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We solve the system of nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations via the Sumudu transform
homotopy method (STHPM). The method is easy to apply, accurate, and reliable.

1. Introduction

Nonlinear partial differential equations arise in various areas
of physics, mathematics, and engineering [1–4]. We notice
that in fluid dynamics, the nonlinear evolution equations
show up in the context of shallow water waves. Some
of the commonly studied equations are the Korteweg-de
Vries (KdV) equation, modified KdV equation, Boussinesq
equation [5], Green-Naghdi equation, Gardeners equation,
and Whitham-Broer-Kaup and Jaulent-Miodek (JM) equa-
tions. Analytical solutions of these equations are usually
not available. Since only limited classes of equations are
solved by analytical means, numerical solution of these
nonlinear partial differential equations is of practical impor-
tance. Therefore, finding new methods and techniques to
deal with these type of equations is still an open prob-
lem in this area. The purpose of this paper is to find an
approximated solution for the system of fractional Jaulent-
Miodek and Whitham-Broer-Kaup equations (FWBK) via
the Sumudu transformmethod.The fractional systems of par-
tial differential equations under investigation here are given
below.

The nonlinear FWBK equation which will be considered
in this paper has the following form:

𝜕
𝜂

𝑡
𝑢 + 𝑢𝑢𝑥 + 𝑢𝑥 + 𝛽𝑢𝑥𝑥 = 0, 0 < 𝜂, 𝜇 ≤ 1,

𝜕
𝜇

𝑡
V + (𝑢V)𝑥 + 𝛼𝑢𝑥𝑥𝑥 − 𝛽V𝑥𝑥 = 0, (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇] ,

(1)

and the nonlinear FJM equation is

𝜕
𝛼

𝑡
𝑢 + 𝑢𝑥𝑥𝑥 +

3

2
VV𝑥𝑥𝑥 +

9

2
V𝑥V𝑥𝑥 − 6𝑢𝑢𝑥 + 6𝑢VV𝑥 −

3

2
𝑢𝑥V
2

𝑥

= 0,

𝜕
𝜇

𝑡
V + V𝑥𝑥𝑥 − 6𝑢𝑥V𝑥 −

15

2
V𝑥V
2
= 0, (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇] .

(2)

The system of (1) and (2) is subjected to the following initial
conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

V (𝑥, 0) = 𝑔 (𝑥) .

(3)
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FWBK equation (1) describes the dispersive long wave in
shallow water, where 𝑢(𝑥, 𝑡) is the field of horizontal velocity,
V(𝑥, 𝑡) is the height which deviates from the equilibrium
position of liquid, and 𝛼 and 𝛽 are constants that represent
different powers. If 𝛼 = 0 and 𝛽 = 1, (1) reduces to
the classical long-wave equations which describe the shallow
water wave with diffusion [6]. If 𝛼 = 1 and 𝛽 = 0,
(1) becomes the modified Boussinesq equations [7, 8]. FJM
equation (2) appears in several areas of science such as
condense matter physics [9], fluid mechanics [10], plasma
physics [11], and optics [12] and associates with energy-
dependent Schrödinger potential [13, 14].

The paper is organized as follows. In Section 2, we intro-
duce briefly some of the basic tools of fractional order and
of the Sumudu transform method. We show the numerical
results in Section 4.The conclusions can be seen in Section 5.

2. Basic Tools

2.1. Properties and Definitions

Definition 1 (see [15–24]). A real function 𝑓(𝑥), 𝑥 > 0, is said
to be in the space 𝐶𝜇, 𝜇 ∈ R if there exists a real number
𝑝 > 𝜇, such that 𝑓(𝑥) = 𝑥

𝑝
ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0,∞), and

it is said to be in space 𝐶
𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶𝜇, 𝑚 ∈ N.

Definition 2 (see [15–24]). The Riemann-Liouville fractional
integral operator of order 𝛼 ≥ 0, of a function𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1,
is defined as

𝐽
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(4)

Properties of the operator can be found in [15–23]; we
mention only the following.

