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The variable-coefficients partial differential equations (vc-PDEs) in finance are investigated by Lie symmetry analysis and the
generalized power series method. All of the geometric vector fields of the equations are obtained; the symmetry reductions and
exact solutions to the equations are presented, including the exponentiated solutions and the similarity solutions. Furthermore, the
exact analytic solutions are provided by the transformation technique and generalized power series method, which has shown that
the combination of Lie symmetry analysis and the generalized power series method is a feasible approach to dealing with exact
solutions to the variable-coefficients PDEs.

1. Introduction

Gazizov and Ibragimov [1] studied the Black-Scholes equa-
tion of option pricing by Lie equivalence transformations.
By the optimal system method, some invariant solutions to
heat and Black-Scholes equations are obtained [2]. In [3–
5], the fundamental solutions to the bond pricing equations
are considered by Lie symmetry analysis and the integral
transform method. In [6], the invariance properties of the
bond pricing equation are studied by the group classification
method. In [7], the finite element method was adopted
to solve the bond pricing type of PDE system, and the
numerical implementation was provided, such as system
that models the TF convertible bonds with credit risk in
bond pricing theory. However, the similarity reductions and
exact solutions to such variable-coefficient equations are not
considered generally in the aforementioned papers. Recently,
we studied some nonlinear PDEs by Lie symmetry analysis
and the dynamical systemmethod [8–13]; for example, in [8],
we considered Lie group classifications and exact solutions to
the space-dependent coefficients hanging chain equation and
the simplified bond pricing equation. In [9], we investigated
the integrable condition and exact solutions to the time-
dependent coefficient Gardner equations by the Painlevé test
and Lie group analysis method. In [10–13], we developed

the generalized power series method for dealing with exact
solutions to some nonlinear PDEs based on the symmetry
analysis method.

It is known that the Lie symmetry analysis is a systematic
and powerful method for dealing with symmetries and exact
solutions to partial differential equations (see, e.g., [1–6, 8–
18] and the references therein). Furthermore, we find that
the combination of Lie symmetry analysis and the power
series method is a feasible approach to investigating exact
solutions to nonlinear PDEs [8–13]. On the other hand, under
the perspective of mathematical physics and Lie symmetry
analysis, the space-time dependent coefficients system differs
greatly from its time-dependent counterpart, and it is more
complicated than the latter. However, most of the studies
are related to the time-dependent coefficient systems. More-
over, the determination of exact solutions to the variable-
coefficients PDEs is a complicated problem that challenges
researchers greatly. In the present paper, we consider the
symmetry reductions and exact solutions to the general
space-dependent coefficients PDEs in finance as follows:

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑥

]
𝑢 = 0, 𝑥 > 0, (1)

where 𝑢 = 𝑢(𝑥, 𝑡) denotes the unknown function of the space
variable 𝑥 and time 𝑡 and the parameters 𝛼, 𝛽, 𝛾, ] ∈ R are
arbitrary constants, ] ≥ 0 and 𝛼 ̸= 0.
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We first note that (1) is the general form of the bond
pricing types of equations [1–7]. In particular, if ] = 0, then
this equation becomes the following Black-Scholes equation
of option pricing:

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑢 = 0, 𝑥 > 0. (2)

If ] = 1, then (1) is the general bond pricing equation
given by

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑥𝑢 = 0, 𝑥 > 0. (3)

Such equations are called bond pricing types of equations,
which are of great importance in financial mathematics and
bond pricing theory [3–7]. For dealing with exact solutions
to the variable-coefficients PDEs, we will introduce the
generalized power seriesmethod [10–13] in the present paper.
By a generalized power series solution, wemean a generalized
power series is of the form

𝑓 (𝜉) = 𝐴 (𝜉) +

∞

∑

𝑛=0

𝑐
𝑛
𝜉
𝑛
, (4)

which is a solution to a system with respect to the variable
𝜉, where 𝑐

𝑛
(𝑛 = 0, 1, 2, . . .) are constant coefficients to

be determined and 𝐴(𝜉) is the undetermined function with
respect to the variable 𝜉. In particular, if 𝐴(𝜉) ≡ 0, then (4) is
the regular power series solution. So, the generalized power
series solution is the generalization of the regular power series
solution and it naturally includes the latter as its special case.
If we obtained a generalized power series solution (4) to a
system and the convergence of this power series is shown,
then the exact generalized power series solution is obtained.
This solution sometimes is called the exact analytic solution
[10–13, 19].

The main purpose of this paper is to develop the
combination of Lie symmetry analysis and the generalized
power series method for dealing with symmetries and exact
solutions to the variable-coefficients PDEs in finance. The
remainder of this paper is organized as follows. In Section 2,
we perform Lie symmetry analysis on the bond pricing types
of (2) and (3) and give all of the geometric vector fields of the
equations in terms of the arbitrary parameters. In Section 3,
we consider the symmetry reductions of the equations and
provide the exponentiated solutions and the similarity solu-
tions to the equations. In Section 4, we investigate the exact
analytic solutions to the variable-coefficient equations by the
generalized power series method. In Section 5, we deal with
the vector fields and exact solutions to the bond pricing type
of (1) for the general case ] ̸= 0, 1. Finally, the conclusions
and some remarks are given in Section 6.

2. Lie Symmetry Analysis for (2) and (3)
In this section, we will present a complete list of all possible
Lie symmetry algebras for the bond pricing types of equations
of the forms (2) and (3).

