty G (X Xiys1> Xm(i2) »

< G (X1 Xm)» Xm(i) + G (X Xrn)» X)) G (Xp()-15 Xn(k)> Xnh)) »

< 2G (X Xmiky+ 1> X +1) + G (Xm)» Xy X)) » G (X000 Xnky+1> Xn(i11)})
G (%19 Xnk)> Xni)) — ¢ (max {G (X, 1> (k) Xm(iy11) »

<G( Xm(k)> m(k)+1’xm(k)+l)+G( Xm(k)+1> X n(k)’xn(k))'

(71) G (xm(k)+1’ Xn(k)+1> xm(k)+2) >

G (Xn(h» X 11> Xm(iy+2) »
On taking limit as k. — +00 in above inequalities, and using

(60), (63), and (70), we obtain G (xn(k)—l’ Xn(k)> xn(k)) >
. lim G (xm(k)+1, xn(k)’ xn(k)) =&. (72) G (x"(k)’ x"(k)+1’ x”(k)+1)})
— +00

+ L min {G (xn(k)—l > Xn(k)» xn(k)) ’
Now, we have

G (xm(k)ﬂ’ Xm(k)+2> xm(k)+2) >
v (G ('xn(k)’ Xim(k)+2> xn(k)+1))
, G (xm(k)+1> Xn(k)> xn(k))} .
=V (G (Txn(k)—l’ Tx 41> T xn(k)—l)) (73)
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Letting k — +00, and using (60), (65), (68), (70), and (72),
and the properties of ¢ and y, we have

v <y -¢). (74)

Thus ¢(e) = 0 and hence € = 0, a contradiction. Thus {x,} is
a G-Cauchy sequence in X.

Now, since (X, G) is G-complete, there is x € X such that
{x,} is G-convergent to x; that is

lim G (%, X, X) = lim G (% %,%) =0.  (75)

By (48), we get

l// (G (xw Tx’ xn+1 )) = 1// (G (Txn—h Tx’ sznfl ))
< 4 (M* ('xn—l’ X5 xn—l))

= ¢ (M (%15 % X,1))

+ LN* (xn—l’ X, xn—l) >

(76)

where
M* (xn—l’ X, xn—l)
= max {G (x> T, 15 %), G (x, Tx, | Tx) ,
G (Tx, 1, T*x, 1, Tx),
G (x> Tx, 1 Tx, 1) s
G (Txn_l, szn_l, sz,,_l) ,
G (%15 %, Txn—l)}
= max {G (x,_;, x,, x) , G (%, X1, Tx) 77
G (%, Xy 1> Tx) , G (%15 X > X,) >
G (%> X1 Xpe1) » G (X1, X, X,) 5
N* (x,_1, % X,_1)
= min{G (x,_;, Tx,_1, Tx,_,) »
G (x,Tx,Tx),G (x,Tx,_;, Tx,_;)}
= min {G (x, 1, X, x,)
G (x,Tx,Tx),G (%, x,,,x,)} .

Lettingn — +00 in (77), we get

lim M* (x,_;, % x,,) = G(x,x,Tx),

n—+00
* (78)
nErPooN (xn—l’ X, xn—l) =0.
On letting n — +00 in (76), and using the properties of ¥
and ¢ and (78), we obtain

Y (G (x,x,Tx)) <y (G (x,x,Tx)) — ¢ (G (x,x,Tx)). (79)

Therefore G(x, x, Tx) = 0 and hence x = T'x. Thus x is a fixed
point of T'.

Now our purpose is to check that such point is unique.
Suppose that there are two fixed points of T; say x, ¥y € X
such that x # y. By (48), we have

v (G (x, 3, x)) =y (G(Tx, Ty, T’x))
<y (M (x,p,x)) = (M (x, ,x)) (80)
+LN" (x,y,x),
where
M* (x, y,%)
= max {G (x,Tx, ), G (3. T°x, Ty), G (Tx, T*x, Ty),
G (x,Tx, Tx),G (Tx, T*x, T’x) , G (x, y, Tx)}
= max {G (x,x,7),G (3, % )}
N*(x, y,x)

=min {G (x,Tx,Tx),G (3, Ty, Ty),G (3, Tx,Tx)} = 0.
(81)

Similarly, we can prove that
v(G(y.x.9))
=y (G (Ty, Tx, sz))

<y (M (y,x,9) - ¢(M" (3, % 9)) + LN (y,x,y)( ))
82

where
M (y,x,y) = max{G (x,x,7),G (%, )},
N™ (3, x,y) =0.

(83)

If
max {G (x,%,5),G (3% )} =G(x,xy).  (84)
By (80) and (81), we get
v (G(xx,9) <y (G(xxy) -¢(G(xx.p), (8)
a contradiction. Then
max {G (x,%,7),G(y, % y)} =G (x, 3,y).  (86)
By (82) and (83), we get

v(G(x2.9)<v(G(x1.y)-¢(G(x.3.9), (87

a contradiction. Thus, x = y, and hence the fixed point of T
is unique. 0

Finally, we provide the following example.
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Example 14. Let X = [0,1] and G : X x X x X — R be
defined by

itx=y=gz,

G(x,y,2) = (88)

{max {x,y,2z} otherwise.

Then (X, G) is a G-complete G-metric space. Let T: X — X
be defined by

lx if0<x< l,
Tx={? ’ (89)
lx4 if1 <x<1.
8 3
Take y(t) = (1/2)t and ¢(t) = (1/4)t for all t € [0, +oo[. We
examine the following cases.
(i) Let 0 < x, y < 1/3. Then

G(Tx, T’x,Ty)

—max{—x Lxl }—lmax{x lx }
- 171674 T, e

1 * *
gzmax{x,y}=w(M (%, 3, %)) = (M" (x, y, %)),

(90)

where M"*(x, y, x) = max{x, y}.
(ii) Let 1/3 < x, y < 1. Then

G(Tx, T*x, Ty)

1 4 1 16 1 4 1 1 4
=max{—x,—x ,—y}s—max{x,—x,y}
8 64 8 4 8
1 * *
< ymax{x yh =y (M (x3,x)) - ¢ (M" (%, 3,%)),

o1

where M*(x, y,z) = max{x, y}.
(iii) Let 0 < x < 1/3 < y < 1. Then

G (Tx, T x, Ty)

{1 11 4} 1 { ] }
maxiy—Xx, —X, — S —Mmaxix, —X,
1016787 |54 a0 (92

IN

D= v (M (57,0)) - $ (M (x,3,%)),

where M*(x, y,x) = y.
(iv) Let 0 < y < 1/3 < x < 1. Then

G (Tx, T’x, Ty)

{141161}<1 {14}
=maxy1—x ,—X ,— < —maxgx, —x,
¥ 6a” "1™ 1 ¥ (93

<

ix =y (M" (x,9,x)) - ¢ (M" (x, y,x)),

where M*(x, y,x) = x. Then

G(Tx, T’ Ty) <y (M” (x,y,x)) = ¢ (M (x, 7)) o0
+LN" (x, y,x)

Abstract and Applied Analysis

for all L > 0. Then the conditions of Theorem 13, hold and T
has a unique fixed point. Notice that u = 0 is the desired fixed
point of T'.
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