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We give some sufficient conditions forΨ-uniform stability of the trivial solutions of a nonlinear differential system and of nonlinear
Volterra integro-differential systems with time delay.

1. Introduction

Akinyele [1] introduced the notion ofΨ-stability of the degree
𝑘 with respect to a function Ψ ∈ 𝐶(𝑅

+
-𝑅
+
), increasing and

differentiable on 𝑅 and such that Ψ(𝑡) ≥ 1 for 𝑡 ≥ 0 and
lim
𝑡→∞
Ψ(𝑡) = 𝑏, 𝑏 ∈ [1,∞). Constantin [2] introduced the

notions of degree of stability and degree of boundedness of
solutions of an ordinary differential equation, with respect to
a continuous positive and nondecreasing functionΨ : 𝑅

+
→

𝑅
+
; some criteria for these notions are proved there too.
Morchało [3] introduced the notions of Ψ-stability, Ψ-

uniform stability, and Ψ-asymptotic stability of trivial solu-
tion of the nonlinear system 𝑥 = 𝑓(𝑡, 𝑥). Several new and
sufficient conditions for the mentioned types of stability are
proved for the linear system 𝑥 = 𝐴(𝑡)𝑥; in this paper
Ψ is a scalar continuous function. In [4, 5], Diamandescu
gives some sufficient conditions for Ψ-asymptotic stability
and Ψ-(uniform) stability of the nonlinear Volterra integro-
differential system 𝑥 = 𝐴(𝑡)𝑥 + ∫𝑡

0
𝐹(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠; in these

papers Ψ is a matrix function. Furthermore, in [6], sufficient
conditions are given for the uniform Lipschitz stability of the
system 𝑥 = 𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥).

In paper [7], for the nonlinear system

𝑦


= 𝑓 (𝑡, 𝑦) + 𝑔 (𝑡, 𝑦) (1)

and the nonlinear Volterra integro-differential system

𝑧


= 𝑓 (𝑡, 𝑧) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠, (2)

by using the knowledge of fundamental matrix and nonlinear
variation of constants, we give some sufficient conditions for
Ψ-(uniform) stability of trivial solution for the system. The
purpose of this paper is to provide sufficient conditions forΨ-
uniform stability of trivial solutions for the nonlinear delayed
system

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) (3)

and the nonlinear delayed Volterra integro-differential sys-
tems

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑝 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑞 (𝑠, 𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠,

(4)

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑝 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) ∫

𝑡

0

𝑞 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

(5)

where 𝑓, 𝑔, 𝑝, 𝑞 ∈ 𝐶(R
+
× R𝑛,R𝑛), 𝑓(𝑡, 0) = 𝑔(𝑡, 0) =

𝑝(𝑡, 0) = 𝑞(𝑡, 0) = 0 for 𝑡 ∈ R
+
, and 𝜏 ∈ 𝐶1(R

+
,R
+
) with
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𝜏(𝑡) ≤ 𝑡 on R
+
. The systems studied in [7] do not include

time delay, whereas all the systems studied in this paper have
time delay.

In this paper, we investigate conditions on the functions
𝑓, 𝑔, 𝑝, 𝑞 under which the trivial solutions of systems (3),
(4), and (5) are Ψ-stability on R

+
; the main tool used is the

integral inequalities and the integral technique. Here Ψ is
a matrix function whose introduction allows us to obtain
a mixed behavior for the components of solutions.

Let R𝑛 denote the Euclidean 𝑛-space. For 𝑥 = (𝑥
1
, 𝑥
2
,

𝑥
3
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛, let ‖𝑥‖ = max{|𝑥
1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|} be the

norm of 𝑥. For an 𝑛 × 𝑛matrix 𝐴 = (𝑎
𝑖𝑗
), we define the norm

|𝐴| = sup
‖𝑥‖≤1
‖𝐴𝑥‖. It is well known that

|𝐴| = max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1


𝑎
𝑖𝑗


. (6)

Let Ψ
𝑖
: R
+
→ (0,∞), 𝑖 = 1, 2, . . . , 𝑛, be continuous

functions and Ψ = diag[Ψ
1
, Ψ
2
, . . . , Ψ

𝑛
].

