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Neutral differential equations have been used to describe the systems that not only depend on the present and past states but
also involve derivatives with delays. This paper considers hybrid nonlinear neutral stochastic functional differential equations
(HNSFDEs)without the linear growth condition and examines the boundedness and exponential stability. Two illustrative examples
are given to show the effectiveness of our theoretical results.

1. Introduction

Many dynamic systems not only depend on the present and
past states but also involve derivatives with delays. Neutral
differential equations have been used to model such systems.
Deterministic neutral differential equations were introduced
by Hale and Meyer [1] and discussed in Hale and Lunel
(see [2]) and Kolmanovskii et al. (for details see also [3, 4]),
among others. Such equations were used to study two or
more simple oscillatory systems with some interconnections
between them, such as Brayton [5], Rubanik [6], and Driver
[7].

Generally speaking, many practical systems commonly
encounter stochastic perturbations and may experience
abrupt changes in their structure and parameters caused
by phenomena such as component failures or repairs and
abrupt environmental disturbances. Of course, there is no
exception to neutral systems, mentioned previous. Tak-
ing these stochastic factors into account, Mao and Yuan
developed hybrid systems driven by Brownian motion and
continuous-time Markovian chain to cope with such a sit-
uation (see [8]). Hu et al. [9] investigated the stability and
boundedness of stochastic differential delay equations with
Markovian switching. Kolmanovskii et al. [10] discussed the

neutral stochastic delay differential equations with Marko-
vian switching, also known as hybrid neutral stochastic delay
differential equations (HNSDDEs).

The boundedness and stability analysis of the neutral
stochastic systems without switching has attracted much
attention; see [11–18] to mention a few. For hybrid neutral
systems, studying boundedness and stability of the solutions
is also a challenging and interesting work. Kolmanovskii et
al. [10] established a fundamental theorem of HNSDDEs and
discussed the boundedness and exponential stability of the
solutions.They also gave an example to show that Markovian
can average the subsystems; that is, when some subsystems
are stable and others are not stable, the overall system formed
by the Markovian switching may be stable. Bao et al. [19]
discussed stability in distribution of the HNSDDEs. Hu
and Wang [20] studied the stability in distribution for the
general HNSFDEs. The stability of HNSDDEs with interval
uncertainty was investigated in [21]. Mao et al. [22] gave
a criterion related to almost surely asymptotic stability of
HNSDDEs. These results are undoubtedly remarkable.

However, there are few publications on the boundedness
and exponential stability of the generalHNSFDEswith highly
nonlinear terms. To fill in this gap, this work gives the
boundedness and exponential stability criterions for such
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HNSFDEs. Moreover, when this HNSFDE degenerates to the
HNSDDE, our stability criterions improve the related results
in [10]. Further, these stability criterions can also be used to
investigate the exponential stability of NSFDEs or NSDDEs
with more accurate Lyapunov exponent bound than that
obtained in [23, 24].

The rest of the paper is arranged as follows. The next
section provides necessary notations and definitions for
the use of this paper. Section 3 establishes the bounded-
ness and exponential stability criterions of the solutions to
HNSFDEs. Section 4 further gives the generalized results
for the HNSDDEs with variable time delay. Finally, two
illustrative examples are provided to show the effectiveness
of our theoretical results.

2. Notations and Definitions

Throughout this paper, unless otherwise specified, we use
the following notations. | ⋅ | denotes both the Euclidean
vector norm in R𝑛 and Frobenius matrix norm in R𝑛×𝑑.
If 𝐴 is a vector or matrix, its transpose is denoted by
𝐴
𝑇. If 𝐴 is a matrix, its trace norm is denoted by |𝐴| =

√trace(𝐴𝑇𝐴). Let (Ω,F, 𝑃) be a complete probability space
with a filtration {Ft}𝑡≥0 satisfying the usual conditions; that
is, it is right continuous and increasing while F

0
contains all

𝑃-null sets. Let 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑑
(𝑡)) be a 𝑑-dimensional

Brownian motion defined on this probability space. LetR
+
=

[0,∞) and 𝜏 > 0. Denote by 𝐶([−𝜏, 0],R𝑛

) the family of
continuous functions from [−𝜏, 0] toR𝑛 with the norm ‖𝜑‖ =

sup
−𝜏≤𝜃≤0

|𝜑(𝜃)|. Let 𝐶𝑏

F0
([−𝜏, 0],R𝑛

) be the family of all F
0
-

measurable bounded 𝐶([−𝜏, 0],R𝑛

) valued random variables
𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0}. 𝑎 ∨ 𝑏 represents max{𝑎, 𝑏}, and 𝑎 ∧ 𝑏

denotes min{𝑎, 𝑏}.
Let 𝑟(𝑡) be a Markov chain (independent of 𝑤(𝑡)) taking

values in a finite state space S = {1, 2, . . . , 𝑚}. Assume the
generator of 𝑟(𝑡) is denoted by Γ = (𝛾

𝑖𝑗
)
𝑚×𝑚

, so that

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) , if 𝑖 = 𝑗,

(1)

where 𝛿 > 0. Here 𝛾
𝑖𝑗
is the transition rate from 𝑖 to 𝑗 and 𝛾

𝑖𝑗
>

0 if 𝑖 ̸= 𝑗 while 𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖
𝛾
𝑖𝑗
. Let us consider the following

𝑛-dimensional nonlinear HNSFDE:

𝑑 [𝑥 (𝑡) − 𝑢 (𝑥
𝑡
, 𝑟 (𝑡))]

= 𝑓 (𝑥
𝑡
, 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥

𝑡
, 𝑟 (𝑡)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

(2)

with initial data 𝑥
0
= 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0];R𝑛

) and 𝑟(0) = 𝑟
0
∈ S,

where

𝑥
𝑡
= {𝑥 (𝑡 + 𝜃) ; −𝜏 ≤ 𝜃 ≤ 0} ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , (3)

𝑢 : 𝐶([−𝜏, 0],R𝑛

) × S → R𝑛, 𝑓 : 𝐶([−𝜏, 0],R𝑛

) × S → R𝑛,
and 𝑔 : 𝐶([−𝜏, 0],R𝑛

)×S → R𝑛×𝑑. In order to guarantee the
existence and uniqueness of the solution to (2), we give the
following assumptions for the functionals 𝑢, 𝑓, and 𝑔.

