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The main purpose of this paper is to derive some sufficient conditions for analytic functions to be of non-Bazilevič type.

1. Introduction

LetA denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑗=2

𝑎
𝑗
𝑧𝑗, (1)

which are analytic in the open unit disk:

U := {𝑧 : 𝑧 ∈ C, |𝑧| < 1} . (2)

For 0 ≦ 𝛼 < 1 and 0 < 𝜇 < 1, a function 𝑓 ∈ A is said to
be in the classN(𝜇, 𝛼) if it satisfies the condition

R(𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

) > 𝛼, (𝑧 ∈ U) . (3)

As usual, the class N(𝜇, 𝛼) is said to be non-Bazilevic̆ func-
tions of order 𝛼 (see [1]).

For some recent investigations of non-Bazilevič func-
tions, see, for example the works of [2–6] and the references
cited therein.

For two functions 𝑓 and 𝑔, analytic in U, we say that the
function 𝑓 is subordinate to 𝑔 in U and write

𝑓 (𝑧) ≺ 𝑔 (𝑧) , (𝑧 ∈ U) , (4)

if there exists a Schwarz function 𝜔, which is analytic in U

with

𝜔 (0) = 0, |𝜔 (𝑧)| < 1, (𝑧 ∈ U) , (5)

such that

𝑓 (𝑧) = 𝑔 (𝜔 (𝑧)) , (𝑧 ∈ U) . (6)

Indeed, it is known that
𝑓 (𝑧) ≺ 𝑔 (𝑧) ,

(𝑧 ∈ U) 󳨐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) .
(7)

Furthermore, if the function 𝑔 is univalent inU, then we have
the following equivalence:

𝑓 (𝑧) ≺ 𝑔 (𝑧) ,

(𝑧 ∈ U) 󳨐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) .
(8)

To derive ourmain results, we need the following lemmas.

Lemma 1 (see [7]). Let p(𝑧) = 1 + 𝑏
1
𝑧 + 𝑏
2
𝑧2 + ⋅ ⋅ ⋅ be analytic

in U and let h be analytic and starlike (with respect to the
origin) univalent in U with h(0) = 0. If

𝑧p󸀠 (𝑧) ≺ h (𝑧) , (9)

then

p (𝑧) ≺ 1 + ∫
𝑧

0

h (𝑡)

𝑡
𝑑𝑡. (10)

Lemma 2 (see [8]). Let 𝑞 be univalent in U. Also let 𝜙 be
analytic in the domain D containing 𝑞(U) with 𝜙(𝜔) ̸= 0 when
𝜔 ∈ 𝑞(U). Set

𝑄 (𝑧) = 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) , ℎ (𝑧) = 𝜃 (𝑞 (𝑧)) + 𝑄 (𝑧) .

(11)
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Suppose that

(1) 𝑄(𝑧) is starlike univalent in U;
(2) R(𝑧ℎ󸀠(𝑧)/𝑄(𝑧)) = R((𝜃󸀠(𝑞(𝑧))/𝜙(𝑞(𝑧))) + (𝑧𝑄󸀠(𝑧)/

𝑄(𝑧))) > 0 for 𝑧 ∈ U.

If 𝑝 is analytic in U with 𝑝(0) = 𝑞(0), 𝑝(U) ⊂ D and

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) ≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) ,

(12)

then 𝑝 ≺ 𝑞, and 𝑞 is the best dominant.

Lemma 3 (see [9]). LetΩ be a set in the complex plane C and
suppose that Φ is a mapping from C2 × U to C which satisfies
Φ(𝑖𝑥, 𝑦; 𝑧) ∉ Ω for 𝑧 ∈ U and for all real 𝑥, 𝑦 such that 𝑦 ≦

−(1 + 𝑥2)/2.
If the function 𝑝(𝑧) = 1 + 𝑐

1
𝑧 + 𝑐
2
𝑧2 + ⋅ ⋅ ⋅ is analytic in U

and Φ(𝑝(𝑧), 𝑧𝑝󸀠(𝑧); 𝑧) ∈ Ω for all 𝑧 ∈ U, thenR(𝑝(𝑧)) > 0.

