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This paper is concerned with the existence of positive solutions for a class of boundary value problems of fractional differential
equations with parameter. The main tools used here are bifurcation techniques and topological degree theory. Finally, an example
is worked out to demonstrate the main result.

1. Introduction

During the last few decades, fractional calculus and fractional
differential equations have been studied extensively since
fractional-order models are found to be more adequate
than integer-order models in some real-world problems. In
fact, fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various
materials and processes. The mathematical modeling of sys-
tems and processes in the fields of physics, chemistry, aerody-
namics, electrodynamics of complex medium, polymer rhe-
ology, and so forth involves derivatives of fractional order.
For details and examples, see [1–7] and references therein.
Recently, there have been a few papers which deal with the
boundary value problem for fractional differential equation.
For example, in [8], Tian and Liu investigated the following
singular fractional boundary value problem (BVP, for short)
of the form

𝐶
𝐷
𝛼

0
+𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0,

(1)

where 𝐶𝐷𝛼
0
+ is Caputo’s fractional derivatives, 𝑛 − 1 < 𝛼 ≤ 𝑛,

𝑛 ≥ 4, and𝑓 : (0, 1)×(0, +∞) → [0, +∞) is continuous; that
is, 𝑓(𝑡, 𝑢) may be singular at 𝑡 = 0, 1 and 𝑢 = 0. By con-
structing a special cone, they obtained that there exist positive

numbers 𝜆
∗ and 𝜆

∗∗ with 𝜆
∗

< 𝜆
∗∗ such that the above

system has at least two positive solutions for 𝜆 ∈ (0, 𝜆
∗
) and

no solution for 𝜆 > 𝜆
∗∗ under some suitable assumptions

such as the following.

(A1) There exists an interval [𝑎, 𝑏] ⊂ (0, 1) such that
lim𝑢→+∞𝑓(𝑠, 𝑢)/𝑢 = +∞ uniformly with respect to
𝑠 ∈ [𝑎, 𝑏].

In [9], Bai and Lü consider the following nonlinear frac-
tional differential equation Dirichlet-type boundary value
problem:

𝐷
𝛼

0
+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(2)

where 1 < 𝛼 ≤ 2 is a real number and 𝐷
𝛼

0
+ is the standard

Riemann-Liouville differentiation.The corresponding Green
function is derived. By means of some fixed point theorems
on cone, the existence and multiplicity of positive solutions
for BVP (2) were investigated.

In [10], Jiang and Yuan further investigated BVP (2).
Comparing with [9], they deduced some new properties of
the Green function, which extended the results of integer-
orderDirichlet boundary value problems. Based on these new
properties and Krasnoselskii fixed point theorem, the exis-
tence and multiplicity of positive solutions for BVP (2) were
considered.
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In this paper, by using bifurcation techniques, we con-
sider the following boundary value problem of fractional dif-
ferential equation:

𝐷
𝛼

0
+𝑢 (𝑡) + 𝜂𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(3)

where 1 < 𝛼 ≤ 2, 𝐷
𝛼

0
+ is the standard Riemann-Liouville

differentiation, 𝑟 > 0 is a given constant, and 𝑓 : [0, 1] ×

R+ → R+ is a given continuous function satisfying some
assumptions that will be specified later.

It is remarkable that the method used in references men-
tioned above was fixed point theorems and the same kind of
conditionswas used such that the nonlinearity𝑓(𝑡, 𝑢) satisfies
superlinear or sublinear condition at 0 and ∞, which is sim-
ilar to (A1). To the best of our knowledge, there is no paper
studying such fractional differential equations using bifurca-
tion ideas. As we know, the bifurcation technique is widely
used in solving BVP of integer-order differential equations
(see, e.g., [11–13] and references therein). In [14], by virtue
of bifurcation ideas, the authors studied a kind of BVP of
differential inclusions. The purpose of present paper is to
fill this gap. By using bifurcation techniques and topological
degree theory, the existence of positive solutions of BVP (3) is
investigated.Themain features of present paper are as follows.
First, the nonlinearity 𝑓(𝑡, 𝑢) is asymptotically linear at 0 and
∞, not super-linear or sub-linear (see the condition (H1) in
Section 2 and example in Section 4). Next, the main method
used here is bifurcation techniques and topological degree,
not fixed point theorem on cone, which is different from the
references.

The paper is organized as described below. At the end of
this section, for completeness, we list some results on bifur-
cation theory from interval and topological degree of com-
pletely continuous operators. Section 2 contains background
materials and preliminaries. In Section 3, by using bifurcation
techniques and topological degree theory, bifurcation results
from infinity and trivial solution are established. Then the
main results of present paper are given and proved. Finally in
Section 4, an example is worked out to demonstrate the main
results.

Lemma 1 (Schmitt andThompson [15]). Let𝑉 be a real reflex-
ive Banach space. Let 𝐺 : R × 𝑉 to 𝑉 be completely continuous
such that 𝐺(𝜆, 0) = 0, for all 𝜆 ∈ R. Let 𝑎, 𝑏 ∈ R (𝑎 < 𝑏) be
such that 𝑢 = 0 is an isolated solution of the equation

𝑢 − 𝐺 (𝜆, 𝑢) = 0, 𝑢 ∈ 𝑉, (4)

for 𝜆 = 𝑎 and 𝜆 = 𝑏, where (𝑎, 0), (𝑏, 0) are not bifurcation
points of (4). Furthermore, assume that

deg (𝐼 − 𝐺 (𝑎, ⋅) , 𝐵
𝑟 (0) , 0) ̸= deg (𝐼 − 𝐺 (𝑏, ⋅) , 𝐵

𝑟 (0) , 0) ,

(5)

where 𝐵
𝑟
(0) is an isolating neighborhood of the trivial solution.