For 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛼+𝛽
𝑓 (𝑥) , 𝐽

𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛽
𝐽
𝛼
𝑓 (𝑥) ,

𝐽
𝛼
𝑥
𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(5)

Definition 3. The Caputo fractional order derivative is given
as follows [15–18]:
𝐶

0
𝐷
𝛼

𝑥
(𝑓 (𝑥))

=
1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1 𝑑

𝑛
𝑓 (𝑡)

𝑑𝑡𝑛
𝑑𝑡, 𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(6)

Definition 4. The Riemann-Liouville fractional order deriva-
tive is given as follows [16–24]:

𝐷
𝛼

𝑥
(𝑓 (𝑥))

=
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(7)

Definition 5. The Jumarie Fractional order derivative is given
as follows [24]:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

{𝑓 (𝑡) − 𝑓 (0)} 𝑑𝑡,

𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(8)

Lemma 6. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N and 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 ≥ −1,

then

𝐷
𝛼
𝐽
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼
𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+
)
𝑥
𝑘

𝑘!
, 𝑥 > 0.

(9)

Definition 7 (partial derivatives of fractional order [15, 16, 19]).
Assume now that 𝑓(x) is a function of 𝑛 variables 𝑥𝑖, 𝑖 =

1, . . . , 𝑛 also of class 𝐶 on 𝐷 ∈ R𝑛. As an extension of
Definition 3, we define partial derivative of order 𝛼 for𝑓with
respect to 𝑥𝑖 the function

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥𝑖 − 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖
𝑓 (𝑥𝑗)

𝑥𝑗=𝑡

𝑑𝑡, (10)

where 𝜕
𝑚

𝑥𝑖
is the usual partial derivative of integer order 𝑚.

3. Background of Sumudu Transform

Definition 8 (see [25]). The Sumudu transform of a function
𝑓(𝑡), defined for all real numbers 𝑡 ≥ 0, is the function 𝐹𝑠(𝑢),
defined by

𝑆 (𝑓 (𝑡)) = 𝐹𝑠 (𝑢) = ∫

∞

0

1

𝑢
exp [−

𝑡

𝑢
]𝑓 (𝑡) 𝑑𝑡. (11)

Theorem 9 (see [26]). Let 𝐺(𝑢) be the Sumudu transform of
𝑓(𝑡) such that

(i) (𝐺(1/𝑠)/𝑠) is a meromorphic function, with singulari-
ties having Re[𝑠] ≤ 𝛾;

(ii) there exist a circular region Γwith radius𝑅 and positive
constants 𝑀 and 𝐾 with |𝐺(1/𝑠)/𝑠| < 𝑀𝑅

−𝐾, then the
function 𝑓(𝑡) is given by

𝑆
−1

(𝐺 (𝑠)) =
1

2𝜋𝑖
∫

𝛾+𝑖∞

𝛾−𝑖∞

exp [𝑠𝑡] 𝐺 (
1

𝑠
)

𝑑𝑠

𝑠

= ∑ residual [exp [𝑠𝑡]
𝐺 (1/𝑠)

𝑠
] .

(12)

For the proof see [26].

3.1. Basics of the Sumudu Transform Homotopy Perturbation
Method. We illustrate the basic idea of this method [27–32]
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by considering a general fractional nonlinear nonhomoge-
neous partial differential equation with the initial condition
of the following form:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) , 𝛼 > 0,

(13)

subject to the initial condition

𝐷
𝑘

0
𝑈 (𝑥, 0) = 𝑔𝑘, (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝑛

0
𝑈 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

(14)

where 𝐷
𝛼

𝑡
denotes without loss of generality the Caputo

fraction derivative operator, 𝑓 is a known function, 𝑁 is
the general nonlinear fractional differential operator, and 𝐿

represents a linear fractional differential operator.
Applying the Sumudu transform on both sides of (10), we

obtain
𝑆 [𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡]) = 𝑆 [𝐿 (𝑈 (𝑥, 𝑡))]

+ 𝑆 [𝑁 (𝑈 (𝑥, 𝑡))] + 𝑆 [𝑓 (𝑥, 𝑡)] .