Assumption 1 (local Lipschitz condition). 𝑓 and 𝑔 satisfy
the local Lipschitz condition; that is, for each 𝑗 > 0 there
exists a positive constant 𝐶

𝑗
such that for any maps 𝜙, 𝜑 ∈

𝐶([−𝜏, 0];R𝑛

) with ‖𝜙‖ ∨ ‖𝜑‖ ≤ 𝑗

𝑓 (𝜙, 𝑖) − 𝑓 (𝜑, 𝑖)
 ∨

𝑔 (𝜙, 𝑖) − 𝑔 (𝜑, 𝑖)


≤ 𝐶
𝑗

𝜙 − 𝜑
 , ∀𝑖 ∈ S,

(4)

where ‖𝜙 − 𝜑‖ ≤ sup
−𝜏≤𝜃≤0

|𝜙(𝜃) − 𝜑(𝜃)|.

Assumption 2 (contractive mapping). There exists a positive
constant 𝜅 ∈ (0, 1) such that for all 𝜙, 𝜑 ∈ 𝐶([−𝜏, 0];R𝑛

) and
𝑖 ∈ S

𝑢 (𝜙, 𝑖) − 𝑢 (𝜑, 𝑖)
 ≤ 𝜅

𝜙 − 𝜑
 (5)

and 𝑢(0, 𝑖) = 0.

Note that the previous assumptions are standard for
the existence and uniqueness of the local solutions (see
[19, 22]). Additional conditions should be imposed for the
local solution to be global. In view of this, we need a
few more notations. Let 𝐶2

(R𝑛

× S;R
+
) denote the family

of all nonnegative functions 𝑉(𝑥, 𝑖) on R𝑛

× S which are
continuously twice differentiable in 𝑥. For each 𝑉(𝑥, 𝑖) ∈

𝐶
2

(R𝑛

×S;R
+
), define an operatorL𝑉 from𝐶([−𝜏, 0];R𝑛

)×

S to R:

L𝑉 (𝜑, 𝑖)

= 𝑉
𝑥
(𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑖) 𝑓 (𝜑, 𝑖)

+ ∑
𝑗∈S

𝛾
𝑖𝑗
𝑉 (𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑗)

+
1

2
trace [𝑔𝑇 (𝜑, 𝑖) 𝑉

𝑥𝑥
(𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑖) 𝑔 (𝜑, 𝑖)] ,

(6)

where

𝑉
𝑥
(𝑥, 𝑖) = (

𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑥, 𝑖) = (
𝜕
2

𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑗
𝜕𝑥

𝑙

)

𝑛×𝑛

.

(7)

In the following sections, we will impose the some con-
ditions on the diffusion operator L𝑉 for the global solution
and its asymptotic behavior.

3. The Boundedness and Exponential
Stability of HNSFDEs

The following theorem gives the boundedness and exponen-
tial stability criterions of the solution to (2).

Theorem 3. Let Assumptions 1 and 2 hold. Assume that there
are two functions 𝑉 ∈ 𝐶

2

(R𝑛

× S;R
+
), 𝑈 ∈ 𝐶(R𝑛

;R
+
),

three probability measures 𝜂, 𝜇, 𝜇 on [−𝜏, 0], and a number
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of positive constants 𝜅 ∈ (0, 1), 𝑐, 𝑐
1
, 𝑐

2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4

such that for any 𝑥 ∈ R𝑛 and (𝜑, 𝑖) ∈ 𝐶([−𝜏, 0],R
+
) × S

𝑢 (𝜑, 𝑖)
 ≤ 𝜅∫

0

−𝜏

𝜑 (𝜃) 𝜂 (𝑑𝜃) , (8)

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝

, (9)

L𝑉 (𝜑, 𝑖)

≤ 𝑐 − 𝜆
1

𝜑 (0)

𝑝

+ 𝜆
2
∫
0

−𝜏

𝜑 (𝜃)

𝑝

𝜇 (𝑑𝜃) − 𝜆
3
𝑈(𝜑 (0))

+ 𝜆
4
∫
0

−𝜏

𝑈(𝜑 (𝜃)) 𝜇 (𝑑𝜃) .

(10)

If 𝜆
1
> 𝜆

2
and 𝜆

3
> 𝜆

4
, then we have the following assertions:

(i) for any given initial data 𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), there
is a unique global solution 𝑥(𝑡) = 𝑥(𝑡; 𝜉) to the hybrid
system (2) on 𝑡 ∈ [−𝜏,∞);

(ii) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E
𝑥 (𝑡) − 𝑢 (𝑥

𝑡
, 𝑟 (𝑡))


𝑝

≤
𝑐

Λ
, (11)

lim sup
𝑡→∞

1

𝑡
∫
𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4

, (12)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1

+ [𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏

= 0, 𝜀 > 0}

(13)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.
(iii) If, in addition, 𝑐 = 0, then the solution of (2) has

properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝

)

𝑡
≤ −Λ, (14)

∫
∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4

[E𝑉 (𝑦
0
, 𝑟 (0)) + 𝜆

2
∫
0

−𝜏

E|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] ,

(15)

where 𝑦
0
= 𝑥(0) − 𝑢(𝑥

0
, 𝑟(0)).

