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Two criteria are constructed to guarantee the existence of periodic solutions for a second-order n-dimensional differential system
by using continuation theorem. It is noticed that the criteria established are found to be associated with the system’s damping
coefficient, natural frequency, parametrical excitation, and the coefficient of the nonlinear term. Based on the criteria obtained, we
investigate the periodicmotions of the simply supported at the four-edge rectangular thin plate system subjected to the parametrical
excitation. The effectiveness of the criteria is validated by corresponding numerical simulation. It is found that the existent range
of periodic solutions for the thin plate system increases along with the increase of the ratio of the modulus of nonlinear term’s
coefficient and parametric excitation term, which generalize and improve the corresponding achievements given in the known
literature.

1. Introduction

In recent years, thin plates have been widely applied to the
fields of automobile, marine, space station, shutter and mod-
ern aircraft, and so forth. Therefore, the nonlinear dynamic
behavior of the thin plate received very considerable attention
within many articles available in the technical and scientific
literature. See [1–6], for example, and the references therein.

In the aforementioned works, based on the Schauder sec-
ond fixed point theorem, Dizaji et al. [2] predicted the exis-
tence of periodic solutions of the following governing equa-
tions of motion:

̈

𝐴 + 𝑃 (𝑡) 𝐴 + 𝑄 (𝑡) 𝐴

3
= 𝐹 (𝑡) ,

(1)

which could be derived from the nonlinear simply supported
rectangular thin plate system under the influence of a rela-
tively moving mass.

Zhang [5] and Zhang et al. [6] studied the periodic and
chaotic motions of the parametrically excited rectangular
thin plates on the basis of multiple scales method and con-
tinuation theorem, respectively.

As far aswe know, therewere few researcherswho focused
on the existence of periodic solutions of the thin plate system

subjected to the parametrical excitation with rigorous theo-
retical proof. In contrast, the existence of periodic solutions
is often shown only by numerical simulation. However, it
is the rigorously proved theorem that can throw more light
than thousands of beautiful pictures on the basic nature of
periodicity.

Recently, there are lots of mathematical researchers
devoted to the investigation of the periodic solutions for 𝑝-
Laplacian-like systems, for example, [7–12], which can be
reduced to the general second-order systems of ordinary
differential equations while 𝑝 ≡ 2. Nevertheless, the results
obtained cannot be applied to the general nonlinear equa-
tions, for example, see [13–16]. The challenge lies in the
growth degree with respect to the nonlinear termwhich often
needs to be less than or equal to 𝑝 − 1 for 𝑝-Laplacian-
like systems. For instance, the one-sided growth condition
imposed on the nonlinear terms in [7, 8, 10, 17] was given as
follows:

lim
|𝑢|→∞

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

|𝑢|

𝑛
⩽ 𝑟 ∈ [0, +∞[ ,

uniformly for 𝑡 ∈ [0, 𝑇] , 𝑛 ⩽ 𝑝 − 1.

(2)



2 Abstract and Applied Analysis

In this paper, two criteria are established to guarantee the
existence of periodic solutions for a second-order 𝑛-dimen-
sional differential system. It is noticed that the existence of
nontrivial periodic solutions is found to be influenced by the
system’s damping coefficient, natural frequency, parametric
excitation, and the coefficient of the nonlinear term. More-
over, the parametrical excitation in this paper is not limited
to be periodic.

As an application of the criteria obtained, the existence
of periodic solutions for the simply supported at the four-
edged rectangular thin plate system subjected to parametrical
excitation is investigated in Section 4 of this paper. Further-
more, corresponding numerical simulations are carried out
to validate the feasibility of the criteria achieved. From the
several numerical results, it is noticed that the existent range
of periodic solutions for the thin plate system becomes larger
with the increase of the ratio of the modulus of nonlinear
term’s coefficient and parametric excitation term. By means
of analytical arguments and numerical simulation runs, it is
easy to find that the proposals given in this study are seldom
obtained in the known literature, for example, [2, 5, 6].