Recall that the geometric vector fields of such equations
are as follows:

𝑉 = 𝜉 (𝑥, 𝑡, 𝑢) 𝜕
𝑥
+ 𝜏 (𝑥, 𝑡, 𝑢) 𝜕

𝑡
+ 𝜙 (𝑥, 𝑡, 𝑢) 𝜕

𝑢
, (5)

where 𝜉(𝑥, 𝑡, 𝑢), 𝜏(𝑥, 𝑡, 𝑢), and 𝜙(𝑥, 𝑡, 𝑢) are coefficient func-
tions of the vector field to be determined. The symmetry
groups of (2) and (3) will be generated by the vector field of
the form (5), respectively. Applying the second prolongation
pr(2)𝑉of𝑉 to (2) and (3), we find that the coefficient functions
𝜉, 𝜏, and 𝜙must satisfy the following Lie symmetry condition:

pr(2)𝑉 (Δ)





Δ=0

= 0, (6)

where Δ = 𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥

+ 𝛾𝑢 for (2) and Δ =

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑥𝑢 for (3), respectively. Then, the Lie

symmetry group calculation method leads to the following
conditions on the coefficient functions 𝜉, 𝜏, and 𝜙:

𝜉 =

1

2

𝑥𝜏
𝑡
log 𝑥 + 𝑥𝜌, 𝜙 = 𝑟 (𝑥, 𝑡) 𝑢 + 𝑠 (𝑥, 𝑡) ,

𝑟 =

1

8𝛼

𝜏
𝑡𝑡
log2𝑥 +

𝛼 − 𝛽

4𝛼

𝜏
𝑡
log𝑥 +

1

2𝛼

𝜌
𝑡
log𝑥 + 𝜎,

(7)

for some functions 𝜏, 𝜌, and 𝜎. Now the functions 𝜏, 𝜌, and 𝜎

depend only on 𝑡. Moreover, for (2), we have

1

8𝛼

𝜏
𝑡𝑡𝑡
log2𝑥 +

1

2𝛼

𝜌
𝑡𝑡
log𝑥 +

1

4

𝜏
𝑡𝑡

−

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝜏
𝑡
−

𝛼 − 𝛽

2𝛼

𝜌
𝑡
+ 𝜎
𝑡
= 0;

(8)

for (3), we have

1

8𝛼

𝜏
𝑡𝑡𝑡
log2𝑥 +

1

2

𝛾𝜏
𝑡
𝑥 log𝑥

+

1

2𝛼

𝜌
𝑡𝑡
log𝑥 + 𝛾 (𝜌 + 𝜏

𝑡
) 𝑥 +

1

4

𝜏
𝑡𝑡

−

(𝛼 − 𝛽)
2

4𝛼

𝜏
𝑡
−

𝛼 − 𝛽

2𝛼

𝜌
𝑡
+ 𝜎
𝑡
= 0.

(9)

These equations fix the functions 𝜉, 𝜏, 𝜌, 𝜎, and 𝜙. Solving the
equations, we obtain the vector field of (2) as follows:

𝑉
1
= 𝜕
𝑡
, 𝑉

2
= 𝑥𝜕
𝑥
, 𝑉

3
= 𝑢𝜕
𝑢
,

𝑉
4
= 2𝛼𝑥𝑡𝜕

𝑥
+ [log𝑥 + (𝛼 − 𝛽) 𝑡] 𝑢𝜕

𝑢
,

𝑉
5
= 2𝛼𝑥𝑡 (log𝑥) 𝜕

𝑥
+ 4𝛼𝑡𝜕

𝑡

+ [(𝛼 − 𝛽) log𝑥 + ((𝛼 − 𝛽)
2

− 4𝛼𝛾) 𝑡] 𝑢𝜕
𝑢
,

𝑉
6
= 4𝛼𝑥𝑡 (log𝑥) 𝜕

𝑥
+ 4𝛼𝑡
2
𝜕
𝑡

+ [2 (𝛼 − 𝛽) 𝑡 log𝑥 + log2𝑥 − 2𝛼𝑡

+ ((𝛼 − 𝛽)
2

− 4𝛼𝛾) 𝑡
2
] 𝑢𝜕
𝑢
,

𝑉
𝑠
= 𝑠𝜕
𝑢
,

(10)

where the parameters 𝛼 ̸= 0, 𝛽, 𝛾 are arbitrary constants and
the function 𝑠 = 𝑠(𝑥, 𝑡) satisfies (2).
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For (3), we have the vector field as follows:

𝑉
1
= 𝜕
𝑡
, 𝑉

2
= 𝑢𝜕
𝑢
, 𝑉

𝑠
= 𝑠𝜕
𝑢
, (11)

where the function 𝑠 = 𝑠(𝑥, 𝑡) satisfies (3).
Clearly, for (2), a basis of the Lie algebra is {𝑉

1
, . . . , 𝑉

6
, 𝑉
𝑠
}.

For (3), a basis for the Lie algebra is {𝑉
1
, 𝑉
2
, 𝑉
𝑠
}.Thus, the new

symmetries cannot be derived from the Lie brackets for the
two equations.

Moreover, we can obtain the one-parameter groups gen-
erated by 𝑉

𝑖
, respectively. In fact, for (2), the one-parameter

groups 𝐺
𝑖
generated by 𝑉

𝑖
(𝑖 = 1, . . . , 6, 𝑠) are given in the

following:

𝐺
1
: (𝑥, 𝑡, 𝑢) → (𝑥, 𝑡 + 𝜖, 𝑢) ,

𝐺
2
: (𝑥, 𝑡, 𝑢) → (𝑒

𝜖
𝑥, 𝑡, 𝑢) ,

𝐺
3
: (𝑥, 𝑡, 𝑢) → (𝑥, 𝑡, 𝑒

𝜖
𝑢) ,

𝐺
4
: (𝑥, 𝑡, 𝑢) → (𝑥𝑒

2𝛼𝜖𝑡
, 𝑡, 𝑥
𝜖
𝑢 exp [(𝛼 − 𝛽) 𝜖𝑡 + 𝛼𝜖

2
𝑡]) ,

𝐺
5
: (𝑥, 𝑡, 𝑢) → (𝑥

𝛿
, 𝛿
2
𝑡, 𝑢 exp[

𝛼 − 𝛽

2𝛼

(𝛿 − 1) log𝑥

+

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

× (𝛿
2
− 1) 𝑡]) ,

𝐺
6
: (𝑥, 𝑡, 𝑢)

→ (𝑥
1/(1−4𝛼𝜖𝑡)