Proof. We prove these three assertions, separately. For any
given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

), by Assumptions 1 and
2, there exists a unique maximal local strong solution 𝑥(𝑡) to

(2) on 𝑡 ∈ [−𝜏, 𝜌
𝑒
), where 𝜌

𝑒
is the explosion time. To show

that this solution is global, we only need to prove that 𝜌
𝑒
= ∞

a.s. Define 𝑦
𝑡
= 𝑥(𝑡) − 𝑢(𝑥

𝑡
, 𝑟(𝑡)), then by Assumption 2, we

have

𝑦0
 ≤ |𝑥 (0)| +

𝑢 (𝑥
0
, 𝑟 (0))

 ≤ (1 + 𝜅)
𝜉
 . (16)

Let 𝑘
0
be sufficiently lager positive number, such that ‖𝜉‖ <

𝑘
0
. For each 𝑘 > (1 + 𝜅)𝑘

0
, define the stopping time 𝜌

𝑘
=

inf{𝑡 ∈ [0, 𝜌
𝑒
) : |𝑦

𝑡
| ≥ 𝑘}. Clearly, 𝜌

𝑘
is increasing as 𝑘 → ∞

and 𝜌
𝑘

→ 𝜌
∞

≤ 𝜌
𝑒
a.s. If we can show 𝜌

∞
= ∞ a.s., then

𝜌
𝑒
= ∞, which implies that the solution𝑥(𝑡) is actually global.

By the generalized Itô formula (see [20]) and condition (10),
we can obtain that, for any 𝑘 > 𝑘

0
and 𝑡 ≥ 0,

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

= E𝑉 (𝑦
0
, 𝑟 (0)) + E∫

𝑡∧𝜌𝑘

0

L𝑉 (𝑥
𝑠
, 𝑟 (𝑠)) 𝑑𝑠

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) − 𝜆

1
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝

𝜇 (𝑑𝜃) 𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

∫
0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(17)

By the Fubini theorem, we compute

E∫
𝑡∧𝜌𝑘

0

∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝜇 (𝜃) 𝑑𝑠

= E∫
0

−𝜏

∫
𝑡∧𝜌𝑘

0

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝑠 𝑑𝜇 (𝜃)

≤ ∫
0

−𝜏

E|𝑥 (𝑠) |
𝑝

𝑑𝑠 + E∫
𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠.

(18)

Similarly,

E∫
𝑡∧𝜌𝑘

0

∫
0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠

≤ ∫
0

−𝜏

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 + E∫
𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(19)
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Substituting (18) and (19) into (17) yields

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ E𝑉 (𝑦
0
, 𝑟 (0))

+ 𝜆
2
∫
0

−𝜏

E|𝑥 (𝑠)|
𝑝

𝑑𝑠 + 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐𝑡 − (𝜆
1
− 𝜆

2
)E

× ∫
𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠 − (𝜆
3
− 𝜆

4
)E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝐻
0
+ 𝑐𝑡,

(20)

where

𝐻
0
= E𝑉 (𝑦

0
, 𝑟 (0)) + 𝜆

2
∫
0

−𝜏

E|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(21)

Note that

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≥ E [𝑉 (𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
)) 1

{𝜌𝑘≤𝑡}
] ≥ 𝑐

1
𝑘
𝑝

P {𝜌
𝑘
≤ 𝑡} .

(22)

Hence,

𝑐
1
𝑘
𝑝

P {𝜌
𝑘
≤ 𝑡} ≤ 𝐻

0
+ 𝑐𝑡. (23)

Then, for any 𝑡 > 0,

lim
𝑘→∞

P {𝜌
𝑘
≤ 𝑡} = 0, (24)

which together with the arbitrariness of 𝑡 implies that 𝜌
∞

=

∞ a.s. Therefore, the solution 𝑥(𝑡) is global, and assertion (i)
follows.

Then by Itô’s formula and condition (10), we have, for any
𝛾 > 0,

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘))
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

= E𝑉 (𝑦
0
, 𝑟 (0))

+ E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

[𝛾𝑉 (𝑦
𝑠
, 𝑟 (𝑠)) +L𝑉 (𝑥

𝑠
, 𝑟 (𝑠))] 𝑑𝑠

≤ E𝑉 (𝑦
0
, 𝑟 (0)) + 𝛾E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑦
𝑠
, 𝑟 (𝑠)) 𝑑𝑠

− 𝜆
1
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫
0

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠 + 𝜃)|
𝑝

𝜇 (𝑑𝜃) 𝑑𝑠

+ 𝑐∫
𝑡

0

𝑒
𝛾𝑠

𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

∫
0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(25)

For 𝑝 ≥ 1 and any 𝜀 > 0, we have

𝑉 (𝑦
𝑠
, 𝑟 (𝑠))

≤ 𝑐
2

𝑥 (𝑠) − 𝑢 (𝑥
𝑠
, 𝑟 (𝑠))


𝑝

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)

]
𝑝−1

(|𝑥 (𝑠)|
𝑝

+
1

𝜀

𝑢 (𝑥
𝑠
, 𝑟 (𝑠))


𝑝

)

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)

]
𝑝−1

[|𝑥 (𝑠)|
𝑝

+
𝜅
𝑝

𝜀
∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝜂 (𝜃)] ,

(26)

where we used the Hölder inequality and condition (8).
Substituting (26) into (25), we obtain

𝑒
𝛾(𝑡∧𝜌𝑘)E𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1
]

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀

× E∫
𝑡∧𝜌𝑘

0

∫
0

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠 + 𝜃)|
𝑝

𝜂 (𝑑𝜃) 𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫
0

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠 + 𝜃)|
𝑝

𝜇 (𝑑𝜃) 𝑑𝑠 + 𝑐∫
𝑡

0

𝑒
𝛾𝑠

𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

∫
0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(27)

Define a probability measure ] on [−𝜏, 0]

𝑑] (𝜃) =
𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

(𝜅
𝑝

/𝜀) 𝜂 (𝜃) + 𝜆
2
𝜇 (𝜃)