2. Preliminaries and Notations

Consider a second-order 𝑛-dimensional system

𝑥̈ + 𝜇

0
𝑥̇ + [𝜔

2

0
+ 𝛼 (𝑡)] 𝑥 + 𝛽(𝑥

3

1
, 𝑥

3

2
, . . . , 𝑥

3

𝑛
)

𝑇

= 𝑒 (𝑡) ,
(3)

where 𝑥 ∈ R𝑛, 𝜇
0
∈ R, 𝜔

0
∈ R𝑛, and 𝛽 is an 𝑛 × 𝑛 symmetric

matrix of constants. 𝛼, 𝑒 ∈ 𝐶(R,R𝑛) with 𝛼(𝑡 + 𝑇) ≡ 𝛼(𝑡),
𝑒(𝑡 + 𝑇) ≡ 𝑒(𝑡), and ∫𝑇

0
𝑒(𝑠) 𝑑𝑠 = 0; 𝑇 is a positive constant.

Next, we recall an important lemma which will help us to
start the corresponding research.

Lemma 1 (see [18]). Suppose that 𝑋 and 𝑌 are two Banach
spaces, and let 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑌 be a Fredholm operator
with index zero. Furthermore, Ω ⊂ 𝑋 is an open bounded set
and𝑁 : Ω → 𝑌 is L-compact in Ω. If

(1) 𝐿𝑥 ̸= 𝜖𝑁𝑥, ∀(𝑥, 𝜖) ∈ (𝐷(𝐿) ∩ 𝜕Ω)×]0, 1],

(2) 𝑁𝑥 ∉ Im 𝐿, ∀𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω,

(3) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0, where 𝐽 : Im 𝑄 →

Ker 𝐿 is an isomorphism.

Then, the equation 𝐿𝑥 = 𝑁𝑥 has a solution in 𝐷(𝐿) ∩ Ω.

In what follows, for convenience and without loss of
generality, some notations are introduced throughout the
paper: | ⋅ | denotes absolute value and the Euclidean norm on
R𝑛, for ∀𝑎 = (𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
)

𝑇 and |𝑎| = (∑

𝑛

𝑖=1
|𝑎

𝑖
|

2
)

1/2. Also,
we set 𝐼 = [0, 𝑇], 𝐶0 = 𝐶

0
(𝐼,R𝑛), 𝐶1 = 𝐶

1
(𝐼,R𝑛) and 𝐶

𝑇
=

{𝑢 ∈ 𝐶

0
| 𝑢(0) = 𝑢(𝑇)} with the norm |𝑢|max = max

𝑡∈𝐼
|𝑢(𝑡)|

and 𝐶

1

𝑇
= {V ∈ 𝐶

1
| V(0) = V(𝑇), V̇(0) = V̇(𝑇)} with the

norm ‖V‖ = max{|V|max, |V̇|max}. Obviously,𝐶𝑇 and𝐶
1

𝑇
are two

Banach spaces. Meanwhile, denote

𝐿 : 𝐷 (𝐿) ⊂ 𝐶

𝑇
󳨀→ 𝐶

𝑇
, 𝐿𝑥 = 𝑥̈, (4)

𝑁 : 𝐶

𝑇
󳨀→ 𝐶

𝑇
, [𝑁𝑥](𝑡) = −𝜇

0
𝑥̇ − [𝜔

2

0
+ 𝛼 (𝑡)] 𝑥

− 𝛽(𝑥
3

1
, 𝑥

3

2
, . . . , 𝑥

3

𝑛
)

𝑇

+ 𝑒 (𝑡) ,

(5)

where𝐷(𝐿) = {𝑥 | 𝑥 ∈ 𝐶

1

𝑇
, 𝑥̈ ∈ 𝐶(R,R𝑛)}.