Now we give the definitions of Ψ-(uniform) stability that
we will need in the sequel.

Definition 1 (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to beΨ-stable onR

+
if for every 𝜀 > 0 and any 𝑡

0
∈ R
+
,

there exists 𝛿 = 𝛿(𝜀, 𝑡
0
) > 0 such that any solution 𝑥(𝑡) of (3)

((4) or (5)), which satisfies the inequality ‖Ψ(𝑡
0
)𝑥(𝑡
0
)‖ < 𝛿,

exists and satisfies the inequality ‖Ψ(𝑡)𝑥(𝑡)‖ < 𝜀 for all 𝑡 ≥ 𝑡
0
.

Definition 2 (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to be Ψ-uniformly stable on R

+
if it is Ψ-stable on R

+

and the previous 𝛿 is independent of 𝑡
0
.

2. Ψ-Stability of the Systems

To prove our theorems, we need the following lemmas.

Lemma 3. Let ℎ, 𝑘, 𝑝, 𝑞 ∈ 𝐶(R
+
× R
+
,R
+
) with (𝑡, 𝑠) →

𝜕
𝑡
ℎ(𝑡, 𝑠), 𝜕

𝑡
𝑘(𝑡, 𝑠), 𝜕

𝑡
𝑝(𝑡, 𝑠), 𝜕

𝑡
𝑞(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
).

Assume, in addition, that 𝑏 ∈ 𝐶(R
+
,R
+
) and 𝛼 ∈ 𝐶1(R

+
,R
+
)

are nondecreasing functions and 𝛼(𝑡) ≤ 𝑡 for 𝑡 ≥ 0. If 𝑢 ∈
𝐶(R
+
,R
+
) satisfies

𝑢 (𝑡) ≤ 𝑏 (𝑡) + ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠,

(7)

for 𝑡 ≥ 0, and 𝑏(𝑡) ∫𝑡
0
𝑅(𝑠)𝑄(𝑠)𝑑𝑠 < 1, then

𝑢 (𝑡) ≤
𝑏 (𝑡) 𝑄 (𝑡)

1 − 𝑏 (𝑡) ∫
𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠

, 𝑡 ≥ 0, (8)

where 𝑄(𝑡) = exp(∫𝑡
0
ℎ(𝑡, 𝑠)𝑑𝑠 + ∫

𝛼(𝑡)

0
𝑘(𝑡, 𝑠)𝑑𝑠), 𝑅(𝑡) = (𝑑/𝑑𝑡)

∫
𝑡

0
𝑝(𝑡, 𝑠)(∫

𝛼(𝑠)

0
𝑞(𝑠, V)𝑑V)𝑑𝑠.

Proof. Let 𝑇 ≥ 0 be fixed and denote

𝑥 (𝑡) =∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠)(∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠, 𝑡 ≥ 0,

(9)

then 𝑢(𝑡) ≤ 𝑏(𝑡) + 𝑥(𝑡), and 𝑥 is nondecreasing on R
+
. For

𝑡 ∈ [0, 𝑇], by calculations we get the following:

𝑥


(𝑡) = [ℎ (𝑡, 𝑡) 𝑢 (𝑡) + ∫

𝑡

0

𝜕
𝑡
ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠]

+ [𝑘 (𝑡, 𝛼 (𝑡)) 𝑢 (𝛼 (𝑡)) 𝛼


(𝑡)+∫

𝛼(𝑡)

0

𝜕
𝑡
𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠]

+ [𝑝 (𝑡, 𝑡) 𝑢 (𝑡) ∫

𝛼(𝑡)

0

𝑞 (𝑡, V) 𝑢 (V) 𝑑V

+∫

𝑡

0

𝜕
𝑡
𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠]

≤[𝑏 (𝑇)+𝑥 (𝑡)][
𝑑

𝑑𝑡
(∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠+∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠)]

+ [𝑏 (𝑇) + 𝑥 (𝑡)]
2 𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠.