(15)

Using the property of the Sumudu transform, we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑢
𝛼
𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢

𝛼
𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]

+ 𝑢
𝛼
𝑆 [𝑓 (𝑥, 𝑡)] + 𝑔 (𝑥, 𝑡) .

(16)

Now applying the Sumudu inverse on both sides of (12) we
obtain

𝑈 (𝑥, 𝑡) = 𝑆
−1

[𝑢
𝛼
𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢

𝛼
𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]]

+ 𝐺 (𝑥, 𝑡) ,

(17)

where 𝐺(𝑥, 𝑡) represents the term arising from the known
function 𝑓(𝑥, 𝑡) and the initial conditions.

Now we apply the following HPM:

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈𝑛 (𝑥, 𝑡) . (18)

The nonlinear term can be decomposed to

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
H𝑛 (𝑈) , (19)

using the He’s polynomialH𝑛(𝑈) given as

H𝑛 (𝑈0, . . . , 𝑈𝑛) =
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

∞

∑

𝑗=0

𝑝
𝑗
𝑈𝑗 (𝑥, 𝑡))

]

]

,

𝑛 = 0, 1, 2 . . . .

(20)

Substituting (15) and (16) gives
∞

∑

𝑛=0

𝑝
𝑛
𝑈𝑛 (𝑥, 𝑡)

= 𝐺 (𝑥, 𝑡) + 𝑝 [𝑆
−1

[𝑢
𝛼
𝑆 [𝐿(

∞

∑

𝑛=0

𝑝
𝑛
𝑈𝑛 (𝑥, 𝑡))]

+ 𝑢
𝛼
𝑆 [𝑁(

∞

∑

𝑛=0

𝑝
𝑛
𝑈𝑛 (𝑥, 𝑡))]]] ,

(21)

which is the coupling of the Sumudu transform and the
HPM using He’s polynomials. Comparing the coefficients of
like powers of 𝑝, the following approximations are obtained
[29, 30]:

𝑝
0:𝑈0 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) ,

𝑝
1:𝑈1 (𝑥, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐿 (𝑈0 (𝑥, 𝑡)) + 𝐻0 (𝑈)]] ,

𝑝
2:𝑈2 (𝑥, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐿 (𝑈1 (𝑥, 𝑡)) + 𝐻1 (𝑈)]] ,

𝑝
3:𝑈3 (𝑥, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐿 (𝑈2 (𝑥, 𝑡)) + 𝐻2 (𝑈)]] ,

𝑝
𝑛:𝑈𝑛 (𝑥, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐿 (𝑈𝑛−1 (𝑥, 𝑡)) + 𝐻𝑛−1 (𝑈)]] .

(22)

Finally, we approximate the analytical solution 𝑈(𝑥, 𝑡) by
truncated series:

𝑈 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛=0

𝑈𝑛 (𝑥, 𝑡) . (23)

The above series solutions generally converge very rapidly
[29, 30].

4. Applications

In this section, we apply this method for solving the system
of the fractional differential equation. We will start with (1).

4.1. Approximate Solution of (1). Following carefully the
steps involved in the STHPM, after comparing the terms of
the same power of 𝑝 and choosing the appropriate initials
conditions, we arrive at the following series solutions:

𝑢0 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) = −
𝑐1

𝑐2

+ 2𝑐1√−𝛼 − 𝛽2 sech (𝑐1𝑥) ,

V0 (𝑥, 𝑡) = 𝐺1 (𝑥, 𝑡)

= − 𝑐
2

1
(𝛼 + 𝛽

2
) + 2𝑐

2

1
(𝛼 + 𝛽

2
) sech(𝑐1𝑥)

2

+ 2𝑐
2

1
𝛽√−𝛼 − 𝛽2sech (𝑐1𝑥) tanh (𝑐1𝑥) ,

𝑢1 (𝑥, 𝑡) = 𝑆
−1

[𝑢
𝛼
𝑆 [𝐿 (𝑢0 (𝑥, 𝑡)) + 𝐻0 (𝑢)]]