It is easily shown that system (3) can be converted into
the equivalent abstract equation 𝐿𝑥 = 𝑁𝑥. Moreover, from
the definition of 𝐿, we see that Ker 𝐿 = R𝑛, Im 𝐿 = {𝑦 | 𝑦 ∈

𝐶

𝑇
, ∫

𝑇

0
𝑦(𝑠)𝑑𝑠 = 0}. Therefore, 𝐿 is a Fredholm operator with

index zero.
Let the projections

𝑃 : 𝐶

1

𝑇
󳨀→ Ker 𝐿, [𝑃𝑥] (𝑡) = 𝑥 (0) = 𝑥 (𝑇) ,

𝑄 : 𝐶

𝑇
󳨀→

𝐶

𝑇

Im 𝐿

, [𝑄𝑦] (𝑡) =

1

𝑇

∫

𝑇

0

𝑦 (𝑠) 𝑑𝑠,

(6)

then, Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿.
Let 𝐿−1 represent the inverse of 𝐿|

𝐷(𝐿)∩Ker𝑃, 𝐿
−1
: Im 𝐿 →

𝐷(𝐿) ∩ Ker𝑃; then

[𝐿

−1
𝑦] (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,
(7)

where

𝐺 (𝑡, 𝑠) =

{

{

{

{

{

{

{

𝑠 (𝑡 − 𝑇)

𝑇

, 0 ⩽ 𝑠 < 𝑡 ⩽ 𝑇,

𝑡 (𝑠 − 𝑇)

𝑇

, 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 𝑇.

(8)

From (5) and (7), it is easily verified that𝑁 is 𝐿-compact
onΩ, whereΩ is an arbitrary open bounded subset of 𝐶1

𝑇
.

3. Main Results

3.1. Theoretical Proof

Theorem 2. For all 𝑖 ∈ {1, 2, . . . , 𝑛}, assume that the following
conditions are satisfied:

[𝐶

1
] 0 ⩽ |𝛼

𝑖
|max|𝜆𝑖|

1/3
𝑇/𝜇

0
Δ < 2, where 𝜆

𝑖
are the

eigenvalues of 𝛽 and Δ = |𝜆

𝑖
|

1/3
− (𝜔

2

0𝑖
+ |𝛼

𝑖
|max)
1/3.

[𝐶

2
] (i) If 𝜆

𝑖
̸= 0, there is a constant 𝛾 > 0 such that

𝜆

𝑖
> −

𝜔

2

0𝑖
+ 𝛼i,min

𝛾

2
, 𝜆

𝑖
> 0,

𝜆

𝑖
< −

𝜔

2

0𝑖
+ 𝛼

𝑖,max

𝛾

2
, 𝜆

𝑖
< 0,

(9)

where 𝛼
𝑖,min = min

𝑡∈𝐼
𝛼

𝑖
(𝑡) and 𝛼

𝑖,max = max
𝑡∈𝐼

𝛼

𝑖
(𝑡).
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(ii) If 𝜆
𝑖
≡ 0, and 𝜔2

0𝑖
̸= − (1/𝑇) ∫

𝑇

0
𝛼

𝑖
𝑑𝑡,

then, system (3) has at least one nontrivial 𝑇-periodic solution
if there exist constants 𝑑

𝑖
, such that

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨max <
𝜔

2

0𝑖
+ 𝛼

𝑖,min

𝑑

2

𝑖

.
(10)

Proof. Let us embed system (3) into one parameter family of
the systems as follows:

𝑥̈ + 𝜖𝜇

0
𝑥̇ + 𝜖 [𝜔

2

0
+ 𝛼 (𝑡)] 𝑥 + 𝜖𝛽(𝑥

3

1
, 𝑥

3

2
, . . . , 𝑥

3

𝑛
)

𝑇

= 𝜖𝑒 (𝑡) , 𝜖 ∈ ]0, 1] .

(11)

Since 𝛽 is the symmetrical matrix, there is an orthogonal
matrix 𝑈, such that

𝑈𝛽𝑈
𝑇
= diag {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛
} . (12)

Integrating both sides of (11) from 0 to 𝑇 gives

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖
𝑥

3

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 ⩽ ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)]

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 + 𝑇|𝑒|max,

∀𝑖 ∈ {1, 2, . . . , 𝑛} .

(13)

Applying integral mean value theorem, there exists a con-
stant 𝜉 ∈]0, 𝑇[, such that

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖
(𝜉)

󵄨

󵄨

󵄨

󵄨

3
⩽

1

𝑇

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)]

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 + 𝑇|𝑒|max. (14)

Now, we claim that

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖
(𝜉)

󵄨

󵄨

󵄨

󵄨

⩽ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max + 𝐶, (15)

where 𝐶 = (𝜔

2

0𝑖
+ |𝛼

𝑖
|max)
1/3

+ 𝑇|𝑒|max + |𝜆𝑖|
1/3.