𝑐
2
𝛾(1 + 𝜀1/(𝑝−1))

𝑝−1

(𝜅𝑝/𝜀) + 𝜆
2

; (28)
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then from (27), we have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝑐∫

𝑡

0

𝑒
𝛾𝑠

𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1
]

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝] (𝑑𝜃) 𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

∫
0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(29)

By the Fubini theorem

∫
𝑡

0

𝑒
𝛾𝑠

∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑] (𝜃) 𝑑𝑠

= ∫
0

−𝜏

∫
𝑡

0

𝑒
𝛾(𝑠+𝜃)

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝑠 𝑑] (𝜃)

≤ 𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠 + 𝑒
𝛾𝜏

∫
𝑡

0

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠,

(30)

we have from (29)

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× 𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

E𝑉 (𝑥 (𝑠)) 𝑑𝑠 + 𝑐∫
𝑡

0

𝑒
𝛾𝑠

𝑑𝑠

+ (𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

−𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏

)

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 − [𝜆
3
− 𝜆

4
𝑒
𝛾𝜏

]

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(31)

Denote

𝑙 (𝛾) = 𝜆
3
− 𝜆

4
𝑒
𝛾𝜏

,

ℎ (𝛾, 𝜀) = 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏

.

(32)

Let 𝜀be fixed; then it is easy to obtainℎ
𝛾
(𝛾, 𝜀) > 0 andℎ(0, 𝜀) =

−𝜆
1
+𝜆

2
< 0, which implies that for any fixed 𝜀 > 0, function

ℎ(⋅, 𝜀) has a unique positive root, denoted by 𝑞. Choose a 𝜀 =

𝜀
∗

> 0 such that

𝛾 = sup
𝜀>0,ℎ(𝑞,𝜀)=0

𝑞 = sup
ℎ(𝑞,𝜀
∗
)=0

𝑞. (33)

Noting that for any 𝛾 ∈ (0, Λ], ℎ(𝛾, 𝜀∗) ≤ 0 and 𝑙(𝛾) ≥ 0, we
therefore have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝜆

4
𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 + 𝑐∫
𝑡

0

𝑒
𝛾𝑠

𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

∗(1/(𝑝−1))

)
𝑝−1 𝜅

𝑝

𝜀∗
+ 𝜆

2
] 𝑒

𝛾𝜏

× ∫
0

−𝜏

𝑒
𝛾𝑠

E𝑉 (𝜉 (𝑠)) 𝑑𝑠

≤ 𝑐
1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

+ 𝑐
𝑒
𝛾𝑡

𝛾

(34)

for some positive constant 𝐶
0
> 1. Letting 𝑘 → ∞, we have

𝑒
𝛾𝑡

E𝑉 (𝑦
𝑡
, 𝑟 (𝑡)) ≤ 𝑐

1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

+ 𝑐
𝑒
𝛾𝑡

𝛾
, (35)

which implies the desired assertion (11). Assertion (12) can be
obtained from (20) by letting 𝑘 → ∞. Hence assertion (ii)
follows.

Let 𝑐 = 0. For any 𝜖 > 0, we have that

|𝑥 (𝑠)|
𝑝

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [
𝑦𝑠


𝑝

+

𝑢 (𝑥
𝑠
, 𝑟 (𝑠))


𝑝

𝜖
]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [
𝑦𝑠


𝑝

+
𝜅
𝑝

𝜖
∫
0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝜂 (𝜃)] .

(36)
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By (34) and (36), we have for 𝑡 > 𝑠 > 0

𝑒
𝛾𝑠

E|𝑥 (𝑠)|
𝑝

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝑒
𝛾𝑠

E
𝑦𝑠


𝑝

+
𝜅
𝑝

𝜖
𝑒
𝛾𝑠

∫
0

−𝜏

E|𝑥 (𝑠 + 𝜃)|
𝑝

𝑑𝜂 (𝜃)]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝑒
𝛾𝑠

E
𝑦𝑠


𝑝

+
𝜅
𝑝

𝜖
𝑒
𝛾𝜏 sup
𝑠−𝜏≤𝜃≤𝑠

[𝑒
𝛾𝜃

E|𝑥 (𝜃)|
𝑝

]]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

+
𝜅
𝑝

𝜖
𝑒
𝛾𝜏 sup
−𝜏≤𝜃≤𝑡

[e𝛾𝜃E|𝑥 (𝜃)|
𝑝

] .

(37)

This inequality also holds for all −𝜏 ≤ 𝑠 ≤ 0. In view of 𝛾 ≤

𝑟 < (𝑝/𝜏) log(1/𝜅), there exists a positive number 𝜖
0
> 0 such

that

𝑎 (𝜖
0
) :=[1 + 𝜖

1/(𝑝−1)

0
]
𝑝−1𝜅

𝑝

𝜖
0

𝑒
𝛾𝜏

=[1 +
1

𝜖
1/(𝑝−1)

0

]

𝑝−1

𝜅
𝑝

𝑒
𝛾𝜏

< 1.

(38)

Therefore,

sup
−𝜏≤𝑠≤𝑡

𝑒
𝛾𝑠

E|𝑥 (𝑠)|
𝑝

≤ [1 + 𝜖
1/(𝑝−1)

0
]
𝑝−1

𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

+ 𝑎 (𝜖
0
) sup
−𝜏≤𝑠≤𝑡

𝑒
𝛾𝑠

E|𝑥 (𝑠)|
𝑝

,

(39)

which implies

𝑒
𝛾𝑡

E|𝑥 (𝑡)|
𝑝

≤
[1 + 𝜖

1/(𝑝−1)

0
]
𝑝−1

𝐶
0

1 − 𝑎 (𝜖
0
)

sup
−𝜏≤𝑡≤0

E
𝜉 (𝑡)


𝑝

. (40)

Finally, the required inequality (14) follows by taking log-
arithm and limitation. Inequality (15) can be also obtained
from (20) by letting 𝑘 → ∞. Hence assertion (iii)
follows.