=
𝑐
2

1
𝑡
𝜂sech(𝑐1𝑥)

3

𝑐2Γ (𝜂 + 1)

× (𝑐1𝑐2𝛽√−𝛼 − 𝛽2 cos (2𝑐1𝑥)

+ 4𝑐1𝑐2 (𝛼 + 𝛽
2
) sinh (𝑐1𝑥) + √−𝛼 − 𝛽2

× ( − 3𝑐1𝑐2𝛽

+ (𝑐1 − 𝑐2) sinh (2𝑐1𝑥) )) ,
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V1 (𝑥, 𝑡)

= 𝑆
−1

[𝑢
𝛼
𝑆 [𝐿 (V0 (𝑥, 𝑡)) + 𝐻0 (V)]]

=
1

𝑐2Γ (1 + 𝜇)

× (2𝑐
2

1
𝑡
𝜇
( − 2𝑐1 sech (𝑥) (𝛼 + 𝛽

2
)

− 2𝑐2𝛽 (𝛼 + 𝛽
2
) sech (𝑐1𝑥)

4

−
1

2
√−𝛼 − 𝛽2sech (𝑐1𝑥)

5

× (𝛽 − 28𝑐1𝑐2𝛽
2
+ 𝛽 (1 + 18𝑐1𝑐2𝛽)

× cosh (2𝑐1𝑥) − 5𝑐2 sinh (2𝑐1𝑥) )

+ 2𝑐2𝛽 (𝛼 + 𝛽
2
) sech (𝑐1𝑥)

2 tanh (𝑐1𝑥)
2

+ √−𝛼 − 𝛽2sech (𝑐1𝑥)

× (4𝑐1𝑐2sech (𝑥) (𝛼 + 𝛽
2
)

+ tanh (𝑐1𝑥)
2

× (𝛽 + 𝑐2 tanh (𝑐1𝑥)

× (−1 + 𝑐1𝛽
2 tanh (𝑐1𝑥)))))) ,

𝑢2 (𝑥, 𝑡)

= 𝑆
−1

[𝑢
𝛼
𝑆 [𝐿 (𝑢1 (𝑥, 𝑡)) + 𝐻1 (V)]]

=
1

𝑐2
2
Γ (1 + 2𝜂)

× (4
−1−𝜂

𝑐
3

1
𝑡
2𝜂sech(𝑐1𝑥)

5

× (−5 × 4
𝜂
√−𝛼 − 𝛽2

× (2𝑐1𝑐2 − 𝑐
2

2
+ 𝑐
2

1
(16𝛼 + 39𝛽

2
)) )

+ 3 × 4
2+𝜂

𝑐1 (𝑐1 − 𝑐2) 𝑐2 (𝛼 + 𝛽
2
) cosh (𝑐1𝑥)

+ 4
1+𝜂

√−𝛼 − 𝛽2 ( − 2𝑐1𝑐2 + 𝑐
2

2
+ 𝑐
2

1

× (1 + 𝑐
2

2
(12𝛼 + 31𝛽

2
)))

× cosh (2𝑐1𝑥) + 4
2+𝜂

𝑐1𝑐2 (−𝑐1 + 𝑐2) (𝛼 + 𝛽
2
)

× cosh (3𝑐1𝑥) − 4
𝜂
𝑐
2

1
√−𝛼 − 𝛽2 cosh (4𝑐1𝑥)

𝑢(𝑥, 20)

𝑥

−150 −100 −50 50 100 150

0.99

0.98

0.97

0.96

0.95

0.94

Figure 1: Approximate solution for FWBK equation.