(10)

Suppose that 𝑏(0) > 0 (if 𝑏(0) = 0, carry out the following
arguments with 𝑏(𝑡) + 𝜀 instead of 𝑏(𝑡), where 𝜀 > 0 is an
arbitrary small constant, and subsequently pass to the limit
as 𝜀 → 0 to complete the proof), then we get

𝑥


(𝑡)

[𝑏 (𝑇) + 𝑥 (𝑡)]
2

−
1

𝑏 (𝑇) + 𝑥 (𝑡)

𝑑

𝑑𝑡
(∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠)

≤
𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠.

(11)

Let

𝑧 (𝑡) =
1

𝑏 (𝑇) + 𝑥 (𝑡)
,

𝑞 (𝑡) = ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠,

𝑄 (𝑡) = exp (𝑞 (𝑡))

= exp(∫
𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠) ,

𝑅 (𝑡) =
𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠,

(12)
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then, we have

𝑧


(𝑡) + 𝑧 (𝑡) (
𝑑

𝑑𝑡
𝑞 (𝑡)) ≥ −𝑅 (𝑡) . (13)

Multiplying the above inequality by 𝑒𝑞(𝑡) = 𝑄(𝑡), we get

𝑑

𝑑𝑡
(𝑧 (𝑡) 𝑄 (𝑡)) ≥ −𝑄 (𝑡) 𝑅 (𝑡) . (14)

Consider now the integral on the interval [0, 𝑡] to obtain

𝑧 (𝑡) 𝑄 (𝑡) ≥ 𝑧 (0) − ∫

𝑡

0

𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇, (15)

so

𝑧 (𝑡) =
1

𝑏 (𝑇) + 𝑥 (𝑡)

≥ [
1

𝑏 (𝑇)
− ∫

𝑡

0

𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠]
1

𝑄 (𝑡)

=

1 − 𝑏 (𝑇) ∫
𝑡

0
𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠

𝑏 (𝑇)𝑄 (𝑡)

(16)

for 0 ≤ 𝑡 ≤ 𝑇. Let 𝑡 = 𝑇, since 𝑏(𝑇) ∫𝑇
0
𝑄(𝑠)𝑅(𝑠)𝑑𝑠 < 1, then

we have

𝑏 (𝑇) + 𝑥 (𝑇) ≤
𝑏 (𝑇)𝑄 (𝑇)

1 − 𝑏 (𝑇) ∫
𝑇

0
𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠

. (17)

Since 𝑇 ≥ 0 was arbitrarily chosen, considering 𝑢(𝑡) ≤ 𝑏(𝑡) +
𝑥(𝑡), we get (8).

Lemma 4. Let ℎ, 𝑘, 𝑝, 𝑞, 𝑏, 𝛼 be as in Lemma 3. If 𝑢 ∈

𝐶(R
+
,R
+
) satisfies

𝑢 (𝑡) ≤ 𝑏 (𝑡) + ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) ds + ∫
𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝛼(𝑡)

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝑠

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠,

(18)

for 𝑡 ≥ 0, and 𝑏(𝑡) ∫𝑡
0
𝑅(𝑠)𝑄(𝑠)𝑑𝑠 < 1, then

𝑢 (𝑡) ≤
𝑏 (𝑡) 𝑄 (𝑡)

1 − 𝑏 (𝑡) ∫
𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠

, 𝑡 ≥ 0, (19)

where 𝑄(𝑡) = exp(∫𝑡
0
ℎ(𝑡, 𝑠)𝑑𝑠 + ∫

𝛼(𝑡)

0
𝑘(𝑡, 𝑠)𝑑𝑠), 𝑅(𝑡) =

(𝑑/𝑑𝑡) ∫
𝛼(𝑡)

0
𝑝(𝑡, 𝑠)(∫

𝑠

0
𝑞(𝑠, V)𝑑V)𝑑𝑠.

The proof is similar to the proof of Lemma 3, we omit the
details.