Remark 4. If theMarkovian switching vanishes,Theorem 3 is
also true and gives the 𝑝thmoment exponential stability with
the decay rate bigger than that in [24, Theorem 2]. Since the
decay rate in [24] is the special case of Theorem 3 with 𝜀 = 1

in (13).

If 𝜆
3

= 𝜆
4

= 0, then we directly obtain the following
corollary.

Corollary 5. Let Assumptions 1 and 2 hold. Assume that there
exist a function 𝑉 ∈ 𝐶

2

(R𝑛

× S;R
+
) × S, two probability

measures 𝜂, 𝜇 on [−𝜏, 0], and a number of positive constants
𝜅 ∈ (0, 1), 𝑐

1
, 𝑐

2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
such that for any 𝑥 ∈ R𝑛 and

(𝜑, 𝑖) ∈ 𝐶([−𝜏, 0],R
+
) × S

𝑢 (𝜑, 𝑖)
 ≤ 𝜅∫

0

−𝜏

𝜑 (𝜃) 𝜂 (𝑑𝜃) ,

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝

,

L𝑉 (𝜑, 𝑖) ≤ −𝜆
1

𝜑 (0)

𝑝

+ 𝜆
2
∫
0

−𝜏

𝜑 (𝜃)

𝑝

𝜇 (𝑑𝜃) .

(41)

If 𝜆
1
> 𝜆

2
, then for any given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

),
the solution of (2), denoted by 𝑥(𝑡) = 𝑥(𝑡; 𝜉), has property that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝

)

𝑡
≤ − (𝛾 ∧ 𝑟) , (42)

where 𝛾 and 𝑟 satisfy

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏

= 0, 𝜀 > 0}

(43)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

Although the 𝑝th moment exponential stability and
almost sure exponential stability of the exact solution do not
imply each other in general, under a restrictive condition
the 𝑝th moment exponential stability implies almost sure
exponential stability (cf. [11]). Here, we give the following
theorem about the almost sure exponential stability of the
exact solution to (2).

Theorem 6. Let 𝑝 ≥ 1. Assume that there exists a constant
𝐾 > 0 such that

𝑓 (𝜑, 𝑖)
+

𝑔 (𝜑, 𝑖)
 ≤ 𝐾

𝜑
 , ∀ (𝜑, 𝑖)∈𝐶 ([−𝜏, 0] ,R

+
) × S.

(44)

Then (42) implies

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤ −

𝛾 ∧ 𝑟

𝑝
𝑎.𝑠. (45)

In other words, the pth moment exponential stability implies
almost sure exponential stability.

Remark 7. One may question that whether the semimartin-
gale technique can be used to obtain the almost sure expo-
nential stability directly. In fact, semimartingale technique
may fail, since it may not be true to transfer the almost sure
exponential stability from 𝑥(𝑡) − 𝑢(𝑥

𝑡
, 𝑟(𝑡)) to 𝑥(𝑡).
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4. The Boundedness and Exponential
Stability of HNSDDEs

In this section, we investigate the exponential stability of the
hybrid NSDDE with varying delay

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(46)

where 𝜏(𝑡) : R+

→ [0, 𝜏] is a continuously differentiable
function such that

𝑑𝜏 (𝑡)

𝑑𝑡
≤ 𝜏 (47)

for some constant 𝜏 < 1, while
𝑁 : R

𝑛

× S → R
𝑛

,

𝐹 : R
𝑛

×R
𝑛

× S → R
𝑛

, 𝐺 : R
𝑛

×R
𝑛

× S → R
𝑛×𝑑

.

(48)

For (46), we impose the following assumptions.

Assumption 8 (local Lipschitz condition). 𝐹 and 𝐺 satisfy the
local Lipschitz condition; that is, for each 𝑗 > 0 there exists a
positive constant 𝐶

𝑗
such that

𝐹 (𝑥, 𝑦, 𝑖) − 𝐹 (𝑥, 𝑦, 𝑖)
 ∨

𝐺 (𝑥, 𝑦, 𝑖) − 𝐺 (𝑥, 𝑦, 𝑖)


≤ 𝐶
𝑗
(|𝑥 − 𝑥| +

𝑦 − 𝑦
)

(49)

for all 𝑖 ∈ S and 𝑥, 𝑦, 𝑥, 𝑦 ∈ R𝑛 with |𝑥| ∨ |𝑦| ∨ |𝑥| ∨ |𝑦| ≤ 𝑗.

Assumption 9 (contractivemapping). 𝑁 is a contractivemap-
ping; that is, there exists a positive constant 𝜅 ∈ (0, 1) such
that for all 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S

𝑁 (𝑥, 𝑖) − 𝑁 (𝑦, 𝑖)
 ≤ 𝜅

𝑥 − 𝑦
 . (50)

Under the previous two assumptions, HNSDDE (46)
admits a unique local solution.We also needmore conditions
to guarantee that the local solution is actually global. So we
introduce an operator 𝐿𝑉 from R𝑛

×R𝑛

× S to R by

𝐿𝑉 (𝑥, 𝑦, 𝑖)

= 𝑉
𝑥
(𝑥 − 𝑁 (𝑦, 𝑖) , 𝑖) 𝐹 (𝑥, 𝑦, 𝑖)

+ ∑
𝑗∈S

𝛾
𝑖𝑗
𝑉 (𝑥 − 𝑁 (𝑦, 𝑖) , 𝑗)

+
1

2
trace [𝐺𝑇

(𝑥, 𝑦, 𝑖) 𝑉
𝑥𝑥

(𝑥 − 𝑁 (𝑦, 𝑖) , 𝑖) 𝐺 (𝑥, 𝑦, 𝑖)]

(51)

for each 𝑉(𝑥, 𝑖) ∈ 𝐶
2

(R𝑛

× S;R
+
), and we will impose the

same conditions on the diffusion operator 𝐿𝑉 for the global
solution and its asymptotic behavior.