+ 2
2𝜂+1

𝑐1𝑐2√−𝛼 − 𝛽2 cosh (4𝑐1𝑥)

− 4
𝜂
𝑐
2

2
√−𝛼 − 𝛽2 cosh (4𝑐1𝑥)

− 4
𝜂
𝑐
2

2
𝑐
2

1
𝛽
2
√−𝛼 − 𝛽2 cosh (4𝑐1𝑥)

+ 11 × 4
1+𝜂

𝑐2𝑐
2

1
𝛽
2
√−𝛼 − 𝛽2 sinh (2𝑐1𝑥)

− 11 × 4
1+𝜂

𝑐1𝑐
2

2
𝛽
2
√−𝛼 − 𝛽2 sinh (2𝑐1𝑥)

+ 2
3+2𝜂

𝑐
2

1
𝑐
2

2
𝛽 (𝛼 + 𝛽

2
)

× (37 sinh (𝑐1𝑥) − 3 sinh (3𝑐1𝑥))

− 4
𝜂+1

𝑐2𝑐
2

1
𝛽√−𝛼 − 𝛽2 sinh (4𝑐1𝑥)

+4
𝜂+1

𝑐1𝑐
2

2
𝛽√−𝛼 − 𝛽2 sinh (4𝑐1𝑥)) .

(24)

And so on in the same manner one can obtain the rest of the
components. However, here, few terms were computed and
the asymptotic solution is given by

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) + 𝑢3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

V (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) + V2 (𝑥, 𝑡) + V3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(25)

Figures 1, 2, 3, and 4 show the graphical representation of the
approximated solution of the system of nonlinear fractional
Whitham-Broer-Kaup equation for 𝜂 = 0.9, 𝜇 = 0.98, 𝑐1 =

𝑐2 = 0.1, and 𝛽 = 𝛼 = 0.1.
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Figure 2: Approximate solution of FWBK equation.

�(𝑥, 20)

−150 −100 −50 50 100 150
𝑥

−0.0005

−0.001

−0.0015

Figure 3: Approximate solution of FWBK equation.

𝑥

𝑡
−100

0

100

50

100

150

200
0.002

0.001

0
−0.001

�
(
𝑥
,
𝑡
)

𝑡
−100

100

150

2

Figure 4: Approximate solution of FWBK equation.

4.2. Approximate Solution of (2). For (2), in the view of
the Sumudu transform method, by choosing the appropriate
initials conditions we are at the following series solutions:

𝑢0 (𝑥, 𝑡) =
𝑐
2

8
(1 − sech(

𝑐𝑥

2
)

2

) ,

V0 (𝑥, 𝑡) = 𝑐 sech(
𝑐𝑥

2
)

2

,

𝑢1 (𝑥, 𝑡) = −
𝑐
5
𝑡
𝜂sech(𝑐𝑥/2)5

128Γ (𝜂 + 1)

× (192 cosh [
𝑐𝑥

2
] − 32 cosh [

3𝑐𝑥

2
]

+3𝑐 (3 sinh [
𝑐𝑥

2
] + sinh [

3𝑐𝑥

2
]))

× tanh [
𝑐𝑥

2
] ,

V1 (𝑥, 𝑡) = −
𝑐
4
𝑡
𝜇sech(𝑐𝑥/2)3 tanh [𝑐𝑥/2]

16Γ (𝜇 + 1)

× (71 − cosh [𝑐𝑥] + 6𝑐 tanh [
𝑐𝑥

2
]) ,

𝑢2 (𝑥, 𝑡)

= (
4
−10−𝜂

𝑐
5
𝑡
𝜂
(𝑐𝑥/2)

15

Γ (1 + 𝜇) Γ (1 + 𝜂) Γ (0.5 + 𝜂) Γ (1 + 𝜇 + 𝜂)

× (−32𝑐
3
√𝜋𝑡
𝜂
𝜇 cosh (

𝑐𝑥

2
)

4

Γ (𝜇)

× Γ (1 + 𝜂 + 𝜇) Γ (1 + 2𝜂 + 𝜇)

× (221184 − 20532𝑐
2
) cosh (

𝑐𝑥

2
)

+ 6 (−11008 + 4813𝑐
2
) cosh (

3𝑐𝑥

2
)

− 69120 cosh (
5𝑐𝑥

2
) − 8622𝑐

2 cosh (
5𝑐𝑥

2
)