Theorem 5. If there exist functions 𝑎(𝑡, 𝑠), 𝑏(𝑡, 𝑠) ∈ 𝐶(R
+
×

R
+
,R
+
) with (𝑡, 𝑠) → 𝜕

𝑡
𝑎(𝑡, 𝑠), 𝜕

𝑡
𝑏(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
)

such that
Ψ (𝑡) 𝑓 (𝑠, 𝑥)

 ≤ 𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

Ψ (t) 𝑔 (𝑠, 𝑥)
 ≤ 𝑏 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

(20)

for 0 ≤ 𝑠 ≤ 𝑡 and for all 𝑥 ∈ R𝑛. Moreover,

lim sup
t→∞

∫

𝑡

0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠 = 𝐿
1
,


Ψ (𝑡) Ψ

−1

(𝑠)

≤ 𝐿
2

for 0 ≤ 𝑠 ≤ 𝑡,
(21)

and |Ψ(𝑡)𝑥(𝛼(𝑡))| ≤ |Ψ(𝛼(𝑡))𝑥(𝛼(𝑡))|, where 𝐿
1
, 𝐿
2
are

nonnegative constants. If 𝛼(𝑡) = 𝑡 − 𝜏(𝑡) is an increasing
diffeomorphism of R

+
. Then, the trivial solution of system (3)

is Ψ-uniformly stable on R
+
.

Proof. Suppose that 𝑥(𝑡, 𝑡
0
, 𝑥
0
) := 𝑥(𝑡) is the unique solution

of system (3) which satisfies 𝑥(𝑡
0
) = 𝑥
0
, since

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝑔 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

= 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑔 (𝛼
−1

(𝑟) , 𝑥 (𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟,

(22)

after performing the change of variables 𝑟 = 𝛼(𝑠) in the
second integral, and 𝛼−1 is the inverse of the diffeomorphism
𝛼 then, it follows that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤

Ψ (𝑡) Ψ

−1

(𝑡
0
) Ψ (𝑡
0
) 𝑥
0



+ ∫

𝑡

𝑡0

Ψ (𝑡) 𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)



Ψ (𝑡)

𝑔 (𝛼
−1

(𝑟) , 𝑥 (𝑟))

𝛼 (𝛼−1 (𝑟))



𝑑𝑠

≤ 𝐿
2

Ψ (𝑡0) 𝑥0
 + ∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1

(𝑟))

𝛼 (𝛼−1 (𝑟))
‖Ψ (𝑟) 𝑥 (𝑟)‖ 𝑑𝑟,

(23)

this implies by Lemma 3 that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤ 𝐿
2

Ψ (𝑡0) 𝑥0
 exp

× (∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1

(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)

= 𝐿
2

Ψ (𝑡0) 𝑥0
 exp(∫

𝑡

𝑡0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠)

≤ 𝐿
2
𝑒
𝐿1
Ψ (𝑡0) 𝑥0

 ,

(24)

so for every 𝜀 > 0, choose 𝛿 = 𝜀/(𝐿
2
𝑒
𝐿1), then

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤ 𝐿
2
𝑒
𝐿1
Ψ (𝑡0) 𝑥0

 < 𝜀
(25)

for ‖Ψ(𝑡
0
)𝑥
0
‖ < 𝛿 and for all 0 ≤ 𝑡

0
≤ 𝑡 < ∞. Hence, the

conclusion of the theorem follows.



4 Abstract and Applied Analysis

Theorem 6. Let all the conditions inTheorem 5 hold. Suppose
further that there exist functions 𝑚(𝑡, 𝑠), 𝑛(𝑡, 𝑠) ∈ 𝐶(R

+
×

R
+
,R
+
) with (𝑡, 𝑠) → 𝜕

𝑡
𝑚(𝑡, 𝑠), 𝜕

𝑡
𝑛(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
)

such that


Ψ (𝑡) 𝑝 (𝑠, 𝑥)Ψ

−1

(𝑠)

≤ 𝑚 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

Ψ (𝑡) 𝑞 (𝑠, 𝑥)
 ≤ 𝑛 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

(26)

for 0 ≤ 𝑠 ≤ 𝑡 and for all 𝑥 ∈ R𝑛, moreover,

lim sup
𝑡→∞

∫

𝑡

0

𝑚(𝑡, 𝑠) (∫

𝑠

0

𝑛 (𝑠, 𝑢) 𝑑𝑢)𝑑𝑠 = 𝐿
3
, (27)

where 𝐿
3
is a nonnegative constant. Then, the trivial solutions

of systems (4) and (5) are Ψ-uniformly stable on R
+
.