,

𝑡

1 − 4𝛼𝜖𝑡

,

𝑢√1 − 4𝛼𝜖𝑡 exp{[

𝛼 − 𝛽

2𝛼

log 𝑥

+

1

4𝛼𝑡

log2𝑥

+

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡]

×

4𝛼𝜖𝑡

1 − 4𝛼𝜖𝑡

}) ,

𝐺
𝑠
: (𝑥, 𝑡, 𝑢) → (𝑥, 𝑡, 𝑢 + 𝜖𝑠) ,

(12)

where 𝛿 = 𝑒
2𝛼𝜖, 𝜖 ≪ 1, and the function 𝑠 = 𝑠(𝑥, 𝑡) is an

arbitrary solution to (2). For (3), the one-parameter groups
are 𝐺
𝑖
(𝑖 = 1, 3, 𝑠) as above, while 𝑠 = 𝑠(𝑥, 𝑡) is an arbitrary

solution to (3).
From the above, we observe that 𝐺

1
is a time translation

and 𝐺
2
and 𝐺

3
are trivial scaling transformations, while 𝐺

𝑖

(𝑖 = 4, 5, 6) are nontrivial local groups of transformations.
Their appearances are far from obvious from basic physical

principles, but they are important for us to investigate the
exact solutions to PDEs (see, e.g., [3–5, 10]).

3. Symmetry Reductions and Exact Solutions
to the Bond Pricing Types of Equations

In the preceding section, we obtained the symmetries and
symmetry groups of (2) and (3). Now, we deal with the
symmetry reductions and exact solutions to the equations.

3.1. The Exponentiated Solutions. Since each 𝐺
𝑖
(𝑖 =

1, . . . , 6, 𝑠) is a symmetry group, it implies that if 𝑢 = 𝑓(𝑥, 𝑡)

is a solution to (2), then 𝑢
(𝑖)

(𝑖 = 1, . . . , 6, 𝑠) are all solutions
to the following equation as well:

𝑢
(1)

= 𝑓 (𝑥, 𝑡 − 𝜖) , (13a)

𝑢
(2)

= 𝑓 (𝑒
−𝜖
𝑥, 𝑡) , (13b)

𝑢
(3)

= 𝑒
𝜖
𝑓 (𝑥, 𝑡) , (13c)

𝑢
(4)

= 𝑥
𝜖 exp [(𝛼 − 𝛽) 𝜖𝑡 − 𝛼𝜖

2
𝑡] 𝑓 (𝑒

−2𝛼𝜖𝑡
𝑥, 𝑡) , (13d)

𝑢
(5)

= exp[

𝛼 − 𝛽

2𝛼

(1 − 𝛿
−1
) log𝑥

+

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

(1 − 𝛿
−2
) 𝑡]

× 𝑓 (𝑥
1/𝛿

, 𝛿
−2
𝑡) ,

(13e)

𝑢
(6)

=

1

√1 + 4𝛼𝜖𝑡

exp{[

𝛼 − 𝛽

2𝛼

log𝑥 +

1

4𝛼𝑡

log2𝑥

+

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡]

4𝛼𝜖𝑡

1 + 4𝛼𝜖𝑡

}

× 𝑓(𝑥
1/(1+4𝛼𝜖𝑡)

,

𝑡

1 + 4𝛼𝜖𝑡

) ,

(13f)

𝑢
(𝑠)

= 𝑓 (𝑥, 𝑡) + 𝜖𝑠, (13g)

where 𝛿 = 𝑒
2𝛼𝜖, 𝜖 is an arbitrary real number, and the function

𝑠 = 𝑠(𝑥, 𝑡) satisfies (2).
For (3), the exponentiated solutions are 𝑢

(𝑖) (𝑖 = 1, 3, 𝑠) as
above while 𝑠 = 𝑠(𝑥, 𝑡) satisfies (3).

Such exponentiated solutions are one of group-invariant
types of solutions to the PDEs, which are generated from the
one-parameter groups and are of importance for studying the
exact solutions and investigating the properties of solutions
(see Remark 2).

Next, we investigate the symmetry reductions and exact
explicit solutions to the two bond pricing equations. Firstly,
we consider (2).
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3.2. Similarity Solution for 𝑉
1
. For the generator 𝑉

1
, we have

the following reduced ordinary differential equation (ODE):

𝛼𝜉
2
𝑓

+ 𝛽𝜉𝑓


+ 𝛾𝑓 = 0, (14)

where 𝑓


= 𝑑𝑓/𝑑𝜉. This is an Euler equation; the corre-
sponding characteristic equation is 𝛼𝐾2 − (𝛼 − 𝛽)𝐾 + 𝛾 = 0.
Solving this equation, we have𝐾 = ((𝛼−𝛽)±√Δ)/2𝛼, where
Δ = (𝛼 − 𝛽)

2
− 4𝛼𝛾.

When Δ > 0, (14) has the general solution 𝑓 = 𝑐
1
𝜉
𝐾
1
+

𝑐
2
𝜉
𝐾
2 . Thus, we obtain the exact solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑐
1
𝑥
𝐾
1
+ 𝑐
2
𝑥
𝐾
2
, (15)

where 𝑐
1
and 𝑐
2
are arbitrary constants and 𝐾

1,2
= ((𝛼 −

𝛽) ±√Δ)/2𝛼 are two real roots to the characteristic equation,
respectively.

When Δ = 0, (14) has the general solution 𝑓 = 𝜉
𝐾
(𝑐
1
+

𝑐
2
log 𝜉). Thus, we obtain the exact solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑥
𝐾
(𝑐
1
+ 𝑐
2
log𝑥) , (16)

where 𝑐
1
and 𝑐
2
are arbitrary constants, 𝐾 = (𝛼 − 𝛽)/2𝛼 are

the real root to the characteristic equation.
When Δ < 0, (14) has the general solution 𝑓 =

𝜉
𝐾
(𝑐
1
cos(√−Δ/2𝛼) log 𝜉 + 𝑐

2
sin(√−Δ/2𝛼) log 𝜉). Thus, we

obtain the exact solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑥
𝐾
(𝑐
1
cos

√−Δ

2𝛼

log𝑥 + 𝑐
2
sin

√−Δ

2𝛼

log𝑥) ,

(17)

where 𝑐
1
and 𝑐
2
are arbitrary constants,𝐾 = (𝛼 − 𝛽)/2𝛼.