Let

T = {(𝜆, 𝑢) : (𝜆, 𝑢) 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (4) 𝑤𝑖𝑡ℎ 𝑢 ̸= 0}

∪ ([𝑎, 𝑏] × 0) .

(6)

Then there exists a connected componentC ofT containing
[𝑎, 𝑏] × 0 in R × 𝑉, and either

(i) C is unbounded in R × 𝑉 or
(ii) C ∩ [(R \ [𝑎, 𝑏]) × 0] ̸= 0.

Lemma 2 (Schmitt [16]). Let 𝑉 be a real reflexive Banach
space. Let 𝐺 : R × 𝑉 to 𝑉 be completely continuous, and let
𝑎, 𝑏 ∈ R (𝑎 < 𝑏) be such that the solution of (4) is, a priori,
bounded in𝑉 for 𝜆 = 𝑎 and 𝜆 = 𝑏; that is, there exists an 𝑅 > 0

such that

𝐺 (𝑎, 𝑢) ̸= 𝑢 ̸= 𝐺 (𝑏, 𝑢) (7)

for all 𝑢 with ‖𝑢‖ ≥ 𝑅. Furthermore, assume that

deg (𝐼 − 𝐺 (𝑎, ⋅) , 𝐵
𝑅 (0) , 0) ̸= deg (𝐼 − 𝐺 (𝑏, ⋅) , 𝐵

𝑅 (0) , 0) ,

(8)

for 𝑅 > 0 sufficiently large.Then there exists a closed connected
set C of solutions of (4) that is unbounded in [𝑎, 𝑏] × 𝑉, and
either

(i) C is unbounded in 𝜆 direction or
(ii) there exists an interval [𝑐, 𝑑] such that (𝑎, 𝑏)∩(𝑐, 𝑑) = 0

andC bifurcates from infinity in [𝑐, 𝑑] × 𝑉.

Lemma 3 (Guo [17]). Let Ω be a bounded open set of real
Banach space𝐸, and let𝐴 : Ω → 𝐸 be completely continuous.
If there exists 𝑦

0
∈ 𝐸, 𝑦

0
̸= 𝜃 such that

𝑥 ∈ 𝜕Ω, 𝜏 ≥ 0 ⇒ 𝑥 − 𝐴𝑥 ̸= 𝜏𝑦
0
, (9)

then

deg (𝐼 − 𝐴, Ω, 𝜃) = 0. (10)

2. Background Materials and Preliminaries

For convenience, we present some necessary definitions and
results on fractional calculus theory (see [6]).

Definition 4. The fractional (arbitrary) order integral of the
function ℎ ∈ 𝐿

1
([𝑎, 𝑏]) of order 𝛼 ∈ R+ is defined by

𝐼
𝛼

𝑎+
ℎ (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠, (11)

where Γ is the gamma function. When 𝑎 = 0, we write
𝐼
𝛼
ℎ(𝑡) = [ℎ ∗ 𝜑

𝛼
](𝑡), where 𝜑

𝛼
(𝑡) = 𝑡

𝛼−1
/Γ(𝛼) for 𝑡 > 0, and

𝜑
𝛼
(𝑡) = 0 for 𝑡 ≤ 0, and 𝜑

𝛼
→ 𝛿(𝑡) as 𝛼 → 0, where 𝛿 is the

delta function.

Definition 5. For a function ℎ given on the interval [𝑎, 𝑏],
the 𝛼th Riemann-Liouville fractional-order derivative of ℎ is
defined by

(𝐷
𝛼

𝑎+
ℎ) (𝑡) =

1

Γ (𝑛 − 𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

ℎ (𝑠) 𝑑𝑠, (12)

where 𝑛 = [𝛼] + 1.
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Lemma 6. Let 𝛼 > 0; then, the differential equation

𝐷
𝛼

0
+𝑢 (𝑡) = 0. (13)

has solutions 𝑢(𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛, for some

𝑐
𝑖

∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer greater
than or equal to 𝛼.

Notice that 𝐷
𝛼

0
+𝐼
𝛼
ℎ(𝑡) = ℎ(𝑡) for all ℎ ∈ 𝐶(0, 1) ∩ 𝐿(0, 1).

From Lemma 6, we deduce the following result.

Lemma7. Assume that 𝑢 ∈ 𝐶(0, 1)∩𝐿
1
[0, 1]with a derivative

of order 𝑛 that belongs to 𝐶(0, 1) ∩ 𝐿
1
[0, 1]. Then

𝐼
𝛼

0
+𝐷
𝛼

0
+𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

, (14)

for some 𝑐
𝑖
∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer

greater than or equal to 𝛼.

For more detailed results of fractional calculus, we refer
the reader to [6].

Now let us list the following assumption satisfied
throughout the paper.