Case 1. If |𝑥
𝑖
(𝜉)| ⩽ 1, then, (15) holds clearly.

Case 2. If |𝑥
𝑖
(𝜉)| > 1, define

𝐸

1
= {𝑡 : 𝑡 ∈ 𝐼,

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

> 1} , 𝐸

2
= {𝑡 : 𝑡 ∈ 𝐼,

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

⩽ 1} .

(16)

By (14) and simple calculation, we obtain

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖
(𝜉)

󵄨

󵄨

󵄨

󵄨

⩽

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1

𝑇

∫

𝐸
1

𝑥

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)] 𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1/3

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1

𝑇

∫

𝐸
2

𝑥

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)] 𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1/3

⩽ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max

+ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3

.

(17)

Thus, it can be easily seen that (15) holds.

According to (15), we have

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

⩽ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max

+

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
∫

𝑡

𝑡
∗

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖
(𝑠)

󵄨

󵄨

󵄨

󵄨

𝑑𝑠 + 𝐶,

𝑡 ∈ [𝑡

∗
, 𝑡

∗
+ 𝑇] ,

(18)

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖
(𝑡 − 𝑇)

󵄨

󵄨

󵄨

󵄨

⩽ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max

+

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
∫

𝑡
∗

𝑡−𝑇

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖
(𝑠)

󵄨

󵄨

󵄨

󵄨

𝑑𝑠 + 𝐶,

𝑡 ∈ [𝑡

∗
, 𝑡

∗
+ 𝑇] .

(19)

Combining inequalities (18) and (19) yields

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3󵄨
󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max ⩽ (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
1/3
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max

+

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3

2

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 + 𝐶.

(20)

Therefore, it follows from condition [𝐶

1
] that Δ > 0.

Then, we obtain

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max ⩽

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3

2Δ

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 +

𝐶

Δ

.

(21)

As𝑥(𝑡) ∈ 𝐶1
𝑇
, multiplying both sides of the 𝑖th component

of (11) by 𝑥̇
𝑖
(𝑡) and integrating on the interval 𝐼 lead to

𝜇

0
∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 + ∫

𝑇

0

𝛼

𝑖
𝑥

𝑖
𝑥̇

𝑖
𝑑𝑡 = ∫

𝑇

0

𝑒

𝑖
𝑥̇

𝑖
𝑑𝑡.

(22)

Using Hölder’s inequality and (22), we have

𝜇

0
∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 ⩽ (

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max +
󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max) 𝑇
1/2

× (∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡)

1/2

.

(23)

It is noticed that 𝛼
𝑖
(𝑡) and 𝑒

𝑖
(𝑡) are bounded on the inter-

val 𝐼. From (21), we obtain

𝜇

0
∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 ⩽

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max
󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
𝑇

2Δ

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡

+ (

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max𝐶

Δ

+

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max)𝑇

1/2

× (∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡)

1/2

.

(24)

According to the condition [𝐶
1
], it is easily seen that there

exists a constant𝑀 > 0, such that

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 ⩽ 𝑀.

(25)
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Combining (21) and (25), we obtain

|𝑥|max ⩽

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
√

𝑛𝑀𝑇

2Δ

+

√𝑛𝐶

Δ

≜ 𝑀

1
.

(26)

For𝑥(0) = 𝑥(𝑇), there exists a 𝑡
0
∈]0, 𝑇[, such that 𝑥̇(𝑡

0
) =

0. Then, it follows from (11) that

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡

𝑡
0

𝑥̈

𝑖
(𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

⩽ 𝜇

0
∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 + (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)
󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇

+

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

3

max𝑇 +

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇.