3.3. Similarity Solution for 𝑉
2
. For the generator 𝑉

2
, we have

the following reduced ODE:

𝑓

+ 𝛾𝑓 = 0, (18)

where 𝑓

= 𝑑𝑓/𝑑𝜉. Solving this equation, we have 𝑓 = 𝑐𝑒

−𝛾𝜉.
Thus, we obtain the exact solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑐𝑒
−𝛾𝑡

, (19)

where 𝑐 is an arbitrary constant.

3.4. Similarity Solution for 𝑉
4
. For the generator 𝑉

4
, we have

the following similarity transformation:

𝜉 = 𝑡, 𝜔 = log 𝑢 −

1

4𝛼𝑡

(log𝑥 + 𝑎𝑡)
2

, (20)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp [𝑓 (𝑡) +

1

4𝛼𝑡

(log𝑥 + 𝑎𝑡)
2

] . (21)

Substituting (21) into (2), we reduce the bond pricing equa-
tion to the following ODE:

2𝜉𝑓

+ 2𝛾𝜉 + 1 = 0, (22)

where 𝑓

= 𝑑𝑓/𝑑𝜉. It implies that if 𝜔 = 𝑓(𝜉) is a solution to

(22), then (21) is a solution to (2). Solving (22), we get 𝑓(𝜉) =

−(1/2) log 𝜉 − 𝛾𝜉 + 𝑐
1
. Thus, we obtain the solution to (2) as

follows:

𝑢 (𝑥, 𝑡) = 𝑐 exp [

1

4𝛼𝑡

(log𝑥 + 𝑎𝑡)
2

−

1

2

log 𝑡 − 𝛾𝑡] , (23)

where 𝑐 is an arbitrary constant.

3.5. Similarity Solution for 𝑉
5
. For the generator 𝑉

5
, we have

the following similarity transformation:

𝜉 = 𝑡
−1/2 log𝑥,

𝜔 = log 𝑢 −

𝛼 − 𝛽

2𝛼

log𝑥 −

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡,

(24)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp[𝑓 (𝑡
−1/2 log𝑥) +

𝛼 − 𝛽

2𝛼

log𝑥 +

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡] .

(25)

Substituting (25) into (2), we reduce the bond pricing equa-
tion to the following ODE:

𝛼𝑓

+ 𝛼𝑓
2

−

1

2

𝜉𝑓

= 0, (26)

where 𝑓

= 𝑑𝑓/𝑑𝜉.

Letting 𝑓

= 𝑦, we get the Bernoulli equation

𝑑𝑦

𝑑𝜉

=

1

2𝛼

𝜉𝑦 − 𝛼𝑦
2
. (27)

Clearly, 𝑦 = 0; that is, 𝑓 = 𝑐 is a solution to (26). Thus, we get
a solution to (2) as follows:

𝑢 (𝑥, 𝑡) = exp[

𝛼 − 𝛽

2𝛼

log𝑥 +

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡 + 𝑐] , (28)

for an arbitrary constant number 𝑐.
When 𝑦 ̸= 0, solving the Bernoulli equation, we get 𝑦 =

𝑒
(1/4𝛼)𝜉

2

/(∫ 𝑒
(1/4𝛼)𝜉

2

𝑑𝜉 + 𝑐
1
). Thus, we obtain the solution to

(26) as follows:

𝑓 (𝜉) = ∫

𝑒
(1/4𝛼)𝜉

2

∫ 𝑒
(1/4𝛼)𝜉

2

𝑑𝜉 + 𝑐
1

𝑑𝜉 + 𝑐
2
, (29)

where 𝑐
1
and 𝑐
2
are constants of integration. Substituting (29)

into (25), we obtain the exact solution to (2) immediately.

3.6. Similarity Solution for 𝑉
6
. For the generator 𝑉

6
, we have

the following similarity transformation:

𝜉 = 𝑡
−1 log𝑥,

𝜔 = log 𝑢 +

1

2

log 𝑡 −
𝛼 − 𝛽

2𝛼

log𝑥

−

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡 −

1

4𝛼

𝑡
−1log2𝑥,

(30)
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and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp[𝑓 (𝑡
−1 log𝑥) −

1

2

log 𝑡 +
𝛼 − 𝛽

2𝛼

log𝑥

+

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡 +

1

4𝛼

𝑡
−1log2𝑥] .

(31)

Substituting (31) into (2), we reduce the bond pricing equa-
tion to the following ODE:

𝑓

+ 𝑓
2

= 0, (32)

where 𝑓

= 𝑑𝑓/𝑑𝜉.

Solving (32), we get𝑓(𝜉) = log |𝜉+𝑐
1
|+𝑐
3
.Thus, we obtain

the solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑐
2
(

1

𝑡

log𝑥 + 𝑐
1
)

× exp[

𝛼 − 𝛽

2𝛼

log𝑥 +

(𝛼 − 𝛽)
2

− 4𝛼𝛾

4𝛼

𝑡

+

1

4𝛼

𝑡
−1log2𝑥 −

1

2

log 𝑡] ,

(33)

where 𝑐
1
, 𝑐
2
are arbitrary constants.

3.7. Similarity Solution for 𝑉
1
+V𝑉
2
. For the linear combina-

tion 𝑉 = 𝑉
1

+ V𝑉
2
(V ̸= 0 is an arbitrary constant), we have

the following similarity transformation:

𝜉 = log𝑥 − V𝑡, 𝜔 = 𝑢, (34)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = 𝑓 (log𝑥 − V𝑡) . (35)

Substituting (35) into (2), we reduce the bond pricing equa-
tion to the following ODE:

𝛼𝑓

− (V + 𝛼 − 𝛽)𝑓


+ 𝛾𝑓 = 0, (36)

where 𝑓

= 𝑑𝑓/𝑑𝜉.