(H1) There exist two positive numbers 𝑟, 𝑅 with 𝑟 < 𝑅 and
functions 𝑎

0
, 𝑎
0
, 𝑏
∞

, 𝑎
0

∈ 𝐶(𝐽,R+) with 𝑎
0
(𝑡), 𝑎
0
(𝑡),

𝑏
∞

(𝑡), 𝑎
0
(𝑡) ̸≡ 0 in any subinterval of [0, 1] such that

𝑓 (𝑡, 𝑢) ⊂ [𝑎
0 (𝑡) (𝑢 − 𝜉1 (𝑡, 𝑢)) , 𝑎

0
(𝑡) (𝑢 + 𝜉2 (𝑡, 𝑢))] ,

∀ (𝑡, 𝑢) ∈ 𝐽 × [0, 𝑟] ,

𝑓 (𝑡, 𝑢) ⊂ [𝑏
∞ (𝑡) (𝑢 − 𝜁

1 (𝑡, 𝑢)) , 𝑏
∞

(𝑡) (𝑢 + 𝜁
2 (𝑡, 𝑢))] ,

∀ (𝑡, 𝑢) ∈ 𝐽 × [𝑅, +∞) ,

(15)

where 𝐽 = [0, 1], 𝜉
𝑖, 𝜁𝑖 ∈ 𝐶(𝐽×R+)with 𝜉𝑖(𝑡, 𝑡

𝛼−2
𝑢) = 𝑜(𝑡

𝛼−2
𝑢)

as 𝑢 → 0 uniformly with respect to 𝑡 ∈ [0, 1] (𝑖 = 1, 2), and
𝜁
𝑖
(𝑡, 𝑡
𝛼−2

𝑢) = 𝑜(𝑡
𝛼−2

𝑢) as 𝑢 → +∞ uniformly with respect to
𝑡 ∈ [0, 1] (𝑖 = 1, 2).

To solve BVP (3), we first consider the following linear
boundary problem of fractional differential equation:

𝐷
𝛼

0
+𝑢 (𝑡) + 𝑔 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(16)

where 𝑔 ∈ 𝐶[0, 1]. We cite the following two lemmas from
references.

Lemma 8 (see [9]). Given 𝑔 ∈ 𝐶[0, 1], then

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) d𝑠 (17)

is a solution of (16), where

𝐺 (𝑡, 𝑠) =
1

Γ (𝛼)
{

[𝑡 (1 − 𝑠)]
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

[𝑡 (1 − 𝑠)]
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(18)

Lemma 9 (see [10]). The function 𝐺(𝑡, 𝑠) defined by (18) has
the following properties.

(i) 𝐺(𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ (0, 1).
(ii) The function 𝐺

∗
(𝑡, 𝑠) =: 𝑡

2−𝛼
𝐺(𝑡, 𝑠) has the following

properties:

𝛼 − 1

Γ (𝛼)
𝑡 (1 − 𝑡) 𝑠(1 − 𝑠)

𝛼−1
≤ 𝐺
∗

(𝑡, 𝑠)

≤
1

Γ (𝛼)
𝑠(1 − 𝑠)

𝛼−1
,

∀𝑡, 𝑠 ∈ [0, 1] .

(19)

The basic space used in this paper is

𝐸 =: {𝑢 ∈ 𝐶 [0, 1] : 𝑢 (0) = 𝑢 (1) = 0} . (20)

Obviously, 𝐸 is a Banach space with norm ‖𝑢‖ = max
𝑡∈𝐽

|𝑢(𝑡)|

(for all 𝑢 ∈ 𝐸).
Let

𝑄 := {V ∈ 𝐸 : V (𝑡) ≥ (𝛼 − 1) 𝑡 (1 − 𝑡) V (𝑠) ≥ 0, ∀𝑠, 𝑡 ∈ (0, 1)} .
(21)

It is easy to see that 𝑄 is a cone of 𝐸. Moreover, from (21), we
have, for all V ∈ 𝑄,

V (𝑡) ≥ (𝛼 − 1) 𝑡 (1 − 𝑡) ‖V‖ , ∀𝑡 ∈ [0, 1] . (22)

For the sake of using bifurcation technique to investigate
BVP (3), we study the following fractional boundary value
problem with parameter 𝜆:

𝐷
𝛼

0
+𝑦 (𝑡) + 𝜆𝑓 (𝑡, 𝑦 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑦 (0) = 𝑦 (1) = 0.

(23)

A function (𝜆, 𝑢) is said to be a solution of BVP (23) if
(𝜆, 𝑢) satisfies (23). In addition, if 𝜆 > 0, 𝑢(𝑡) > 0 for 𝑡 ∈

(0, 1), then (𝜆, 𝑢) is said to be a positive solution of BVP (23).
Obviously, if 𝜆 > 0, 𝑢 ∈ 𝑄 \ {𝜃} is a solution of BVP (23), then
by (22), we know that (𝜆, 𝑢) is a positive solution of BVP (23),
where 𝜃 denotes the zero element of Banach space 𝐸.

Define

𝑓 (𝑡, 𝑢) = {
𝑓 (𝑡, 𝑢) , (𝑡, 𝑢) ∈ 𝐽 × R+,

𝑓 (𝑡, 0) , (𝑡, 𝑢) ∈ 𝐽 × (−∞, 0) .
(24)

Then 𝑓(𝑡, 𝑢) ≥ 0 on 𝐽 × R. Let

𝐴
𝜆
V (𝑡) =: 𝜆 ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−2

V (𝑠)) 𝑑𝑠, ∀V ∈ 𝑄. (25)

By assumption (H1) and using a similar process of the proof of
Lemma 4.1 in [10], we know that 𝐴

𝜆
: 𝐶[0, 1] → 𝑄 is com-

pletely continuous.
From Lemma 8, if V ∈ 𝐶[0, 1] is the the fixed point of

operator 𝐴
𝜆
, then 𝑦(𝑡) = 𝑡

𝛼−2V(𝑡) is the solution of

𝐷
𝛼

0
+𝑦 (𝑡) + 𝜆𝑓 (𝑡, 𝑦 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑦 (0) = 𝑦 (1) = 0.