(27)

Therefore, we have

|𝑥̇|max ⩽ 𝜇

0
√

𝑛𝑀𝑇 + (𝜔

2

0𝑖
+ |𝛼|max)√𝑛

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇

+
√
𝑛

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

3

max𝑇 +
√
𝑛

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇

⩽ 𝜇

0
√

𝑛𝑀𝑇

+

(𝜔

2

0𝑖
+ |𝛼|max)√𝑛𝑇

2Δ

(

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
√

𝑀𝑇 + 2𝐶)

+

√𝑛𝑇

8Δ

3
[

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑀𝑇)

3/2
+ 6

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

2/3
𝐶𝑀𝑇

+ 12

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
𝐶

2
(𝑀𝑇)

1/2
+ 8𝐶

3
]

+
√
𝑛

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇

≜ 𝑀

2
.

(28)

Let Ω := {𝑥 : |𝑥|max < 𝑀

1
+ 1, |𝑥̇|max < 𝑀

2
+ 1}. For

∀𝜖 ∈]0, 1], there is not any solutions of (11) on 𝜕Ω with for
all 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω. Based on the condition [𝐶

2
], there exist

the appropriate constants 𝑀
1
and 𝛾, such that the following

relationship holds

∫

𝑇

0

[𝑁𝑥] (𝑡) 𝑑𝑡

= −(∫

𝑇

0

𝑥

1
[𝜔

2

01
+ 𝛼

1
(𝑡) + 𝜆

1
𝑥

2

1
] 𝑑𝑡, . . . ,

∫

𝑇

0

𝑥

𝑛
[𝜔

2

0𝑛
+ 𝛼

𝑛 (
𝑡) + 𝜆𝑛

𝑥

2

𝑛
] 𝑑𝑡)

𝑇

̸= (0, 0, . . . , 0)

𝑇
, for 󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝛾, 𝑖 = {1, 2, . . . , 𝑛} .

(29)

Thus, the first two conditions of Lemma 1 are satisfied.
Next, we claim that the third condition of Lemma 1 is

also satisfied. To verify this, we define the isomorphism

𝐽 : Im𝑄 → Ker 𝐿, 𝐽(𝑥) = 𝑥. For all𝜇∗ ∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑛,
we denote

𝐻(𝑥, 𝜇

∗
) = 𝜇

∗
𝑥 +

1 − 𝜇

∗

𝑇

× (sgn (𝜆
1
) ∫

𝑇

0

𝑥

1
[𝜔

2

01
+ 𝛼

1
(𝑡) + 𝜆

1
𝑥

2

1
] 𝑑𝑡, . . . ,

sgn (𝜆
𝑛
) ∫

𝑇

0

𝑥

𝑛
[𝜔

2

0𝑛
+ 𝛼

𝑛 (
𝑡) + 𝜆𝑛

𝑥

2

𝑛
] 𝑑𝑡)

𝑇

,

𝜆

𝑖
̸= 0,

𝐻 (𝑥, 𝜇

∗
) = 𝜇

∗
𝑥 +

1 − 𝜇

∗

𝑇

× (sgn(∫
𝑇

0

[𝜔

2

01
+ 𝛼

1
(𝑡)] 𝑑𝑡)

× ∫

𝑇

0

𝑥

1
[𝜔

2

01
+ 𝛼

1
(𝑡)] 𝑑𝑡, . . . ,

sgn(∫
𝑇

0

[𝜔

2

0𝑛
+ 𝛼

𝑛 (
𝑡)] 𝑑𝑡)

∫

𝑇

0

𝑥

𝑛
[𝜔

2

0𝑛
+ 𝛼

𝑛
(𝑡)] 𝑑𝑡)

𝑇

,

𝜆

𝑖
≡ 0.

(30)

By using the condition [𝐶
2
] again, the following relation-

ships hold, when: 𝑥 ∈ 𝜕Ω ∩R𝑛,

𝑥

𝑖
𝐻(𝑥

𝑖
, 𝜇

∗
) = 𝜇

∗
𝑥

2

𝑖
+

1 − 𝜇

∗

𝑇

sgn (𝜆
𝑖
)

× ∫

𝑇

0

𝑥

2

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖 (
𝑡) + 𝜆𝑖

𝑥

2

𝑖
] 𝑑𝑡 > 0,

𝜆

𝑖
̸= 0,

𝑥

𝑖
𝐻(𝑥

𝑖
, 𝜇

∗
) = 𝜇

∗
𝑥

2

𝑖
+

1 − 𝜇

∗

𝑇

× sgn(∫
𝑇

0

[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)] 𝑑𝑡)

× ∫

𝑇

0

𝑥

2

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡)] 𝑑𝑡 > 0,

𝜆

𝑖
≡ 0.