AlthoughHNSDDE can be regarded as the special case of
HNSFDEs, we still establish the boundedness and exponen-
tial stability criterions of the solution for (46) so as to obtain
more accurate results.

Theorem 10. Let Assumptions 8 and 9 hold. Assume that there
are functions𝑉 ∈ 𝐶

2

(R𝑛

×S;R
+
),𝑈 ∈ 𝐶(R𝑛

;R
+
) as well as a

number of positive constants 𝑐, 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4
such

that for any 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S,

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝

, (52)

𝐿𝑉 (𝑥, 𝑦, 𝑖)

≤ 𝑐 − 𝜆
1
|𝑥|

𝑝

+ 𝜆
2

𝑦

𝑝

− 𝜆
3
𝑈 (𝑥) + 𝜆

4
𝑈 (𝑦) .

(53)

If 𝜆
1
> 𝜆

2
/(1−𝜏) and 𝜆

3
> 𝜆

4
/(1−𝜏), then for any given initial

data 𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), (46) admits a unique global solution
𝑥(𝑡) = 𝑥(𝑡; 𝜉). Moreover, we have the following assertions:

(i) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E|𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡))|
𝑝

≤
𝑐

Λ
, (54)

lim sup
𝑡→∞

1

𝑡
∫
𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4
/ (1 − 𝜏)

, (55)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏

= 0, 𝜀 > 0}

(56)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

(ii) If, in addition, 𝑐 = 0, then the solution to (46) has
properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝

)

𝑡
≤ −Λ, (57)

∫
∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4
/ (1 − 𝜏)

× [E𝑉 (𝑥 (0) − 𝑁 (𝑥 (−𝜏 (0)) , 𝑟 (0)) , 𝑟 (0))

+
𝜆
2

1 − 𝜏
∫
0

−𝜏

E|𝑥 (𝑠)|
𝑝

𝑑𝑠 +
𝜆
4

1 − 𝜏
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] .

(58)

Proof. The proof is similar to that of Theorem 3, so we only
give an outlined one. Denote 𝑦

𝑡
= 𝑥(𝑡) − 𝑁(𝑥(𝑡 − 𝜏(𝑡)), 𝑟(𝑡)).

Let 𝜌
𝑘
be the stopping time defined similarly in the proof
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of Theorem 3. By the generalized Itô formula (see [10]) and
condition (53), we can obtain that, for any 𝑘 > 𝑘

0
and 𝑡 ≥ 0,

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) − 𝜆

1
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(59)

Noting that

∫
𝑡

0

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

≤
1

1 − 𝜏
∫
0

−𝜏

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+
1

1 − 𝜏
∫
𝑡

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠,

(60)

then we have

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) +

𝜆
2

1 − 𝜏
E∫

0

−𝜏

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+
𝜆
4

1 − 𝜏
∫
0

−𝜏

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

− (𝜆
1
−

𝜆
2

1 − 𝜏
)E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝

𝑑𝑠

− (𝜆
3
−

𝜆
4

1 − 𝜏
)E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(61)

Then by the similar arguments used in the proof of Theo-
rem 3, we easily obtain 𝜌

𝑘
→ ∞ as 𝑘 → ∞; that is, the

solution 𝑥(𝑡) is global. The desired assertions (55) and (58)
follow from (61) by letting 𝑘 → ∞.

Applying Itô’s formula to 𝑒
𝛾𝑡

𝑉(𝑦
𝑡
, 𝑟(𝑡)) and using condi-

tion (53), we have for any 𝛾 ∈ (0, Λ]

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉 (𝑦

𝑡
, 𝑟 (𝑡))

= E𝑉 (𝑦
0
, 𝑟 (0))

+ E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

[𝛾𝑉 (𝑦
𝑠
, 𝑟 (𝑠))

+ 𝐿𝑉 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))] 𝑑𝑠

≤ E𝑉 (𝑦
0
, 𝑟 (0)) + 𝛾E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑦
𝑠
, 𝑟 (𝑠)) 𝑑𝑠

− 𝜆
1
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(62)

For 𝑝 ≥ 1 and any 𝜀 > 0, we have

𝑉 (𝑦
𝑠
, 𝑟 (𝑠))

≤ 𝑐
2
|𝑥 (𝑠) − 𝑁 (𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))|

𝑝

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)

]
𝑝−1

× (|𝑥 (𝑠)|
𝑝

+
1

𝜀
|𝑁 (𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))|

𝑝

)

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)

]
𝑝−1

× [|𝑥 (𝑠)|
𝑝

+
𝜅
𝑝

𝜀
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝

] ,

(63)

where we used the Hölder inequality and Assumption 9. Sub-
stituting (63) into (62), we therefore obtain

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌k)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1
]

× E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
E

× ∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(64)
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Noting that

∫
𝑡

0

𝑒
𝛾𝑠

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

≤ 𝑒
𝛾𝜏

∫
𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝

𝑑𝑠

≤
𝑒
𝛾𝜏

1 − 𝜏
∫
0

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠

+
𝑒
𝛾𝜏

1 − 𝜏
∫
𝑡

0

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝

𝑑𝑠,

(65)

then we have from (64)

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× 𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

E𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ ℎ (𝛾, 𝜀)E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑉 (𝑥 (𝑠)) 𝑑𝑠

− 𝑙 (𝛾)E∫
𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4

𝑒
𝛾𝜏

1 − 𝜏
∫
0

−𝜏

𝑒
𝛾𝑠

E𝑈 (𝑥 (𝑠)) 𝑑𝑠,

(66)

where

𝑙 (𝛾) = 𝜆
3
− 𝜆

4

𝑒
𝛾𝜏

1 − 𝜏
,

ℎ (𝛾, 𝜀) = 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏

.