(26)



4 Abstract and Applied Analysis

Let

Σ =: {(𝜆, V) ∈ R+ × 𝐶 [0, 1] : V = 𝐴
𝜆
V, V ̸= 𝜃}, (27)

where 𝜃 is the zero element of𝐶[0, 1]. FromLemma 9 and the
definitions of 𝑓 and the cone 𝑄, it is easy to see that Σ ⊂ 𝑄.
Moreover, we have the following conclusion.

Lemma10. For𝜆 > 0, if V is a nontrivial fixed point of operator
𝐴
𝜆, then (𝜆, 𝑡

𝛼−2V(𝑡)) is a positive solution of BVP (23). Fur-
thermore, (𝜆, 𝑦) is a positive solution of BVP (23) if and only if
(𝜆, 𝑦) is a nontrivial solution of BVP (26).

For 𝑎 ∈ 𝐶(𝐽,R+) with 𝑎(𝑡) ̸≡ 0 in any subinterval of 𝐽,
define the linear operator 𝐿𝑎 : 𝐶(𝐽) → 𝐶(𝐽) by

𝐿
𝑎
𝑢 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎 (𝑠) 𝑠
𝛼−2

𝑢 (𝑠) 𝑑𝑠, (28)

where 𝐺
∗
(𝑡, 𝑠) is defined by Lemma 9.

From Lemmas 8 and 9 and the well-known Krein-Rut-
manTheorem, one can obtain the following lemma.

Lemma 11. The operator 𝐿𝑎 defined by (28) is completely con-
tinuous and has a unique characteristic value 𝜆1(𝑎), which is
positive, real, and simple and the corresponding eigenfunction
𝜙(𝑡) is of one sign in (0, 1); that is, 𝜙(𝑡) = 𝜆1(𝑎)𝐿𝑎𝜙(𝑡) for all
𝑡 ∈ 𝐽.

Notice that the operator 𝐿𝑎 can be regarded as 𝐿𝑎 :

𝐿
2
[0, 1] → 𝐿

2
[0, 1]. This together with Lemma 11 guarantees

that 𝜆
1
(𝑎) is also the characteristic value of 𝐿

∗

𝑎
, where 𝐿

∗

𝑎
is

the conjugate operator of 𝐿
𝑎
. Let 𝜑

∗ denote the nonnegative
eigenfunction of 𝐿

∗

𝑎
corresponding to 𝜆

1
(𝑎). Then we have

𝜑
∗

(𝑡) = 𝜆
1 (𝑎) 𝐿

∗

𝑎
𝜑
∗

(𝑡) , ∀𝑡 ∈ 𝐽. (29)

3. Main Results

The main results of present paper are the following two
theorems.

Theorem 12. Suppose that either

(i) 𝜂 ∈ [𝜆1(𝑎0), 𝜆1(𝑏
∞

)] or
(ii) 𝜂 ∈ [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑎
0
)].

Then BVP (3) has at least one positive solution.

Theorem 13. Suppose the following.

(H2) There exist 𝑅 > 0 and ℎ ∈ 𝐿[0, 1] such that

𝑓 (𝑡, 𝑢) ≤ ℎ (𝑡) 𝑢, for 𝑡 ∈ [0, 1] , 𝑢 ∈ [0, 𝑅] ,

𝜂 <
Γ (𝛼)

∫
1

0
[𝑠 (1 − 𝑠)]

𝛼−1
ℎ (𝑠) 𝑑𝑠

.
(30)

In addition, if

𝜂 > max {𝜆
1

(𝑎
0
) , 𝜆
1

(𝑏
∞

)} , (31)

then BVP (3) has at least two positive solutions.

To proveTheorems 12 and 13, we first prove the following
lemmas.

Lemma 14. Let [𝑐, 𝑑] ⊂ R+ be a compact interval with
[𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] ∩ [𝑐, 𝑑] = 0. Then there exists 𝛿

1
∈ (0, 𝑟) such

that

V ̸= 𝐴
𝜆
V, ∀𝜆 ∈ [𝑐, 𝑑] , ∀V ∈ 𝐸 with 0 < ‖V‖ ≤ 𝛿

1
. (32)

Proof. If this is false, then there exist {(𝜇𝑛, V𝑛)} ⊂ [𝑐, 𝑑] ×

𝐶[0, 1] with ‖V𝑛‖ → 0 + (𝑛 → +∞) such that V𝑛 = 𝐴𝜇
𝑛

V𝑛.
Without loss of generality, assume 𝜇𝑛 → 𝜇 ∈ [𝑐, 𝑑] and
‖V𝑛‖ < 𝑟 for all 𝑛. Notice that V

𝑛
∈ 𝑄. By Lemma 10 and (21),

we have V𝑛(𝑡) > 0 in (0, 1). Set 𝑤𝑛 = V𝑛/‖V𝑛‖. Then 𝑤𝑛 =

𝐴
𝜇
𝑛

V
𝑛
/‖V
𝑛
‖. From the definition of𝑓(𝑡, 𝑢), it is easy to see that

{𝑤
𝑛
} is relatively compact in 𝐶[0, 1]. Taking a subsequence

and relabeling if necessary, suppose𝑤
𝑛

→ 𝑤 in𝐶[0, 1].Then
‖𝑤‖ = 1 and 𝑤 ∈ 𝑄.