(31)

It follows from (31) that𝐻(𝑥, 𝜇

∗
) is homotopic and that

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} = deg {𝐻 (⋅, 0) , Ω ∩ Ker 𝐿, 0}

= deg {𝐻 (⋅, 1) , Ω ∩ Ker 𝐿, 0} ̸= 0.

(32)

Thus, the last condition of Lemma 1 is also satisfied.
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Applying Lemma 1, it can be concluded that the equation
𝐿𝑥 = 𝑁𝑥 has at least one 𝑇-periodic solution 𝑥(𝑡) on Ω with
|𝑥|

∞
⩽ 𝑀

1
. Furthermore, it is obvious that the 𝑇-periodic

solution 𝑥(𝑡) is nontrivial. Otherwise, there is a constant
vector 𝑑 = {𝑑

1
, 𝑑

2
, . . . , 𝑑

𝑛
} satisfying (11), that is,

[𝜔

2

0
+ 𝛼 (𝑡)] 𝑑 + 𝛽(𝑑

3

1
, 𝑑

3

2
, . . . , 𝑑

3

𝑛
)

𝑇

= 𝑒 (𝑡) .
(33)

By simple computation, we obtain

𝜔

2

0𝑖
+ 𝛼

𝑖,min ⩽
󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨max𝑑
2

𝑖
, (34)

which contradicts the condition in Theorem 2. Then, system
(3) has at least one non-trivial𝑇-periodic solution.Therefore,
we complete the proof of Theorem 2.

Theorem3. Assume that 0 ⩽ ((|𝜆

𝑖
|

1/3
(𝜔

2

0𝑖
+|𝛼

𝑖
|max)
1/2
𝑇)/Δ) <

2 and 𝜆
𝑖
< 0 hold for all 𝑖 ∈ {1, 2, . . . , 𝑛}, then, system (3) has

at least one 𝑇-periodic solution.

Proof. The same proof also works for this theorem. We only
need to show that ∫𝑇

0
|𝑥̇

𝑖
|

2
𝑑𝑡 is bounded.

As𝑥(𝑡) ∈ 𝐶1
𝑇
, multiplying both sides of the 𝑖th component

of (11) by 𝑥
𝑖
(𝑡) and integrating from 0 to 𝑇 yield

−∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 = −𝜖∫

𝑇

0

𝑥

2

𝑖
[𝜔

2

0𝑖
+ 𝛼

𝑖
(𝑡) + 𝜆

𝑖
𝑥

2

𝑖
] 𝑑𝑡

+ 𝜖∫

𝑇

0

𝑒

𝑖
𝑥

𝑖
𝑑𝑡.

(35)

It can be easily found thatΔ > 0when using the condition
0 ⩽ ((|𝜆

𝑖
|

1/3
(𝜔

2

0𝑖
+ |𝛼

𝑖
|max)
1/2

𝑇)/Δ) < 2. Combining (21) and
(35), we obtain

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡 ⩽

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

2

max (𝜔
2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max) 𝑇 +

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨max
󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max𝑇

⩽

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

2/3
𝑇

2
(𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)

4Δ

2
∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑡

+ [

𝐶 (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)

Δ

2
+

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max
Δ

]

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

1/3
𝑇

× ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨

𝑑𝑡

+

𝐶

2
𝑇 (𝜔

2

0𝑖
+

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖

󵄨

󵄨

󵄨

󵄨max)

Δ

2
+

𝐶𝑇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨max
Δ

.

(36)

Noticing that 0 ⩽ ((|𝜆

𝑖
|

1/3
(𝜔

2

0𝑖
+ |𝛼

𝑖
|max)
1/2

𝑇)/Δ) <

2, there is a constant 𝑀∗ > 0, such that ∫𝑇
0
|𝑥̇

𝑖
|

2
𝑑𝑡 ⩽

𝑀

∗. Therefore, the proof of the boundedness is completed.
The rest proof of the theorem is almost identical to that of
Theorem 2.

x
0

zy

p = p0 − p1 cosΩ1t

Figure 1: The model of a rectangular thin plate subjected to para-
metrical excitation.