In this paper, we aimat proving some sufficient conditions
for analytic functions to be of non-Bazilevic̆ type.

2. Main Results

Our first main result is given byTheorem 4.

Theorem 4. Suppose that ℎ(𝑧) is starlike in U with ℎ(0) = 0.
If

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
) ≺ ℎ (𝑧) , (0 < 𝜇 < 1) ,

(13)

then

𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

≺ exp(1 + ∫
𝑧

0

ℎ (𝑡)

𝑡
𝑑𝑡) . (14)

Proof. We define the function 𝑝 by

𝑝 (𝑧) := 𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

, (𝑧 ∈ U; 0 < 𝜇 < 1) . (15)

Then 𝑝 is analytic inUwith 𝑝(0) = 1. It follows from (15) that

𝑧(log (𝑝 (𝑧)))󸀠 =
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
) ,

(0 < 𝜇 < 1) .

(16)

Combining (13) and (16), we find that

𝑧(log (𝑝(𝑧)))󸀠 ≺ ℎ (𝑧) . (17)

By Lemma 1, we deduce that

log (𝑝 (𝑧)) ≺ 1 + ∫
𝑧

0

ℎ (𝑡)

𝑡
𝑑𝑡. (18)

From (15) and (18), we readily get the assertion (14) of
Theorem 4.

Theorem 5. If 𝑓 ∈ A satisfies the inequality
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
)]

×(𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ], (0 < 𝜇, ] < 1) ,

(19)

then 𝑓 ∈ N(𝜇, 1/(1 + ])).

Proof. Suppose that the function 𝑝 is defined by (15). It
follows that

𝑧(
1

𝑝 (𝑧)
)
󸀠

= − [
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
)]

× (𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

)

−1

.

(20)

Combining (19) and (20), we know that

𝑧(
1

𝑝 (𝑧)
)
󸀠

≺ ]𝑧. (21)

An application of Lemma 1 to (21) yields

𝑝 (𝑧) ≺
1

1 + ]𝑧
=: 𝑞 (𝑧) . (22)

By noting that

R(1 +
𝑧𝑞󸀠󸀠 (𝑧)

𝑞󸀠 (𝑧)
) = R(

1 − ]𝑧

1 + ]𝑧
) ≧

1 − ]

1 + ]
> 0,

(0 < ] < 1; 𝑧 ∈ U) ,

(23)

which implies that the region 𝑞(U) is symmetric with respect
to the real axis and 𝑞 is convex univalent in U therefore, we
have

R (𝑞 (𝑧)) ≧ 𝑞 (1) ≧ 0, (𝑧 ∈ U) . (24)

Combining (15), (22), and (24), we conclude that

R(𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

) >
1

1 + ]
, (0 < ] < 1; 𝑧 ∈ U) .

(25)

This completes the proof of Theorem 5.

Theorem 6. Suppose that 𝑞 is convex in U with 𝑞(0) = 1. If

R (𝜆𝑞 (𝑧)) > 0, (𝑧 ∈ U; 𝜆 ∈ C) , (26)

[
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
)]𝑓󸀠 (𝑧) (

𝑧

𝑓 (𝑧)
)
1+𝜇

+ 𝜆(𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

)

2

≺ 𝑧𝑞󸀠 (𝑧) + 𝜆𝑞2 (𝑧) ,

(27)
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then

𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

≺ 𝑞 (𝑧) , (28)

and 𝑞 is the best dominant.

Proof. Suppose that the function 𝑝 is defined by (15). It
follows that

𝑧𝑝󸀠 (𝑧) + 𝜆𝑝2 (𝑧) = [
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
+ (1 + 𝜇)(1 −

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
)]

× 𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

+ 𝜆(𝑓󸀠 (𝑧) (
𝑧

𝑓 (𝑧)
)
1+𝜇

)

2

.