On the other hand, from (H1), we know

𝑓 (𝑡, 𝑢) ∈ [𝑎
0 (𝑡) (𝑢 − 𝜉

1 (𝑡, 𝑢)) , 𝑎
0

(𝑡) (𝑢 + 𝜉
2 (𝑡, 𝑢))] ,

∀ (𝑡, 𝑢) ∈ 𝐽 × [0, 𝑟] .

(33)

Therefore, by virtue of (25), we know

𝑤
𝑛 (𝑡) ≤ 𝜇

𝑛 ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎
0

(𝑠) (𝑠
𝛼−2

𝑤
𝑛 (𝑠)

+

𝜉
2

(𝑠, 𝑠
𝛼−2V
𝑛 (𝑠))

V𝑛


) 𝑑𝑠,

(34)

𝑤
𝑛 (𝑡) ≥ 𝜇

𝑛 ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎
0 (𝑠)

× (𝑠
𝛼−2

𝑤
𝑛 (𝑠) −

𝜉
1 (𝑠, 𝑠
𝛼−2V𝑛 (𝑠))
V𝑛



) 𝑑𝑠.

(35)

Let𝜓
∗ and𝜓

∗
be the positive eigenfunctions of𝐿∗

𝑎
0 , 𝐿
∗

𝑎
0

corre-
sponding to 𝜆

1
(𝑎
0
) and 𝜆

1
(𝑎
0
), respectively. Then from (34),

it follows that

⟨𝑤𝑛, 𝜓
∗
⟩ ≤ 𝜇𝑛 ⟨𝐿𝑎0𝑤𝑛, 𝜓

∗
⟩

+ 𝜇
𝑛

∫

1

0

𝜓
∗

(𝑡)

× ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎
0 (𝑠)

𝜉
2

(𝑠, 𝑠
𝛼−2V
𝑛 (𝑠))

V𝑛


𝑑𝑠 𝑑𝑡.

(36)

Letting 𝑛 → +∞ and using condition (H1), we have

⟨V, 𝜓
∗
⟩ ≤ 𝜇 ⟨𝐿𝑎0V, 𝜓

∗
⟩ = 𝜇 ⟨V, 𝐿

∗

𝑎
0𝜓
∗
⟩

= 𝜇 ⟨V,
𝜓
∗

𝜆1 (𝑎
0)

⟩ ,

(37)

which implies 𝜇 ≥ 𝜆
1
(𝑎
0
). Similarly, one can deduce from

(35) that 𝜇 ≤ 𝜆
1
(𝑎
0
).
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Consequently, 𝜆
1
(𝑎
0
) ≤ 𝜇 ≤ 𝜆

1
(𝑎
0
), which contradicts

𝜇 ∈ [𝑐, 𝑑]. Therefore, there exists 𝛿
1

∈ (0, 𝑟) such that

V ̸= 𝐴
𝜆
V, ∀𝜆 ∈ [𝑐, 𝑑] , ∀V ∈ 𝐸 with 0 < ‖V‖ ≤ 𝛿

1
. (38)

Lemma 15. For 𝜇 ∈ (0, 𝜆1(𝑎
0
)), there exists 𝛿1 ∈ (0, 𝑟) such

that

deg (𝐼 − 𝐴
𝜇
, 𝐵
𝛿
, 0) = 1, ∀𝛿 ∈ (0, 𝛿

1
] . (39)

Proof. Notice that [0, 𝜇] ∩ [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] = 0. From

Lemma 14, there exists 𝛿
1

∈ (0, 𝑟) such that

V ̸= 𝐴
𝜆
V, ∀𝜆 ∈ [0, 𝜇] , ∀V ∈ 𝐶 [0, 1] with 0 < ‖V‖ ≤ 𝛿

1
,

(40)

which means

V ̸= 𝜏𝐴
𝜇
V, ∀𝜏 ∈ [0, 1] , ∀V ∈ 𝐶 [0, 1] with 0 < ‖V‖ ≤ 𝛿

1
.

(41)

Therefore, by the homotopy invariance of topological
degree, we have

deg (𝐼 − 𝐴
𝜇, 𝐵𝛿, 0) = deg (𝐼, 𝐵𝛿, 0) = 1, ∀𝛿 ∈ (0, 𝛿1] .

(42)

Lemma 16. For 𝜆 > 𝜆
1
(𝑎
0
), there exists 𝛿

2
∈ (0, 𝑟) such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝛿
, 0) = 0, ∀𝛿 ∈ (0, 𝛿

2] . (43)

Proof. First we prove that for 𝜆 > 𝜆1(𝑎0), there exists 𝛿2 ∈

(0, 𝑟) such that

V − 𝐴
𝜆
V ̸= 𝜏𝜑

0
, ∀𝜏 ≥ 0, ∀V ∈ 𝐶 [0, 1] with 0 < ‖V‖ ≤ 𝛿

2
,

(44)

where 𝜑
0
is the positive eigenfunctions of 𝐿

𝑎
0

corresponding
to 𝜆
1
(𝑎
0
).

