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Based on the basic idea of the homotopy perturbation method which was proposed by Jihuan He, a target controllable image
segmentation model and the corresponding multiscale wavelet numerical method are constructed. Using the novel model, we can
get the only right object from themultiobject images, which is helpful to avoid the oversegmentation and insufficient segmentation.
The solution of the variationalmodel is the nonlinear PDEs deduced by the variational approach. So, the bottleneck of the variational
model on image segmentation is the lower efficiency of the algorithm. Combining the multiscale wavelet interpolation operator
and HPM, a semianalytical numerical method can be obtained, which can improve the computational efficiency and accuracy
greatly.The numerical results on some images segmentation show that the novel model and the numerical method are effective and
practical.

1. Introduction

In general, choosing different parameters in the most com-
mon image segmentation methods usually leads to different
image segmentation results [1]. In other words, the object
segmentation results are uncontrollable by the common
methods. To solve the problem, one of the most common
strategies is choosing thresholds using prior knowledge or
analyzing the distribution of gray values of an image with
the gray value histogram. Another method is image enhance-
ment, which can often destroy the contour of the objects.

The variational method on image segmentation is a new
image processing technology, which processes lots of better
properties in processing medical images such as MRI and
CI [2]. In this method, the pictures are taken as continuous
energetic fields, and so the corresponding information in dig-
ital images such as gradient, divergence, and the curvature of
the object contour can be viewed as the differential operators
embedded in the variational model on image processing.The
traditional complicated image processing such as denoising
with texture preserving and exact segmentation can be done
by this model.The outstanding work of this field is the energy
function for image segmentation proposed by Mumford and

Shah, which has been widely used, and its mathematical
properties are well analyzed. This is a general approach on
image segmentation, where it is assumed that objects can
be characterized by smooth surfaces or volumes in three
dimensions. In order to solve theMumford-Shahmodel with
the Euler-Lagrange method, a simplified model was deduced
by Chan and Vese, in which the Euclid length was employed
instead of the Hausdorff length [3]. So, the simplified model
is also called Chan-Vese model. Similar to other image
segmentationmethods, Chan-Vesemodel cannot identify the
object as well. Multilevel set approach for solving C-V model
can segment all the objects in a picture. But it will obviously
lead to oversegmentation [4].

In many cases, the purpose of the image segmentation is
to get one special single object instead of all the objects in
a multiobject image. Therefore, the purpose of this paper is
to construct a target controllable image segmentation model
based on the basic idea of homotopy perturbation technology
(HPM). Using the variational method, the optimal solution
of the energy function can be expressed as a nonlinear
partial differential equation. So, another task of this study
is to construct an effective numerical method on nonlinear
PDEs by combining the multiscale wavelet interpolation
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(a) Original image (b) 10 iteration times

(c) 50 iteration times (d) 500 iteration times

(e) 750 iteration times (f) 1000 iteration times

Figure 1: Multiobject image segmentation at 𝑘 = 1 (𝜆
1
= 𝜆
2
= 10, Δ𝑡 = 10).

operator and the homotopy perturbationmethod.Thehomo-
topy perturbation method (HPM) proposed by He [5, 6]
is constantly being developed and applied to solve various
nonlinear problems by He [7–15] and by others [16–20]. The
better improvement is adding an auxiliary parameter into the
homotopy equation, which is helpful to eliminate the secular
term in the perturbation solution.This can improve the rate of
convergence greatly. Unlike analytical perturbationmethods,
HPM does not depend on small parameter which is difficult
to find. The variational iteration method was another simple
and effective method for nonlinear equations proposed by
He [21–26], which can provide analytical approximations to
a rather wide class of nonlinear equations [27–33] without
linearization, perturbation, or discretization which can result
in massive numerical computation. In order to solve the
nonlinear PDEs, it is necessary to introduce the wavelet
numerical algorithm [34–37] into HPM.

2. Construction of Target Controllable Image
Segmentation Model

In order to solve the Mumford-Shah model with the Euler-
Lagrange method, a simplified model was deduced by Chan

and Vese, in which the Euclid length was employed instead of
theHausdorff length.This simplifiedmodel can also be called
the Chan-Vese model, which can be expressed as follows:
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(1)

where 𝜆
1
and 𝜆

2
are positive constants and 𝑐

1
and 𝑐
2
are the

average gray level values inside (Ω
1
) and outside (Ω

2
) of the

object contour, respectively. 𝐼
0
denotes the image to process,

|𝐶| is the length of the object contour, and 𝜈 is the weight
parameter. According to the level set method, the contour
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curves of the objects should be embedded into the level set
function as follows:

𝐶 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) = 0} ,

Ω
1
= {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) > 0} ,

Ω
2
= {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) < 0} .