This is a second-order linear ODE; the corresponding
characteristic equation is 𝛼𝜆2 − (V + 𝛼 − 𝛽)𝜆 + 𝛾 = 0. Solving
the algebraic equation, we have 𝜆

1
= (V + 𝛼 − 𝛽 + √Δ)/2𝛼,

𝜆
2
= (V + 𝛼 − 𝛽 − √Δ)/2𝛼, where Δ = (V + 𝛼 − 𝛽)

2
− 4𝛼𝛾.

When Δ > 0, (36) has the solution 𝑓(𝜉) = 𝑐
1
𝑒
𝜆
1
𝜉
+ 𝑐
2
𝑒
𝜆
2
𝜉.

Thus, we obtain the solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑐
1
𝑥
𝜆
1
𝑒
−𝜆
1
V𝑡

+ 𝑐
2
𝑥
𝜆
2
𝑒
−𝜆
2
V𝑡
, (37)

where 𝑐
1
, 𝑐
2
are arbitrary constants.

When Δ = 0, (36) has the solution 𝑓(𝜉) = (𝑐
1
+ 𝑐
2
𝜉)𝑒
𝜆𝜉,

where 𝜆 = (V + 𝛼 − 𝛽)/2𝛼. Thus, we obtain the solution to (2)
as follows:

𝑢 (𝑥, 𝑡) = [𝑐
1
+ 𝑐
2
(log𝑥 − V𝑡)] 𝑥𝜆𝑒−𝜆V𝑡, (38)

where 𝑐
1
, 𝑐
2
are arbitrary constants.

When Δ < 0, (36) has the solution 𝑓(𝜉) =

(𝑐
1
cos(√−Δ/2𝛼)𝜉 + 𝑐

2
sin(√−Δ/2𝛼)𝜉)𝑒

((V+𝛼−𝛽)/2𝛼)𝜉. Thus, we
obtain the solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑥
(V+𝛼−𝛽)/2𝛼

𝑒
−(V(V+𝛼−𝛽)/2𝛼)𝑡

× [𝑐
1
cos

√−Δ

2𝛼

(log𝑥 − V𝑡)

+𝑐
2
sin

√−Δ

2𝛼

(log𝑥 − V𝑡)] ,

(39)

where 𝑐
1
, 𝑐
2
are arbitrary constants.

3.8. Similarity Reduction for𝑉
1
+V𝑉
3
. For the linear combina-

tion𝑉 = 𝑉
1
+ V𝑉
3
(V ̸= 0 is an arbitrary constant), we have the

following similarity transformation:

𝜉 = 𝑥, 𝜔 = log 𝑢 − V𝑡, (40)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp {𝑓 (𝑥) + V𝑡} . (41)

Substituting (41) into (2), we reduce the bond pricing equa-
tion to the following ODE:

𝛼𝜉
2
𝑓

+ 𝛼𝜉
2
𝑓
2

+ 𝛽𝜉𝑓

+ V + 𝛾 = 0, (42)

where 𝑓

= 𝑑𝑓/𝑑𝜉. This is a nonlinear second-order ODE. In

the next section, we will deal with such an equation by the
special transformation technique.

3.9. Similarity Solution for 𝑉
2
+V𝑉
3
. For the linear combina-

tion𝑉 = 𝑉
2
+ V𝑉
3
(V ̸= 0 is an arbitrary constant), we have the

following similarity transformation:

𝜉 = 𝑡, 𝜔 = 𝑥
−V
𝑢, (43)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = 𝑥
V
𝑓 (𝑡) . (44)

Substituting (44) into (2), we reduce the bond pricing
equation to the following ODE:

𝑓

+ 𝛼V (V − 1) 𝑓 + 𝛽V𝑓 + 𝛾𝑓 = 0, (45)

where 𝑓

= 𝑑𝑓/𝑑𝜉.

Solving (45), we get 𝑓 = 𝑐 exp{−[𝛼V2 − (𝛼 − 𝛽)V + 𝛾]𝜉}.
Thus, we obtain the solution to (2) as follows

𝑢 (𝑥, 𝑡) = 𝑐𝑥
V exp {− [𝛼V2 − (𝛼 − 𝛽) V + 𝛾] 𝑡} , (46)

where 𝑐 is an arbitrary constant.
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3.10. Similarity Reduction for 𝑉
1
+V𝑉
4
. For the linear combi-

nation 𝑉 = 𝑉
1
+ V𝑉
4
(V ̸= 0 is an arbitrary constant), we have

the following similarity transformation:

𝜉 = log𝑥 − V𝛼𝑡2,

𝜔 = log 𝑢 − V𝑡 log𝑥 +

2

3

𝛼V2𝑡3 −
1

2

(𝛼 − 𝛽) V𝑡2,
(47)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp [𝑓 (log𝑥 − V𝛼𝑡2) + V𝑡 log𝑥 −

2

3

𝛼V2𝑡3

+

1

2

(𝛼 − 𝛽) V𝑡2] .

(48)

Substituting (48) into (2), we reduce the bond pricing
equation to the following ODE:

𝛼𝑓

+ 𝛼𝑓
2

− (𝛼 − 𝛽) 𝑓

+ V𝜉 + 𝛾 = 0, (49)

where 𝑓


= 𝑑𝑓/𝑑𝜉. This is a nonlinear second-order ODE
also. In the next section, we will deal with the exact solutions
to such equations.

Secondly, we consider (3). In fact, for this equation, we
have the nontrivial cases as follows only.

3.11. Similarity Reduction for 𝑉
1
of (3). For the generator 𝑉

1
,

we have the following reduced ordinary differential equation
(ODE):

𝛼𝜉𝑓

+ 𝛽𝑓

+ 𝛾𝑓 = 0, (50)

where 𝑓


= 𝑑𝑓/𝑑𝜉. This is a nonlinear second-order ODE
as well; there is no general method for tackling it yet. In
Section 4, we will deal with such equations by the power
series method.