+ 10368 cosh (
7𝑐𝑥

2
) + 267𝑐

2 cosh (
7𝑐𝑥

2
)

− 128 cosh (
9𝑐𝑥

2
) + 9𝑐

2 cosh (
9𝑐𝑥

2
)

+ 61032𝑐 sinh(
𝑐𝑥

2
) − 2772𝑐

3 sinh(
𝑐𝑥

2
)

+ 29040𝑐 sinh(
3𝑐𝑥

2
) + 828𝑐

3 sinh(
3𝑐𝑥

2
)

− 27312𝑐 sinh(
5𝑐𝑥

2
) + 108𝑐

3 sinh(
5𝑐𝑥

2
)
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+ 4596𝑐 sinh(
7𝑐𝑥

2
)

−36𝑐
3 sinh(

7𝑐𝑥

2
) − 84𝑐 sinh(

9𝑐𝑥

2
))

+ 3 × 4
𝜂
Γ (0.5 + 𝜂)

× (65536𝜇 cosh (
9𝑐𝑥

2
)

9

Γ (𝜇) Γ (1 + 𝜂 + 𝜇) Γ

× (1 + 2𝜂 + 𝜇) sinh(
𝑐𝑥

2
)

2

× (−2𝑐 + sinh (𝑐𝑥))

+ 1024𝑐
3
𝑡
𝜂
𝜂Γ (𝜂) Γ (1 + 𝜇) Γ

× (1 + 2𝜂 + 𝜇) sinh(
𝑐𝑥

2
)

2

× (−15745 cosh (
𝑐𝑥

2
) + 12951 cosh (

3𝑐𝑥

2
)

− 1175 cosh (
3𝑐𝑥

2
) + cosh (

7𝑐𝑥

2
)

− 6240𝑐 sinh(
𝑐𝑥

2
)

+ 1728𝑐 sinh(
3𝑐𝑥

2
)

−96𝑐 sinh(
5𝑐𝑥

2
))

+ 2𝑐
6
𝑡
𝜂+𝜇

Γ(1 + 𝜂 + 𝜇)
2 sinh(

𝑐𝑥

2
)

× (−235648 − 1154128𝑐
2
+ 15804𝑐

4

− 16 (5584 − 7358𝑐
2
+ 1125𝑐

4
)

× cosh (𝑐𝑥)

+ 16 (15904 − 60016𝑐
2
+ 99𝑐
4
)

× cosh (2𝑐𝑥)

+ 89216 cosh (3𝑐𝑥) − 296896𝑐
2

× cosh (3𝑐𝑥)

+ 720𝑐
4 cosh (3𝑐𝑥) − 18816 cosh (4𝑐𝑥)

+ 14672𝑐
2 cosh (4𝑐𝑥) − 108𝑐

4

× cosh (4𝑐𝑥)

+128 cosh (5𝑐𝑥) − 32𝑐
2 cosh (5𝑐𝑥))

− 52680𝑐 sinh (𝑐𝑥) − 391458𝑐
3 sinh (𝑐𝑥)

− 240𝑐 sinh (2𝑐𝑥) + 196824𝑐
3 sinh (2𝑐𝑥)

+ 17580𝑐 sinh (3𝑐𝑥) − 24207𝑐
3 sinh (3𝑐𝑥)

+ 120𝑐 sinh (4𝑐𝑥) − 156𝑐
3 sinh (4𝑐𝑥)

− 12𝑐 sinh (5𝑐𝑥) + 3𝑐
3 sinh (4𝑐𝑥) )) ,

V2 (𝑥, 𝑡)

= (2
−17−2𝜂

𝑐
4
𝑡
𝜇sech(

𝑐𝑥

2
)

13

× (Γ(1 + 𝜇)
2
Γ (1 + 𝜂) Γ (0.5 + 𝜇) Γ

× (1 + 𝜇 + 𝜂) Γ (1 + 3𝜇))
−1

× (3 × 4
4+𝜇

𝑐
4
𝑡
𝜂cosh (

𝑐𝑥

2
)