If this is false, then there exist V
𝑛

∈ 𝐶[0, 1]with ‖V
𝑛
‖ → 0

(𝑛 → +∞) and 𝜏
𝑛

≥ 0 such that

V
𝑛

− 𝐴
𝜆
V
𝑛

= 𝜏
𝑛
𝜑
0
. (45)

By Lemma 10, we have V
𝑛(𝑡) > 0 in (0, 1). From 𝜆 >

𝜆1(𝑎0), there exists 𝜎 > 0 satisfying 𝜆 > (1 − 𝜎)𝜆1(𝑎0). Then
condition (H1) guarantees that there exists 𝛿 ∈ (0, 𝑟) such
that |𝜉

1
(𝑡, 𝑡
𝛼−2

𝑢)| < 𝜎𝑡
𝛼−2

𝑢 for 𝑢 ∈ (0, 𝛿). Noticing ‖V
𝑛
‖ →

0(𝑛 → +∞), there exists𝑁 > 0 such that ‖V
𝑛
‖ < 𝛿 for 𝑛 > 𝑁.

Consequently, by virtue of (25) and (45), for 𝑛 > 𝑁, we know

V
𝑛 (𝑡) = 𝐴

𝜆
V
𝑛 (𝑡) + 𝜏

𝑛
𝜑
0

≥ 𝜆 ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎0 (𝑠)

× (𝑠
𝛼−2

V
𝑛 (𝑠) − 𝜉

1
(𝑠, 𝑠
𝛼−2

V
𝑛 (𝑠))) 𝑑𝑠

≥ 𝜆 (1 − 𝜎) ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑎
0 (𝑠) 𝑠
𝛼−2

V
𝑛 (𝑠) 𝑑𝑠

= 𝜆 (1 − 𝜎) 𝐿
𝑎
0

V
𝑛 (𝑡) .

(46)

Let 𝜓
∗
be the positive eigenfunction of 𝐿

∗

𝑎
0

corresponding to
𝜆
1(𝑎0). Then

⟨V
𝑛
, 𝜓
∗
⟩ ≥ 𝜆 (1 − 𝜎) ⟨𝐿

𝑎
0

V
𝑛
, 𝜓
∗
⟩

= 𝜆 (1 − 𝜎) ⟨V𝑛, 𝐿
∗

𝑎
0

𝜓∗⟩

= 𝜆 (1 − 𝜎) ⟨V
𝑛
,

𝜓
∗

𝜆
1

(𝑎
0
)
⟩ .

(47)

This together with ⟨V
𝑛, 𝜓∗⟩ > 0 guarantees that

𝜆 (1 − 𝜎) ≤ 𝜆
1

(𝑎
0
) , (48)

which is a contradiction. Therefore, (44) holds. By Lemma 3,
for each 𝜆 > 𝜆1(𝑎0), there exists 𝛿2 > 0 such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝛿
, 0) = 0, ∀𝛿 ∈ (0, 𝛿

2
] . (49)

Theorem 17. [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] is a bifurcation interval of

positive solutions from the trivial solution for BVP (23); that is,
there exists an unbounded component C0 of positive solutions
of BVP (23), which meets [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0}. Moreover,

there exists no bifurcation interval of positive solutions from the
trivial solution which is disjointed with [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)].

Proof. By virtue of (27) and Lemma 10, we need only to prove
that there exists an unbounded component C

0
of Σ, which

meets [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0}, and there exists no bifurcation

interval of Σ from the trivial solution which is disjointed with
[𝜆1(𝑎
0
), 𝜆1(𝑎0)].

For fixed 𝑛 ∈ N with 𝜆1(𝑎
0
) − (1/𝑛) > 0, by Lemmas 15

and 16 and their proof, there exists 𝑟 > 0 such that all of the
conditions of Lemma 1 are satisfied with 𝐺(𝜆, 𝑢) = 𝐴𝜆𝑢,
𝑎 = 𝜆1(𝑎

0
) − (1/𝑛), and 𝑏 = 𝜆1(𝑎0) + (1/𝑛). This together with

Lemma 10 guarantees that there exists a closed connected set
C
𝑛
of Σ containing [𝜆

1
(𝑎
0
) − (1/𝑛), 𝜆

1
(𝑎
0
) + (1/𝑛)] × 0 in

R+×𝐶[0, 1]. FromLemma 14, the case (ii) of Lemma 1 cannot
occur.Thus,C

𝑛
bifurcates from [𝜆

1
(𝑎
0
)−(1/𝑛), 𝜆

1
(𝑎
0
)+1/𝑛]×

0 and is unbounded inR+ × 𝐶[0, 1]. Moreover, for any closed
interval [𝑐, 𝑑] ⊂ [𝜆

1(𝑎
0
)−1/𝑛, 𝜆1(𝑎0)+1/𝑛]\[𝜆1(𝑎

0
), 𝜆1(𝑎0)],

by Lemma 14, there exists 𝛿1 > 0 such that the set {V ∈

𝐶[0, 1] : (𝜆, V) ∈ Σ, 0 < ‖V‖ ≤ 𝛿1, 𝜆 ∈ [𝑐, 𝑑]} = 0.
Therefore,C𝑛 must be bifurcated from [𝜆1(𝑎

0
), 𝜆1(𝑎0)] × {0},

which implies that C𝑛 can be regarded as C0. In addition,
using Lemma 14 again, there exists no bifurcation interval of
positive solutions from the trivial solution which is disjointed
with [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)].