Corollary 4. If ∫𝑇
0
𝑒(𝑡)𝑑𝑡 ̸= 0, let 𝑒(𝑡) = 𝑒(𝑡) − (1/𝑇) ∫

𝑇

0
𝑒(𝑠)𝑑𝑠.

Then, we have ∫𝑇
0
𝑒(𝑡)𝑑𝑡 = 0. System (11) can be reduced to the

following form

𝑥̈ + 𝜇

0
𝑥̇ + [𝜔

2

0
+ 𝛼 (𝑡)] 𝑥 + 𝛽(𝑥

3

1
, 𝑥

3

2
, . . . , 𝑥

3

𝑛
)

𝑇

−

1

𝑇

∫

𝑇

0

𝑒 (𝑠) 𝑑𝑠 = 𝑒 (𝑡) .

(37)

Thus, one only needs to study system (37) by using the afore-
mentioned results.

3.2. Application. In this section, we apply some of the main
results obtained in the previous section to a well-known
model for practical engineering.

We now investigate periodic motions of the simply
supported at the four-edged rectangular thin plate system
subjected to parametrical excitation (see Figure 1).

According to [5, 19], we have the following partial differ-
ential governing equations:

𝐷∇

4
𝑤 + 𝜌ℎ

𝜕

2
𝑤

𝜕𝑡

2
−

𝜕

2
𝑤

𝜕𝑥

2

𝜕

2
𝜙

𝜕𝑦

2
−

𝜕

2
𝑤

𝜕𝑦

2

𝜕

2
𝜙

𝜕𝑥

2

+ 2

𝜕

2
𝑤

𝜕𝑥𝜕𝑦

𝜕

2
𝜙

𝜕𝑥𝜕𝑦

+ 𝜇

𝜕𝑤

𝜕𝑡

= 0,

∇

4
𝜙 = 𝐸ℎ[(

𝜕

2
𝑤

𝜕𝑥𝜕𝑦

)

2

−

𝜕

2
𝑤

𝜕𝑥

2

𝜕

2
𝑤

𝜕𝑦

2
] ,

(38)

where𝜌 represents the density of the plate,𝐷 = 𝐸ℎ

3
/12(1−]2)

is the bending rigidity, 𝐸 is Young’s modulus, ] is the Poission
ratio, 𝜙 is the stress function, and 𝜇 the damping coefficient.

Bymeans ofGalerkin’smethod, (38) can be reduced to the
following dimensionless form:

̈𝑦 + 𝜇

∗
̇𝑦 + [𝜔

2

∗
+ 𝛼

∗
(𝑡)] 𝑦 + 𝛽

∗
𝑦

3
= 0, (39)
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Figure 2: Phase portrait for (𝑦, ̇𝑦).

where

𝜇

∗
=

√

12 (1 − ]2)

𝜌𝐸

𝑎𝑏𝜇

𝜋

2
ℎ

2
,

𝛼

∗
(𝑡) =

12 (1 − ]2) ℎ2

𝑎

𝑏𝑝

1

𝜋

2
𝐷

cosΩ
1
𝑡,

𝜔

2

∗
=

(9𝑎

2
+ 𝑏

2
)

2

𝑏

4
−

𝑏

2
𝑝

0

𝜋

2
𝐷

,

𝛽

∗
=

3 (1 − ]2) ℎ2 (81𝑎2 + 𝑏2)

4𝑎𝑏

3
.

(40)

Obviously, system (11) can be reduced to the system (39),
provided that 𝑛 = 1, 𝜇

0
= 𝜇

∗
, 𝜔
0
= 𝜔

∗
, 𝛼 = 𝛼

∗
, 𝛽 = 𝛽

∗
, and

𝑒(𝑡) ≡ 0.
In what follows, in order to illustrate the aforementioned

theoretical results, several numerical simulations are carried
out. For system (39), by Theorem 2, we take a set of initial
values (0.03, 0.77), let 𝜇

∗
= 0.02 and Ω

1
= 2 and choose

appropriate 𝑝
0
, 𝑝

1
such that 𝜔

∗
= 1.