3.12. Similarity Reduction for 𝑉
1
+V𝑉
2
of (3). For the linear

combination 𝑉 = 𝑉
1
+ V𝑉
2
(V ̸= 0 is an arbitrary constant),

we have the following similarity transformation:

𝜉 = 𝑥, 𝜔 = log 𝑢 − V𝑡, (51)

and the similarity solution is 𝜔 = 𝑓(𝜉); that is,

𝑢 = exp [𝑓 (𝑥) + V𝑡] . (52)

Substituting (52) into (3), we reduce the second bond pricing
equation to the following ODE:

𝛼𝜉
2
𝑓

+ 𝛼𝜉
2
𝑓
2

+ 𝛽𝜉𝑓

+ 𝛾𝜉 + V = 0, (53)

where 𝑓


= 𝑑𝑓/𝑑𝜉. This is a nonlinear second-order ODE
also. Similar to the above equations, we will deal with such
equations by the generalized power series method in the next
section.

4. Exact Analytic Solutions in terms of the
Generalized Power Series Method

In Section 3, we considered the symmetry reductions and
exact solutions to the bond pricing types of (2) and (3). In
this section, we will deal with the nonlinear ODEs (42), (49),
(50), and (53) by the special transformation technique and
generalized power series method. Thus, the exact analytic
solutions to (2) and (3) are obtained.

4.1. Exact Solution to (2). Firstly, we consider the ODE (42).
Letting 𝑓


= 𝑦, we get the Riccati equation

𝑑𝑦

𝑑𝜉

= −𝑦
2
−

𝛽

𝛼𝜉

𝑦 −

V + 𝛾

𝛼𝜉
2
. (54)

Now, we solve the equation by the transformation technique
directly. Suppose that (54) has the solution of the form

𝑦 = 𝑝𝜉
−1
, (55)

where 𝑝 is a constant to be determined. Substituting (55) into
(54), we have 𝛼𝑝2 − (𝛼−𝛽)𝑝+ V+𝛾 = 0. Solving the algebraic
equation, we get

𝑝 =

(𝛼 − 𝛽) ± √Δ

2𝛼

, (56)

where Δ = (𝛼 − 𝛽)
2
− 4𝛼(V + 𝛾).

Setting 𝑦 = 𝑧 + 𝑝𝜉
−1 and plugging it into (54), we get

𝑑𝑧

𝑑𝜉

= −𝑧
2
− 𝑞

𝑧

𝜉

, 𝑞 = 2𝑝 +

𝛽

𝛼

. (57)

This is a Bernoulli equation. Solving the equation, we have the
following results.

When 𝑞 = 1, we get 𝑓(𝜉) = 𝑝 log 𝜉 + log(log 𝜉 + 𝑐
1
) + 𝑐
2
.

Thus, the exact solution to (2) is

𝑢 (𝑥, 𝑡) = 𝑐
2
𝑥
𝑝
(log𝑥 + 𝑐

1
) 𝑒

V𝑡
, (58)

where 𝑐
1
and 𝑐
2
are arbitrary constants; 𝑝 and 𝑞 are given by

(56) and (57).
When 𝑞 ̸= 1, we get 𝑓(𝜉) = 𝑝 log 𝜉 + (1 − 𝑞) ∫ 𝑑𝜉/(𝜉 +

𝑐
1
𝜉
𝑞
) + 𝑐
2
. Thus, the exact solution to (2) is

𝑢 (𝑥, 𝑡) = 𝑐
2
𝑥
𝑝 exp [(1 − 𝑞)∫

𝑑𝑥

𝑥 + 𝑐
1
𝑥
𝑞
+ V𝑡] , (59)

where 𝑐
1
and 𝑐
2
are arbitrary constants and 𝑝 and 𝑞 are given

by (56) and (57).

4.2. Exact Analytic Solution to (2). Through the transfor-
mation technique, we solve the Riccati equation (54), so
the exact solutions to (2) are obtained. But for the other
equations such as (49), (50), and (53), we cannot get the
exact solutions by such special transformation technique.
However, we know that the power series can be used to
solve nonlinear ODEs, including many complicated differen-
tial equations with nonconstant coefficients [10–13, 19, 20].
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Now, we consider the power series solution to the reduced
equation (49). Letting 𝑓


= 𝑦, we get the following Riccati

equation:

𝛼𝑦

+ 𝛼𝑦
2
− (𝛼 − 𝛽) 𝑦 + V𝜉 + 𝛾 = 0. (60)

We will seek a solution of (60) in a power series of the
form

𝑦 =

∞

∑

𝑛=0

𝑐
𝑛
𝜉
𝑛
= 𝑝 +

∞

∑

𝑛=1

𝑐
𝑛
𝜉
𝑛
, 𝑝 = 𝑐

0
, (61)

where the coefficients 𝑐
𝑛
(𝑛 = 0, 1, 2, . . .) are constants to be

determined.
Substituting (61) into (60) and comparing coefficients, we

obtain

𝑐
1
= −𝑝
2
+

𝛼 − 𝛽

𝛼

𝑝 −

𝛾

𝛼

,

𝑐
2
= −𝑝𝑐

1
+

𝛼 − 𝛽

2𝛼

𝑐
1
−

V

2𝛼

.