Proof. For that system (4), suppose 𝑥(𝑡, 𝑡
0
, 𝑥
0
) := 𝑥(𝑡) is the

unique solution of system (4) which satisfies 𝑥(𝑡
0
) = 𝑥
0
, since

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝑔 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑝 (𝑠, 𝑥 (𝑠)) ∫

𝑠

0

𝑞 (𝑢, 𝑥 (𝛼 (𝑢))) 𝑑𝑢 𝑑𝑠, 0 ≤ 𝑡
0
≤ 𝑡,

(28)

it follows that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤

Ψ (𝑡) Ψ

−1

(𝑡
0
) Ψ (𝑡
0
) 𝑥
0



+ ∫

𝑡

𝑡0

Ψ (𝑡) 𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)


Ψ (𝑡) 𝑔 (𝛼

−1

(𝑟) , 𝑥 (𝑟))


𝛼 (𝛼−1 (𝑟))
𝑑𝑟

+ ∫

𝑡

𝑡0


Ψ (𝑡) 𝑝 (𝑠, 𝑥 (𝑠)) Ψ

−1

(𝑠)


× (∫

𝛼(𝑠)

0


Ψ (𝑠) 𝑞 (𝛼

−1

(𝑟) , 𝑥 (𝑟))


𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠

≤ 𝐿
2

Ψ (𝑡0) 𝑥0
 + ∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1

(𝑟))

𝛼 (𝛼−1 (𝑟))
‖Ψ (𝑟) 𝑥 (𝑟)‖ 𝑑𝑟

+ ∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖

× (∫

𝛼(𝑠)

0

𝑛 (𝑠, 𝛼
−1

(𝑟)) ‖Ψ (𝑟) 𝑥 (𝑟)‖

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠

(29)

after performing the change of variables 𝑟 = 𝛼(𝑠) (or 𝑟 =
𝛼(𝑢)) at some intermediate step, and 𝛼−1 is the inverse of the
diffeomorphism 𝛼. Denote

𝑄 (𝑡) = exp(∫
𝑡

𝑡0

𝑎 (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1

(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)

= exp(∫
𝑡

𝑡0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠) ,

𝑅 (𝑡) =
𝑑

𝑑𝑡
[∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑛 (𝑠, 𝛼
−1

(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠]

=
𝑑

𝑑𝑡
[∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫

𝑠

0

𝑛 (𝑠, 𝑢) 𝑑𝑢)𝑑𝑠] .

(30)

This implies by Lemma 3 that

‖Ψ (𝑡) 𝑥 (𝑡)‖

≤ 𝐿
2

Ψ (𝑡0) 𝑥0


𝑄 (𝑡)

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 ∫
𝑡

0
𝑄 (V) 𝑅 (V) 𝑑V

≤
Ψ (𝑡0) 𝑥0



𝐿
2
𝑒
𝐿1

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1 ∫
𝑡

0
𝑅 (V) 𝑑V

=
Ψ (𝑡0) 𝑥0



×
𝐿
2
𝑒
𝐿1

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1 ∫
𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫
𝑠

0
𝑛 (𝑠, 𝑢) 𝑑𝑢) 𝑑𝑠

≤
Ψ (𝑡0) 𝑥0



𝐿
2
𝑒
𝐿1

1 − 𝐿
2
𝐿
3

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1

(31)