By using ode45 in MATLAB 7, three families of dynamic
characteristics of the thin plate system are illustrated for
different values of 𝛼

∗
(𝑡) and 𝛽

∗
, respectively.

For 𝛼
∗
(𝑡) = 2 cos 2𝑡, a centrosymmetric periodic solution

in the (𝑦, ̇𝑦) plane is shown in Figure 2, keeping 𝛽

∗
fixed

at 15. Moreover, time history curves with respect to the
displacement and velocity of the plate are also shown in
Figures 3 and 4 for the same condition. It is straightforward
to see that the curves are also periodic.

If we set 𝛼
∗
(𝑡) = 7 cos 2𝑡 and 𝛽

∗
= 10, a group of dynam-

ics behavior of the thin plate system in the planes (𝑦, ̇𝑦), (𝑡, 𝑦),
and (𝑡, ̇𝑦) is obtained in Figures 5, 6, and 7, respectively. It can
be observed from these figures that the phase portrait is also

1 1.0001 1.0002 1.0003 1.0004 1.0005
t

y

×10
5

0

0.1

0.2

0.3

0.4

−0.4

−0.3

−0.2

−0.1

Figure 3: Time history curve (𝑡, 𝑦).
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t ×10
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.
y

Figure 4: Time history curve (𝑡, ̇𝑦).

centrosymmetric and the time history curves are periodic
too. Furthermore, according to the corresponding power
spectrum, there is a dominant peak at the frequency that
is approximately equal to 2.3 with symmetric sidebands
surrounding it.

For 𝛼
∗
(𝑡) = 13.05 cos 2𝑡, when 𝛽

∗
is gradually increased

to 20, a set of dynamics characteristic of the thin plate system
is addressed in Figures 8, 9 and 10, respectively.

In Figure 8, phase portrait in the (𝑦, ̇𝑦) plane is also
illustrated to be centrosymmetric, though it seems to bemore
complex than the previous ones. The corresponding periodic
time history curves with respect to the displacement and
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Figure 5: Phase portrait (𝑦, ̇𝑦).
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Figure 6: Time history curve (𝑡, 𝑦).

velocity of the plate are depicted in Figures 9 and 10. In
addition, the power spectrum in this case associated with the
periodic solution admits a distinctive broadband character.

4. Conclusions

This paper primarily deals with the existence of nontrivial
periodic solutions for a second-order 𝑛-dimensional differen-
tial system.Moreover, the simply supported at the four-edged
rectangular thin plate system subjected to parametrical exci-
tation is investigated as an application. Theoretical analysis
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t ×10
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.
y

Figure 7: Time history curve (𝑡, ̇𝑦).
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Figure 8: Phase portrait (𝑦, ̇𝑦).

and numerical validation produce several important results
as follows.

(i) From the conditions of the proved theorems, it is
easy to find that the nontrivial periodic solutions
of the system are mainly influenced by the system’s
damping coefficient, natural frequency, parametrical
excitation, and the coefficient of the nonlinear term.

(ii) By substituting the variables 𝜇
∗
, 𝜔
∗
, 𝛼
∗
, and 𝛽

∗
into

the condition [𝐶
1
] of Theorem 2, and combiningwith

the phase diagrams and time history curves displayed
above, one can see that there exist a set of 𝑇-periodic
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Figure 9: Time history curve (𝑡, 𝑦).
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Figure 10: Time history curve (𝑡, ̇𝑦).

solutions at least for system (39) with 𝑇 < 8.3039𝑒 −

003, 2.1393𝑒− 004, and 3.4035𝑒− 004 under the three
sets of different parameter values, respectively.

(iii) It is significant that the existent range of periodic
solutions for system (39) increases along with the
increase of the ratio of |𝛽

∗
| and |𝛼

∗
|max through

simple calculation.

(iv) In addition, the parametrical excitation term need
not be periodic in accordance with the proof of
Theorem 2, though it finds expression in periodic
form for the above illustrated model.
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