(62)

Generally, for 𝑛 ≥ 2, we have

𝑐
𝑛+1

=

1

(𝑛 + 1) 𝛼

[(𝛼 − 𝛽) 𝑐
𝑛
− 𝛼

𝑛

∑

𝑘=0

𝑐
𝑘
𝑐
𝑛−𝑘

] . (63)

Thus, for arbitrarily choosing the parameter 𝑐
0
, from

(62), we can get 𝑐
1
and 𝑐
2
. Furthermore, in view of (63), we

have

𝑐
3
=

𝛼 − 𝛽

3𝛼

𝑐
2
−

1

3

(2𝑝𝑐
2
+ 𝑐
2

1
) ,

𝑐
4
=

𝛼 − 𝛽

4𝛼

𝑐
3
−

1

2

(𝑝𝑐
3
+ 𝑐
1
𝑐
2
) ,

(64)

and so on.
Therefore, the other terms of the sequence {𝑐

𝑛
}
∞

𝑛=0
can be

determined successively from (63) in a unique manner. This
implies that for (60) there exists a power series solution (61)
with the coefficients given by (62) and (63). Furthermore, we
can show the convergence of the power series solution (61)
with the coefficients given by (62) and (63) (see, e.g., [10, 12,
13, 19]); the details are omitted here. So, this solution (61) to
(60) is an exact analytic solution.

Hence, the exact power series solution to (49) can be
written as follows:

𝑓 (𝜉) = 𝑐 + 𝑝𝜉 +

1

2

𝑐
1
𝜉
2
+

1

3

𝑐
2
𝜉
3
+

∞

∑

𝑛=2

1

𝑛 + 2

𝑐
𝑛+1

𝜉
𝑛+2

. (65)

Substituting (65) into (39), we obtain the exact analytic
solution to (2) as follows:

𝑢 (𝑥, 𝑡) = 𝑞 exp [𝑝 (log 𝑥 − 𝛼V𝑡2)

+

1

2

𝑐
1
(log 𝑥 − 𝛼V𝑡2)

2

+

1

3

𝑐
2
(log 𝑥 − 𝛼V𝑡2)

3

+

∞

∑

𝑛=2

1

𝑛 + 2

𝑐
𝑛+1

(log 𝑥 − 𝛼V𝑡2)
𝑛+2

+

1

2

(𝛼 − 𝛽) V𝑡2 −
2

3

𝛼V2𝑡3 + V𝑡 log 𝑥] ,

(66)

where 𝑝 = 𝑐
0
and 𝑞 are arbitrary constants and the other

coefficients 𝑐
𝑛
(𝑛 = 1, 2, . . .) are given by (62) and (63)

successively.
Similarly, we can give the exact power series solution to

(50) in the power series form (61). So, the exact analytic
solution to (3) is obtained. The details are omitted here.

4.3. Exact Analytic Solution to (3). In Section 4.2, we con-
struct the exact analytic solution to (49) by the power series
method and obtain the exact analytic solution to (2). Now,
we consider (53). Firstly, let 𝑓 = 𝑦; then we get the following
Riccati type of equation:

𝛼𝜉
2
𝑦

+ 𝛼𝜉
2
𝑦
2
+ 𝛽𝜉𝑦 + 𝛾𝜉 + V = 0. (67)

We will seek a solution of (67) in a generalized power
series of the form

𝑦 = 𝐴𝜉
−1

+

∞

∑

𝑛=0

𝑐
𝑛
𝜉
𝑛
, (68)

where the parameters 𝐴 and 𝑐
𝑛
(𝑛 = 0, 1, 2, . . .) are constants

to be determined.
Substituting (68) into (67) and comparing coefficients, we

obtain

𝐴 =

(𝛼 − 𝛽) ± √Δ

2𝛼

, (69)

where Δ = (𝛼 − 𝛽)
2
− 4𝛼V, and

𝑐
0
=

−𝛾

2𝛼𝐴 + 𝛽

, 2𝛼𝐴 + 𝛽 ̸= 0. (70)

Generally, for 𝑛 ≥ 0, we have

𝑐
𝑛+1

=

−𝛼

(𝑛 + 1) 𝛼 + 2𝛼𝐴 + 𝛽

𝑛

∑

𝑘=0

𝑐
𝑘
𝑐
𝑛−𝑘

, 𝑛 = 0, 1, 2, . . . . (71)
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Thus, from (69) and (70), we can get 𝐴 and 𝑐
0
. Further-

more, in view of (71), we have

𝑐
1
=

−𝛼𝑐
2

0

𝛼 + 2𝛼𝐴 + 𝛽

, 𝑐
2
=

−2𝛼𝑐
0
𝑐
1

2𝛼 + 2𝛼𝐴 + 𝛽

,

𝑐
3
=

−𝛼 (2𝑐
0
𝑐
2
+ 𝑐
2

1
)

3𝛼 + 2𝛼𝐴 + 𝛽

,

(72)

and so on (see Remark 3).
Therefore, the other terms of the sequence {𝑐

𝑛
}
∞

𝑛=0
can be

determined successively from (71) in a unique manner. This
implies that for (67) there exists a generalized power series
solution (68) with the coefficients given by (69)–(71). The
convergence of the generalized power series solution (68) to
(67) is similar to that in Section 4.2; we omit it in this paper.
Thus, the power series solution (68) to (67) is also an exact
analytic solution.

Hence, the power series solution of (53) can be written as
follows:

𝑓 (𝜉) = 𝑐 + 𝐴 log 

𝜉




+ 𝑐
0
𝜉 +

1

2

𝑐
1
𝜉
2
+

∞

∑

𝑛=1

1

𝑛 + 2

𝑐
𝑛+1

𝜉
𝑛+2

. (73)

Substituting (73) into (52), we get the exact analytic
solution to (3) as follows:

𝑢 (𝑥, 𝑡) = 𝑐𝑥
𝐴 exp[𝑐

0
𝑥 +

1

2

𝑐
1
𝑥
2

+

∞

∑

𝑛=1

1

𝑛 + 2

𝑐
𝑛+1

𝑥
𝑛+2

+ V𝑡] ,

(74)

where 𝑐 is an arbitrary constant and 𝐴 and 𝑐
𝑛
(𝑛 = 0, 1, 2, . . .)

are given by (69)–(71) successively.

Remark 1. We note that the generalized power series solution
(68) differs from the regular form (61) since 𝐴 ̸= 0 in (68).
In other words, there is no exact power series solution of
the form (61) for (67). In particular, the determination of
parameter 𝐴 depends on the equation greatly (cf. [10, 11] for
details).