4

× Γ(1 + 𝜇)
2
Γ (1 + 𝜂) Γ (0.5 + 𝜇)

× Γ (1 + 3𝜇) sinh(
𝑐𝑥

2
)

× (896 cosh (
𝑐𝑥

2
) − 608 cosh (

3𝑐𝑥

2
)

+ 32 cosh (
5𝑐𝑥

2
) + 78𝑐 sinh(

𝑐𝑥

2
)

+3𝑐 sinh(
3𝑐𝑥

2
) − 5𝑐 sinh(

5𝑐𝑥

2
))

+ Γ (𝜂 + 1) Γ (1 + 𝜂 + 𝜇)

× (15 × 4
𝜇
Γ (0.5 + 𝜇)

× (− 65536𝜇 cosh (
𝑐𝑥

2
)

9

Γ (𝜇)

× Γ (1 + 3𝜇) sinh(
3𝑐𝑥

2
))

+ 2𝑐
7
𝑡
2𝜇

Γ (1 + 2𝜇)

× (994 cosh (
𝑐𝑥

2
) − 435 cosh (

3𝑐𝑥

2
)

+ cosh (
5𝑐𝑥

2
) + 204𝑐 sinh(

𝑐𝑥

2
)

− 36𝑐 sinh(
3𝑐𝑥

2
) −5𝑐 sinh(

3𝑐𝑥

2
))

2

)

+ 16𝑐
3
√𝜋𝑡
𝜇
𝜇 cosh (

𝑐𝑥

2
)

4
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Figure 5: Approximate solution of FJM equation.

× Γ (𝜇) Γ (1 + 3𝜇)

× (−79965 − 22032𝑐
2

+ 8 (−2633 + 3240𝑐
2
) cosh (𝑐𝑥)

+ (54940 − 3888𝑐
2
) cosh (2𝑐𝑥)

− 3960 cosh (3𝑐𝑥) + cosh (4𝑐𝑥)

+ 130152𝑐 sinh (𝑐𝑥) − 39504𝑐 sinh (2𝑐𝑥)

− 216𝑐 sinh (3𝑐𝑥) ) )) .

(26)

And so on in the same manner one can obtain the rest of the
components. However, here, few terms were computed, and
the asymptotic solution of the nonlinear fractional Jaulent-
Miodek is given by

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) + 𝑢3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

V (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) + V2 (𝑥, 𝑡) + V3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(27)

Figures 5 and 6 show the graphical representation of the
approximated solution of the system of nonlinear fractional
Jaulent-Miodek equation for 𝜂 = 0.98, 𝜇 = 0.48, and 𝑐 = 0.1.
Figures 5 and 6 show the approximate solution of the main
problem.

5. Conclusion

We derived approximated solutions of nonlinear fractional
Jaulent-Miodek and Whitham-Broer-Kaup equations using
the relatively new analytical technique the STHPM. We
presented the brief history and some properties of fractional
derivative concept. It is demonstrated that STHPM is a
powerful and efficient tool for the system of FPDEs. In
addition, the calculations involved in STHPMare very simple
and straightforward.
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Figure 6: Approximate solution of FJM equation.

The STHPM is chosen to solve this nonlinear problem
because of the following advantages that the method has
over the existing methods. This method does not require
the linearization or assumptions of weak nonlinearity. The
solutions are not generated in the form of general solution
as in the Adomian decomposition method (ADM) [33, 34].
No correction functional or Lagrangemultiplier is required in
the case of the variational iterationmethod [35, 36]. It is more
realistic compared to the method of simplifying the physical
problems. If the exact solution of the partial differential
equation exists, the approximated solution via the method
converges to the exact solution. STHPM provides us with a
convenient way to control the convergence of approximation
series without adapting ℎ, as in the case of [37] which is a
fundamental qualitative difference in the analysis between
STHPM and other methods. And also there is nothing like
solving a partial differential equation after comparing the
terms of same power of 𝑝 like in the case of homotopy
perturbation method (HPM) [38].
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