By a process similar to the above, one can obtain the fol-
lowing conclusions.

Lemma 18. Let [𝑐, 𝑑] ⊂ R+ be a compact interval with
[𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] ∩ [𝑐, 𝑑] = 0. Then there exists 𝑅
1

> 𝑅 such
that

𝑢 ̸= 𝐴
𝜆
𝑢, ∀𝜆 ∈ [𝑐, 𝑑] , ∀𝑢 ∈ 𝐶 [0, 1] with ‖𝑢‖ ≥ 𝑅

1
.

(50)
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Lemma 19. For 𝜇 ∈ (0, 𝜆
1
(𝑏
∞

)), there exists 𝑅
1

> 𝑅 such that

deg (𝐼 − 𝐴
𝜇
, 𝐵
𝑅
, 0) = 1, ∀𝑅 ≥ 𝑅

1
. (51)

Lemma 20. For 𝜆 > 𝜆
1
(𝑏
∞

), there exists 𝑅
2

> 𝑅 such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝑅
, 0) = 0, ∀𝑅 ≥ 𝑅

2
. (52)

Theorem21. [𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] is a bifurcation interval of pos-
itive solutions from infinity for BVP (23), and there exists no
bifurcation interval of positive solutions from infinity which is
disjoint with [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)]. More precisely, there exists an
unbounded component C∞ of solutions of BVP (23) which
meets [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × ∞ and is unbounded in 𝜆 direction.

Now we are in position to proveTheorems 12 and 13.

Proof of Theorem 12. Obviously the solution of the form (𝜂, 𝑦)

(𝑦 ̸= 𝜃) of (23) is a positive solution of BVP (3). So by
Lemma 10, it is sufficient to show that there is a component
C of Σ that crosses the hyperplane {𝜂} × 𝐶[0, 1], where Σ ⊂

R+ × 𝐶[0, 1] is defined by (27).

Case i (𝜆
1
(𝑎
0
) < 𝜂 < 𝜆

1
(𝑏
∞

)). By Theorem 17, there exists an
unbounded componentC

0
of positive solutions of BVP (23),

which bifurcates from [𝜆1(𝑎
0
), 𝜆1(𝑎0)] × {𝜃}. Therefore, there

exists (𝜇𝑛, V𝑛) ∈ C0 such that

𝜇
𝑛

+
V𝑛

 → +∞ as 𝑛 → +∞. (53)

If there exists some 𝑛 ∈ N such that 𝜇
𝑛 ≥ 𝜂, the conclusion

follows. Suppose, on the contrary, 𝜇𝑛 < 𝜂 for all 𝑛 ∈ N. Since
(0, 𝜃) is the only solution of (23) with 𝜆 = 0, by Lemmas 14
and 18, we know C

0
∩ ({0} × 𝐶[0, 1]) = 0. Therefore, 𝜇

𝑛
∈

(0, 𝜂) for all 𝑛 ∈ N. Taking a subsequence and relabeling if
necessary, suppose 𝜇

𝑛
→ 𝜇
∗ as 𝑛 → +∞. Then 𝜇

∗
∈ [0, 𝜂].

This together with (53) guarantees that ‖V
𝑛
‖ → +∞.

Choose [𝑐, 𝑑] = [0, 𝜆
1
(𝑏
∞

) − (1/𝑚)] for 𝑚 ∈ N. From
Lemma 18, it follows that 𝜇

∗
> 𝜆
1
(𝑏
∞

) − (1/𝑚) for each 𝑚 ∈

N, which means 𝜇
∗

≥ 𝜆
1
(𝑏
∞

) > 𝜂. This is a contradiction.

Case ii (𝜆1(𝑏∞) < 𝜂 < 𝜆1(𝑎
0
)). FromTheorem 21, there exists

an unbounded component C∞ of solutions of (23) which
bifurcates from [𝜆1(𝑏

∞
), 𝜆1(𝑏∞)]×∞ and is unbounded in 𝜆

direction.
If C∞ ∩ (R+ × {0}) = 0, using the fact that C∞ ∩ ({0} ×

𝐶[0, 1]) = 0 and C∞ is unbounded in 𝜆 direction, we know
thatC∞ must cross the hyperplane {𝜂} × 𝐶[0, 1].

If C∞ ∩ (R+ × {0}) ̸= 0, by C∞ ∩ ({0} × 𝐶[0, 1]) = 0 and
Theorem 17, we know C∞ ∩ (R+ × {0}) ∈ [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)] ×

{0}. Therefore, C∞ joins [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0} to [𝜆

1
(𝑏
∞

),

𝜆
1
(𝑏
∞

)] × ∞. This together with 𝜆
1
(𝑏
∞

) < 𝜂 < 𝜆
1
(𝑎
0
) guar-

antees thatC∞ crosses the hyperplane {𝜂} × 𝐶[0, 1].

Proof of Theorem 13. First we show that there exists 𝜀 > 0

such that

Σ ∩ ([0, 𝜂 + 𝜀] × 𝜕𝐵
𝑅) = 0, (54)

where 𝐵
𝑅

= {V ∈ 𝐶[0, 1] : ‖V‖ < 𝑅}, Σ ⊂ R+ × 𝐶[0, 1] is
defined by (27).