(67)

Let 𝜀be fixed; then it is easy to obtainℎ
𝛾
(𝛾, 𝜀) > 0 andℎ(0, 𝜀) =

−𝜆
1
+ 𝜆

2
< 0, which implies that for any fixed 𝜀 > 0 function

ℎ(⋅, 𝜀) has a unique positive root denoted by 𝑞. Choose a 𝜀 =

𝜀
∗

> 0 such that

𝛾 = sup
𝜀>0,ℎ(𝑞,𝜀)=0

𝑞 = sup
ℎ(𝑞,𝜀
∗
)=0

𝑞. (68)

Noting that for any 𝛾 ∈ (0, Λ], ℎ(𝛾, 𝜀∗) ≤ 0 and 𝑙(𝛾) ≥ 0. We
therefore have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝜆

4

𝑒
𝛾𝜏

1 − 𝜏
∫
0

−𝜏

𝑒
𝛾𝑠

E|𝑥 (𝑠)|
𝑞

𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

∗(1/(𝑝−1))

)
𝑝−1 𝜅

𝑝

𝜀∗
+ 𝜆

2
]

× 𝑒
𝛾𝜏

∫
0

−𝜏

𝑒
𝛾𝑠

E𝑉 (𝜉 (𝑠)) 𝑑𝑠

≤ 𝑐
1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

(69)

for some positive constant 𝐶
0
> 1. By the similar skills used

in the proof of Theorem 3, we can easily obtain the desired
assertions (54) and (57).

If the delay 𝜏(𝑡) = 𝜏 is a fixed constant, then 𝜏 = 0. Hybrid
system (46) becomes the following HNSDDE:

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(70)

Resorting to Theorem 10, we have the following corollary.

Corollary 11. Let Assumptions 8 and 9 hold. Assume that there
are functions𝑉 ∈ 𝐶

2

(R𝑛

×S;R
+
),𝑈 ∈ 𝐶(R𝑛

;R
+
) as well as a

number of positive constants 𝑐, 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4
such

that for any 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝

,

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ 𝑐 − 𝜆
1
|𝑥|

𝑝

+ 𝜆
2

𝑦

𝑝

− 𝜆
3
𝑈 (𝑥) + 𝜆

4
𝑈 (𝑦) .

(71)

If 𝜆
1

> 𝜆
2
and 𝜆

3
> 𝜆

4
, then for any given initial data

𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), (70) admits a unique global solution𝑥(𝑡).
Moreover, we have the following assertions:

(i) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E|𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))|
𝑝

≤
𝑐

Λ
, (72)

lim sup
𝑡→∞

1

𝑡
∫
𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4

, (73)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏

= 0, 𝜀 > 0}

(74)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.
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(ii) If, in addition, 𝑐 = 0, then the solution of (70) has
properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝

)

𝑡
≤ −Λ,

∫
∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4

× [E𝑉 (𝑦
0
, 𝑟 (0)) + 𝜆

2
∫
0

−𝜏

E|𝑥 (𝑠)|
𝑝

𝑑s

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] .

(75)

Further, if 𝑈(𝑥) ≡ 0, Corollary 11 implies.

Corollary 12. Let Assumptions 8 and 9 hold. Assume that
there is a function𝑉 ∈ 𝐶

2

(R𝑛

×S;R
+
) and a number of positive

constants 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
such that for any 𝑥, 𝑦 ∈ R𝑛 and

𝑖 ∈ S

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝

,

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ −𝜆
1
|𝑥|

𝑝

+ 𝜆
2

𝑦

𝑝

.
(76)

If 𝜆
1
> 𝜆

2
, then for any given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

),
(70) admits a unique global solution 𝑥(𝑡). Moreover, the
solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝

)

𝑡
≤ −Λ, (77)

where Λ := 𝛾 ∧ 𝑟 with 𝛾 and 𝑟 defined by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)

)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏

= 0, 𝜀 > 0}

(78)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

Remark 13. Corollary 12 improves Theorem 5.2 in [10, Chap.
5, pp. 838]. In [10],Theorem 5.2 states that if the assumptions
and conditions in Corollary 12 hold, then

lim sup
𝑡→∞

1

𝑡
log (E|𝑥 (𝑡)|

𝑝

) ≤ −Λ
∗

, (79)

where

Λ
∗

= 𝛾
∗

∧
1

2𝜏
log(1

𝜅
) (80)

with 𝛾
∗

> 0 being the unique root to equation

𝛾
∗

𝑐
2
(1 + 𝜅)

𝑝−1

+ 𝑒
𝛾
∗
𝜏

[𝜆
2
+ 𝛾

∗

𝑐
2
𝜅(1 + 𝜅)

𝑝−1

] = 𝜆
1
. (81)

It is easy to see 𝛾 ≥ 𝛾
∗. Moreover, (𝑝/𝜏) log(1/𝜅) >

(1/2𝜏) log(1/𝜅). That means Λ
∗

≤ Λ for sufficiently small
ℓ > 0, where Λ is defined in Corollary 12.

5. Examples

In this section, we give an example to illustrate the usefulness
and flexibility of the theorems developed previously. Let𝑤(𝑡)

be a scalar Brownian motion. Let 𝑟(𝑡) be a right-continuous
Markov chain value in S = {1, 2} with generator

Γ = (𝛾
𝑖𝑗
)
2 × 2

= (
−2 2

1 −1
) . (82)

Assume that 𝑤(𝑡) and 𝑟(𝑡) are independent.