for 𝐿
2
𝐿
3

Ψ(𝑡0)𝑥0
 𝑒
𝐿1 < 1 and 0 ≤ 𝑡

0
≤ 𝑡. So, for every 𝜀 > 0

and 𝑡
0
≥ 0, let 0 < 𝑞 < 1/𝐿

2
𝐿
3
𝑒
𝐿1 be a constant and choose

𝛿 = min{𝑞, ((1 − 𝑞𝐿
2
𝐿
3
𝑒
𝐿1)𝜀)/𝐿

2
𝑒
𝐿1}, then

‖Ψ (𝑡) 𝑥 (𝑡)‖ <

(1 − 𝑞𝐿
2
𝐿
3
𝑒
𝐿1) 𝜀

𝐿
2
𝑒𝐿1

×
𝐿
2
𝑒
𝐿1

1 − 𝑞𝐿
2
𝐿
3
𝑒𝐿1
= 𝜀 (32)

for Ψ(𝑡0)𝑥0
 < 𝛿 and for all 0 ≤ 𝑡0 ≤ 𝑡 < ∞. This proves that

the trivial solution of system (4) isΨ-uniformly stable onR
+
.

Using Lemma 4, the proof of system (5) is similar to that
of system (4) and the details are left to the readers.

Remark 7. For Ψ
𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛, we obtain the theorems

of classical stability and uniform stability.

3. Examples

Example 8. Consider the nonlinear differential system

𝑥


1
(𝑡) = 𝑥

1
(𝑡) + 𝑥

1
(
𝑡

2
) sin 𝑡,

𝑥


2
(𝑡) = −𝑥

2
(𝑡) + 𝑥

2
(
𝑡

2
) cos 𝑡.

(33)
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In (33), 𝑓(𝑡, 𝑥(𝑡)) = (𝑥
1
(𝑡), −𝑥

2
(𝑡))
𝑇, 𝑔(𝑡, 𝑥(𝑡/2)) = (𝑥

1
(𝑡/2)

sin 𝑡, 𝑥
2
(𝑡/2) cos 𝑡)𝑇. Let Ψ(𝑡) = ( 𝑒−𝑡 0

0 𝑒
−𝑡 ), then 𝑎(𝑡, 𝑠) =

𝑏(𝑡, 𝑠) = 𝑒
−(𝑡−𝑠) for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞, it is easy to verify

that 𝐿
1
= 2, 𝐿

2
= 1, and all the assumptions in Theorem 5

satisfied, so the trivial solution of system (33) is 𝜓-uniformly
stable on R

+
.

Example 9. Consider the nonlinear Volterra integro-differ-
ential system as follows:

𝑥


1
(𝑡) = 𝑥

1
(𝑡) + 𝑥

1
(𝑡) 𝑒
−𝑡

∫

𝑡

0

𝑥
1
(
𝑠

2
) cos 𝑠 𝑑𝑠,

𝑥


2
(𝑡) = −𝑥

2
(𝑡) + 𝑥

2
(𝑡) 𝑒
−𝑡

∫

𝑡

0

𝑥
2
(
𝑠

2
) sin 𝑠 𝑑𝑠.

(34)

In (34), 𝑓(𝑡, 𝑥(𝑡)) = (𝑥
1
(𝑡), −𝑥

2
(𝑡))
𝑇, 𝑔 ≡ 0, 𝑝(𝑡, 𝑥(𝑡)) =

(𝑥
1
(𝑡)𝑒
−𝑡
, 𝑥
2
(𝑡)𝑒
−𝑡
)
𝑇, 𝑞(𝑠, 𝑥(𝑠/2)) = (𝑥

1
(𝑠/2) cos 𝑠, 𝑥

2
(𝑠/2)

sin 𝑠)𝑇. Choose the same matrix function Ψ(𝑡), then 𝑎(𝑡, 𝑠) =
𝑛(𝑡, 𝑠) = 𝑒

−(𝑡−𝑠), 𝑏(𝑡, 𝑠) ≡ 0, 𝑚(𝑡, 𝑠) = 𝑒−2(𝑡−𝑠) for 0 ≤ 𝑠 ≤ 𝑡 ≤
∞, it is easy to verify that 𝐿

1
= 𝐿
2
= 1, 𝐿

3
= 1/2, and all the

assumptions inTheorem 6 are satisfied, so the trivial solution
of system (34) is 𝜓-uniformly stable on R

+
.
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