In fact, from assumption (H2), it follows that there exists
𝜀 > 0 such that

𝜂 + 𝜀

Γ (𝛼)
∫

1

0

[𝑠 (1 − 𝑠)]
𝛼−1

ℎ (𝑠) 𝑑𝑠 < 1. (55)

If there is a solution (𝜆, V) of V = 𝐴
𝜆
V such that 0 ≤ 𝜆 ≤ 𝜂 + 𝜀

and ‖V‖ = 𝑅, then

0 ≤ V (𝑡) ≤ ‖V‖ = 𝑅 for 𝑡 ∈ [0, 1] . (56)

By virtue of (25) and Lemma 9, we have

𝑅 = ‖V‖ = max
𝑡∈𝐽

𝜆 ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−2

V (𝑠)) 𝑑𝑠

≤ (𝜂 + 𝜀) 𝑅max
𝑡∈𝐽

∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑠
𝛼−2

ℎ (𝑠) 𝑑𝑠

≤
(𝜂 + 𝜀) 𝑅

Γ (𝛼)
∫

1

0

[𝑠 (1 − 𝑠)]
𝛼−1

ℎ (𝑠) 𝑑𝑠 < 𝑅,

(57)

which is a contradiction. Thus, Σ ∩ ([0, 𝜂 + 𝜀] × 𝜕𝐵
𝑅
) = 0.

Next, from Theorem 17, there exist unbounded compo-
nents C

0
of solutions of (23), which meet [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)] ×

{0}. By (54), we knowC0∩([0, 𝜂+𝜀]×𝜕𝐵𝑅) = 0.This together
with the fact that C0 is unbounded, 𝜆1(𝑎0) < 𝜂, and C0 ∩

({0} × 𝐶[0, 1]) = 0 guarantees thatC0 crosses the hyperplane
{𝜂} × 𝐶[0, 1]. Then BVP (23) has a positive solution V1 with
(𝜂, V
1
) ∈ C
0
and ‖V

1
‖ < 𝑅. By Lemma 10, 𝑡𝛼−2V

1
(𝑡) is a positive

solution of BVP (3).
Similarly, by Theorem 21 and (54), BVP (3) has a positive

solution 𝑡
𝛼−2V2(𝑡) with (𝜂, V2) ∈ C∞ and ‖V2‖ > 𝑅. The

conclusion follows.

Immediately, from the proof of Theorem 13, we have the
following corollary.

Corollary 22. Suppose that assumption (H2) holds. In addi-
tion, suppose that one of the following two conditions holds:

(i) 𝜆
1
(𝑎
0
) < 𝜂;

(ii) 𝜆
1(𝑏∞) < 𝜂.

Then BVP (3) has at least one positive solution.

Remark 23. Corollary 22 is different from Theorem 12
though their results are similar.

4. An Example

Let 𝜌 be the unique characteristic value of 𝐿
1
corresponding

to positive eigenfunctions with 𝑎(𝑡) ≡ 𝑡 in (28). From
Lemma 11, it follows that 𝜌 exists. Now we are ready to
give the following example.

Example 1. Consider the following boundary value problem
of fractional differential inclusions:

𝐷
1.5

0
+ 𝑢 (𝑡) + 𝜂𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(58)
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where

𝑓 (𝑡, 𝑢) = 𝜌𝑡𝑢 [ℎ (𝑢) + sin 1

𝑢
+ 𝑡 sin (𝑡𝑢)] ,

ℎ (𝑢) =

{{{{{{

{{{{{{

{

3

2
, 𝑢 ∈ (0,

1

2
] ;

1 + 𝑢, 𝑢 ∈ [
1

2
, 3) ;

4, 𝑢 ∈ [3, +∞) .

(59)

Then BVP (58) has at least one positive solution as 𝜂 ∈

[1/3, 2/5].

Proof. BVP (58) can be regarded as the form (3). Let𝑓(𝑡, 𝑢) =

0 for 𝑢 = 0; then, 𝑓(𝑡, 𝑢) is continuous.
From (59), choose 𝑟 = 1/2, 𝑅 = 3, 𝑎

0
(𝑡) = 𝜌𝑡/2, 𝑎

0
(𝑡) =

(5/2)𝜌𝑡, 𝑏
∞

(𝑡) = 3𝜌𝑡, 𝑏
∞

(𝑡) = 5𝜌𝑡, 𝜉
1
(𝑡, 𝑢) = −2𝑡𝑢 sin(𝑡𝑢),

𝜉2(𝑡, 𝑢) = (2/5)𝑡𝑢 sin(𝑡𝑢), 𝜁1(𝑡, 𝑢) = −(1/3)𝑢 sin(1/𝑢),
𝜁2(𝑡, 𝑢) = (1/5)𝑢 sin(1/𝑢).

It is easy to see 𝜉𝑖(𝑡, 𝑡
𝛼−2

𝑢) = 𝑜(𝑡
𝛼−2

𝑢) as 𝑢 → 0 and
𝜁
𝑖
(𝑡, 𝑡
𝛼−2

𝑢) = 𝑜(𝑡
𝛼−2

𝑢) as 𝑢 → +∞ both uniformly with
respect to 𝑡 ∈ [0, 1], (𝑖 = 1, 2).

Therefore, (H1) is satisfied.
By the definition of 𝜌, it is easy to see 𝜆

1
(𝑎
0
) = 2/5,

𝜆
1
(𝑏
∞

) = 1/3.
As a result, byTheorem 12, BVP (58) has at least one pos-

itive solution as 𝜂 ∈ [1/3, 2/5].
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