Example 1. Consider the one-dimensional linear HNSDDEs

𝑑 [𝑥 (𝑡) − 𝜅 (𝑟 (𝑠)) ∫
0

−𝜏

𝑥 (𝑠 + 𝜃) 𝑑𝜃]

= [𝜇 (𝑟 (𝑠)) 𝑥 (𝑡) − 2𝑥(𝑡)
3

+ ∫
0

−𝜏

𝑥 (𝑡 + 𝜃) 𝑑𝜃] 𝑑𝑡

+ [𝜎 (𝑟 (𝑠)) ∫
0

−𝜏

|𝑥 (𝑡 + 𝜃)|
2

𝑑𝜃 + 𝑐] 𝑑𝑤 (𝑡) ,

(83)

where 𝜅(1) = 1/8, 𝜅(2) = 1/4, 𝜇
1
= −3, 𝜇

2
= −4, 𝜎(1) =

1/√8, 𝜎(2) = 1/√2, and 𝜏 = 1. To find out whether (83)
is mean-square exponential stability, we use the Lyapunov
function

𝑉 (𝑥, 𝑖) = 𝑞
𝑖
|𝑥|

2

, (84)

where 𝑞
1
= 1 and 𝑞

2
= 0.5. One can show that

L𝑉 (𝜑, 𝑖)

= 2𝑞
𝑖
[𝜑 (0) + 𝜅 (𝑖) ∫

0

−1

𝜑 (𝜃) 𝑑𝜃]

× [𝜇 (𝑖) 𝜑 (0) − 3𝜑(0)
3

+ ∫
0

−1

𝜑 (𝜃) 𝑑𝜃]

+ ∑
𝑗=1,2

𝛾
𝑖𝑗
𝑞
𝑗


𝜑 (0) +

1

8
∫
0

−1

𝜑 (𝜃) 𝑑𝜃



2

+ 2𝑞
𝑖
𝜎(𝑖)

2


∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃



2

+ 2𝑐
2

.

(85)
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By the elementary inequalities 𝑎
𝛼

𝑏
𝛽

≤ (𝛼/(𝛼 + 𝛽))𝑎
𝛼+𝛽

+

(𝛽/(𝛼 + 𝛽))𝑏
𝛼+𝛽, we have

L𝑉 (𝜑, 1)

≤ 2 [ − 3
𝜑 (0)


2

− 3
𝜑 (0)


4

+
1

2
(
𝜑 (0)


2

+ ∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃)

+
3

8

1

2
(
𝜑 (0)


2

+ ∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃)

+
3

8
(
3

4

𝜑 (0)

4

+
1

4
∫
0

−1

𝜑 (𝜃)

4

𝑑𝜃)]

− 𝜑 (0) +
1

8
∫
0

−1

𝜑 (𝜃) 𝑑𝜃

2

+
1

4
∫
0

−1

𝜑 (𝜃)

4

𝑑𝜃 + 2𝑐
2

≤ 2𝑐
2

−
45

8

𝜑 (0)

2

+
97

64
∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃 −
87

16

𝜑 (0)

4

+
7

16
∫
0

−1

𝜑 (𝜃)

4

𝑑𝜃.

(86)

Similarly,

L𝑉 (𝜑, 2)

≤ 2𝑐
2

−
29

8

𝜑 (0)

2

+
13

32
∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃 −
39

16

𝜑 (0)

4

+
23

16
∫
0

−1

𝜑 (𝜃)

4

𝑑𝜃.

(87)

Let 𝜆
1
= 29/8, 𝜆

2
= 97/64, 𝜆

3
= 39/16, and 𝜆

4
= 23/16.

Then we have from (86), and (87) for each 𝑖 ∈ S,

L𝑉 (𝜑, 𝑖)

≤ 2𝑐
2

− 𝜆
1

𝜑 (0)

2

+ 𝜆
2
∫
0

−1

𝜑 (𝜃)

2

𝑑𝜃 − 𝜆
3

𝜑 (0)

4

+ 𝜆
4
∫
0

−1

𝜑 (𝜃)

4

𝑑𝜃.

(88)

Then one can compute Λ = 0.5281 by Theorem 3. If 𝑐 ̸= 0,
then

lim sup
𝑡→∞

E
𝑥 (𝑡) − 𝑢 (𝑥

𝑡
, 𝑟 (𝑡))


2

≤
2𝑐

2

0.5281
,

lim sup
𝑡→∞

1

𝑡
∫
𝑡

0

E|𝑥 (𝑠)|
4

𝑑𝑠 ≤
2𝑐

2

𝜆
3
− 𝜆

4

.

(89)

If 𝑐 = 0, the solution to HNSDDE (83) has the property

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
2

)

𝑡
≤ −0.5281. (90)

Example 2. Consider the HNSDDE:

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(91)

where the functions 𝑁(𝑦, 1) = 1/3𝑦, 𝑁(𝑦, 2) = 1/4𝑦,
𝐹(𝑥, 𝑦, 1) = −2𝑥 − 3𝑥

3

+ 𝑦/4, 𝐹(𝑥, 𝑦, 2) = −3𝑥 − 4𝑥
3

+ 𝑦/2,
𝐺(𝑥, 𝑦, 1) = 1/2𝑦

2, and 𝐺(𝑥, 𝑦, 2) = 𝑦/2. Let 𝑉(𝑥, 𝑖) = 𝑞
𝑖
|𝑥|

2

for 𝑞
1
= 1, 𝑞

2
= 0.5. Then one can compute

𝐿𝑉 (𝑥, 𝑦, 1) ≤ −
41

2
𝑥
2

+
23

24
𝑦
2

−
21

4
𝑥
4

+
1

6
𝑦
4

,

𝐿𝑉 (𝑥, 𝑦, 2) ≤ −
29

16
𝑥
2

+
31

64
𝑦
2

−
13

4
𝑥
4

+
1

4
𝑦
4

.

(92)

Then we have from (92) that for 𝑖 ∈ S

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ −
29

16
𝑥
2

+
23

24
𝑦
2

−
13

4
𝑥
4

+
1

4
𝑦
4

. (93)

One can compute Λ = 0.2767 by Corollary 11. Then the
solution to HNSDDE (91) has the property

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
2

)

𝑡
≤ −0.2767. (94)
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