5. Further Discussion about the General Bond
Pricing Type of (1)

In the above sections, we considered the symmetries, sym-
metry reductions, and exact solutions to the general bond
pricing type of equation for the cases ] = 0 and ] = 1, which
are the common forms in many practical applications, such
as in financial mathematics. In this section, we discuss the
generalized bond pricing type of equation of the form

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑥

]
𝑢 = 0, (75)

where ] ̸= 0, 1 is an arbitrary positive number. Firstly, by the
group classificationmethod, we get the geometric vector field
of (75) as follows:

𝑉
1
= 𝜕
𝑡
, 𝑉

2
= 𝑢𝜕
𝑢
, 𝑉

𝑠
= 𝑠𝜕
𝑢
, (76)

where the function 𝑠 = 𝑠(𝑥, 𝑡) satisfies (75).
Moreover, through the similarity transformation (42), we

can reduce this equation to the following equation (ODE):

𝛼𝜉
2
𝑓

+ 𝛼𝜉
2
𝑓
2

+ 𝛽𝜉𝑓

+ 𝛾𝜉

]
+ V = 0, (77)

where 𝑓

= 𝑑𝑓/𝑑𝜉. Similarly, we can consider the symmetry

reductions and exact solutions to the equation. Now, as an
example, we study the special case ] = 2. In this case, we have

𝑢
𝑡
+ 𝛼𝑥
2
𝑢
𝑥𝑥

+ 𝛽𝑥𝑢
𝑥
+ 𝛾𝑥
2
𝑢 = 0. (78)

Referring to (77) and setting𝑓 = 𝑦, thenwe get the following
reduced ODE of (78):

𝛼𝜉
2
𝑦

+ 𝛼𝜉
2
𝑦
2
+ 𝛽𝜉𝑦 + 𝛾𝜉

2
+ V = 0. (79)

Suppose that (79) has the power series solution of the
generalized form (68). Then, substituting (68) into (79) and
comparing coefficients, we obtain

𝐴 =

(𝛼 − 𝛽) ± √Δ

2𝛼

, (80)

where Δ = (𝛼 − 𝛽)
2
− 4𝛼V,

(2𝛼𝐴 + 𝛽) 𝑐
0
= 0, (81)

𝑐
1
=

−𝛼𝑐
2

0
− 𝛾

𝛼 + 2𝛼𝐴 + 𝛽

. (82)

Generally, for 𝑛 ≥ 1, we have

𝑐
𝑛+1

=

−𝛼

(𝑛 + 1) 𝛼 + 2𝛼𝐴 + 𝛽

𝑛

∑

𝑘=0

𝑐
𝑘
𝑐
𝑛−𝑘

, 𝑛 = 1, 2, . . . . (83)

In view of (81), we have two special cases as follows.
When 2𝛼𝐴 + 𝛽 ̸= 0, from (81), we have 𝑐

0
= 0. Further-

more, from (82) and (83), we have

𝑐
1
=

−𝛾

𝛼 + 2𝛼𝐴 + 𝛽

, 𝑐
2
= 0,

𝑐
3
=

−𝛼𝑐
2

1

3𝛼 + 2𝛼𝐴 + 𝛽

, 𝑐
4
= 0,

(84)

and so on. In this case, by induction method, we have

𝑐
2𝑛

= 0, 𝑛 = 0, 1, 2, . . . . (85)
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When 2𝛼𝐴+𝛽 = 0, from (81), we get that 𝑐
0
is an arbitrary

constant. Furthermore, from (82) and (83), we have

𝑐
1
=

−𝛼𝑐
2

0
− 𝛾

𝛼 + 2𝛼𝐴 + 𝛽

, 𝑐
2
=

−2𝛼𝑐
0
𝑐
1

2𝛼 + 2𝛼𝐴 + 𝛽

,

𝑐
3
=

−𝛼 (2𝑐
0
𝑐
2
+ 𝑐
2

1
)

3𝛼 + 2𝛼𝐴 + 𝛽

, 𝑐
4
=

−2𝛼 (𝑐
0
𝑐
3
+ 𝑐
1
𝑐
2
)

4𝛼 + 2𝛼𝐴 + 𝛽

,

(86)

and so on (see Remark 3).
Thus, the exact power series solutions to (79) are

obtained. In view of (42), the exact analytic solutions to
(78) are provided in power series form, respectively. More
generally, for ] is an arbitrary positive integer, the exact power
series solutions to (75) can be considered similarly by the
generalized power seriesmethod; the details are omitted here.

6. Conclusion and Remarks

In this paper, we investigate the symmetry classifications and
exact solutions to the bond pricing types of equations by the
combination of Lie symmetry analysis and the generalized
power series method; all of the exponentiated solutions and
similarity solutions are obtained explicitly for the first time in
the literature. Furthermore, for the generalized bond pricing
type of equation, the vector field and exact solutions are
provided simultaneously. These similarity solutions possess
significant features in both financial problems and physical
applications. On the other hand, it is known that tackling
exact solutions to the vc-PDEs is a difficult problem; from
the above discussion, we can see that the combination of Lie
symmetry analysis and generalized power series method is a
feasible approach and is worthy of further study.

Remark 2. Since there is no space translation (𝑥, 𝑡, 𝑢) →

(𝑥+𝜖, 𝑡, 𝑢), the bond pricing equations have no travelingwave
solutions. However, based on the exponentiated solutions,
we can consider the other types of solutions, such as the
fundamental solutions and sometimes iterative solutions [3–
5, 10].

Remark 3. In general, we cannot get the exact explicit solu-
tions to the nonlinear equations such as (49), (53), and (79)
by the classical analysismethod. To tackle these equations, the
generalized power series method and special techniques are
necessary sometimes. For getting the exact analytic solutions
in Sections 4.3 and 5, the condition (𝑛 + 1)𝛼 + 2𝛼𝐴 + 𝛽 ̸= 0 is
necessary for 𝑛 = 0, 1, 2, . . ..
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