(29)

We now assume that

𝜃 (𝜔) = 𝜆𝜔2, 𝜙 (𝜔) = 1. (30)

Obviously, 𝜃(𝜔) and 𝜙(𝜔) are analytic in the 𝜔 plane. By
noting that the function

𝑄 (𝑧) = 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) = 𝑧𝑝󸀠 (𝑧) (31)

is starlike in U and

𝜒 (𝑧) = 𝜃 (𝑝 (𝑧)) + 𝑄 (𝑧) = 𝜆𝑝2 (𝑧) + 𝑧𝑝󸀠 (𝑧) , (32)

it follows from (26) that

R(
𝑧𝜒󸀠 (𝑧)

𝑄 (𝑧)
) = R(2𝜆𝑝 (𝑧) +

𝑧𝑄󸀠 (𝑧)

𝑄 (𝑧)
) > 0. (33)

Combining (27), (29), and Lemma 2, we get the assertion of
Theorem 6.

Remark 7. By taking suitable ℎ(𝑧) and 𝑞(𝑧) inTheorems 4 and
6, respectively, we can get some useful consequences. Here we
choose to omit the details.

Theorem 8. If 𝑓 ∈ A satisfies the condition

𝑓1+𝜇 (𝑧)

𝑧𝜇𝑓󸀠 (𝑧)
(𝑓󸀠 (𝑧) (

𝑧

𝑓 (𝑧)
)
1+𝜇

)

󸀠

>

{{{{
{{{{
{

𝛾

2 (𝛾 − 1)
, (0 ≦ 𝛾 ≦

1

2
) ,

𝛾 − 1

2𝛾
, (

1

2
≦ 𝛾 < 1) ,

(34)

then 𝑓 ∈ N(𝜇, 𝛾).

Proof. Suppose that

𝜓 (𝑧) :=
𝑓󸀠 (𝑧) (𝑧/𝑓 (𝑧))

1+𝜇

− 𝛾

1 − 𝛾
, (0 ≦ 𝛾 < 1; 𝑧 ∈ U) .

(35)

Then 𝜓 is analytic in U. It follows from (35) that

𝑓1+𝜇 (𝑧)

𝑧𝜇𝑓󸀠 (𝑧)
(𝑓󸀠 (𝑧) (

𝑧

𝑓 (𝑧)
)
1+𝜇

)

󸀠

=
(1 − 𝛾) 𝑧𝜓󸀠 (𝑧)

𝛾 + (1 − 𝛾) 𝜓 (𝑧)

= Φ (𝜓 (𝑧) , 𝑧𝜓
󸀠

(𝑧) ; 𝑧) ,

(36)

where

Φ (𝑟, 𝑠; 𝑡) =
(1 − 𝛾) 𝑠

𝛾 + (1 − 𝛾) 𝑟
. (37)

For all real 𝑥 and 𝑦 satisfying 𝑦 ≦ −(1 + 𝑥2)/2, we have

R (Φ (𝑖𝑥, 𝑦; 𝑧)) =
(1 − 𝛾) 𝛾𝑦

𝛾2 + (1 − 𝛾)
2

𝑥2

≦ −
(1 − 𝛾) 𝛾

2
⋅

1 + 𝑥2

𝛾2 + (1 − 𝛾)
2

𝑥2

≦

{{{{{
{{{{{
{

−
(1 − 𝛾) 𝛾

2
⋅

1

(1 − 𝛾)
2
, (0 ≦ 𝛾 ≦

1

2
) ,

−
(1 − 𝛾) 𝛾

2
⋅
1

𝛾2
, (

1

2
≦ 𝛾 < 1) .

(38)

We now put

Ω =

{{{{
{{{{
{

𝜉 : R (𝜉) >

{{{{
{{{{
{

𝛾

2 (𝛾 − 1)
(0 ≦ 𝛾 ≦

1

2
)

𝛾 − 1

2𝛾
(
1

2
≦ 𝛾 < 1)

}}}}
}}}}
}

. (39)

ThenΦ(𝑖𝑥, 𝑦; 𝑧) ∉ Ω for all real𝑥, 𝑦 such that𝑦 ≦ −(1+𝑥2)/2.
Moreover, in view of (34), we know thatΦ(𝜓(𝑧), 𝑧𝜓󸀠(𝑧); 𝑧) ∈
Ω. Thus, by Lemma 3, we deduce that

R (𝜓 (𝑧)) > 0, (𝑧 ∈ U) , (40)

which shows that the desired assertion of Theorem 8 holds.
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Bazilevič functions,” Acta Mathematica Academiae Paedagogi-
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