(2)

Then, the level set-based C-V model can be rewritten as
follows:

𝐸 (𝑐
1
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2
, 𝜙) = 𝜆
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0, 𝜙 < 0 ,
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(3)

Using the variational method, the PDEs with respect to the
variable 𝜙 can be obtained as follows:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [𝜈div(
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] .

(4)

Obviously, div(∇𝜙/|∇𝜙|) is the curvature of the level set
function 𝜙, and 𝛿

𝜀
(𝜙) is used to constrain the growth of the

level set function.
The solution of (4) is the level set function 𝜙(𝑥, 𝑦, 𝑡) at

time 𝑡. The zero level set is the object contour curve, which
can be obtained by solving 𝜙(𝑥, 𝑦, 𝑡) = 0.

In the following, what we are talking about is how to
construct the target controllable image segmentation model
based on the basic idea of HPM. It is easy to understand
that the function of the curvature in C-V model is just to
preserve the smoothness of the object contour. Neglecting
the curvature in (4), the simplified model can be obtained as
follows:

𝜕𝜙
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= 𝛿
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(𝜙) [−𝜆
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] . (5)

In solving the C-V model with HPM and iteration method,
the average gray level values inside and outside of the contour
curves 𝑐

1
and 𝑐

2
vary with the evolution of the level set

function. This evolution will end up with that the contour
curve coincides with the object boundary. Then, 𝑐

1
and 𝑐
2

become constants, and the right hand of (5) should equal
zero; that is,
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. (6)

In general, 𝜆
1
and 𝜆

2
are constant, which are correlated to 𝑐

1

and 𝑐
2
obviously.

It is easy to understand that the segmentation results and
the values of 𝑐

1
/𝑐
2
are in one-to-one correspondence with

each other. So, the object segmentation can be controlled by
the value of (𝜆

1
/𝜆
2
). Let 𝑘 = 𝜆

1
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2
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1
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2
, and substitute

𝑘,𝑚 into (5), we can obtain

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [(1 − 𝑘) 𝐼

2

0
− 2𝐼
0
𝑐
2
(1 − 𝑘𝑚) + 𝑐

2

2
(1 − 𝑘𝑚

2
)] .

(7)

Let
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It is obviously that 𝐹(𝐼
0
) = 0 is the necessary condition

for the functional extremum problem about C-V model. The
solution of the necessary condition is

𝐼
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(9)

In the end of the image segmentation processing, the gray
level value 𝐼

0
of the pixel inside the object contour equals

𝑐
2
; that is, 𝐼

0
= 𝑐
2
(in Ω

2
). Then, the relation between the

parameter 𝑘 and the average gray level value of the image can
be expressed as
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)

2
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2
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2

. (10)

In the end of the image segmentation procedure, the final 𝑐
1

and 𝑐
2
should be coincident with average gray level values

inside and outside of the segmentation target, respectively.
They can be determined in advance by the priori knowledge.
But in the beginning of the image segmentation processing,
𝑐
1
and 𝑐
2
are the average gray level values inside and outside

of the zero level set, respectively. They are determined by the
position of the level set function, which is random in most
cases. It is easy to understand that there is a continuous map
between the two cases, that is, the connection between the
two cases can be set up by the HPM. In other words, the
parameter 𝑘 in (10) can be taken as the homotopy parameter;
then, a linear homotopy function for (4) can be constructed
as
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(11)
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(a) 10 iteration times (b) 1000 iteration times

Figure 2: Multitarget image segmentation with target controllable model.

where the homotopy parameter 𝑝 ∈ [1, 𝑘], 𝑘 is determined by
the final 𝑐

1
and 𝑐
2
based on the priori knowledge in advance

and 𝜈 is a weight parameter. 𝛼 is an auxiliary parameter,
which can be identified by eliminating the secular term in the
perturbation analytical solution.

Equation (11) is the target controllable image segmen-
tation model. It should be pointed out that the auxiliary
parameter 𝛼 appearing in this model is set to zero, as there
is no any secular term in the perturbation analytical solution.

3. HPM on Nonlinear System Based on the
Multilevel Wavelet Analysis

3.1. Wavelet Numerical Discretization Schemes on C-V Model.
Thedefinition domain of the image is defined as (𝑥min, 𝑥max)×

(𝑦min, 𝑦max), which should be divided evenly into 2
𝑗
× 2
𝑗 (𝑗

is the level number) subdomains according to the wavelet
collocation method. The connection nodes between two
adjoining subdomains are the discretization points defined as
(𝑥
𝑗

𝑘
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𝑗

𝑘
2
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(12)

In addition, 𝑤𝑗(𝑚,𝑛)
𝑘1,𝑘2

(𝑥, 𝑦) denotes the multiscale wavelet
function and the corresponding 𝑚th and 𝑛th derivatives
with respect to 𝑥 and 𝑦, respectively. The level set function
𝜙(𝑥, 𝑦, 𝑡) and the corresponding derivative function can be
descretized as follows:
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where 𝑗 and 𝐽 are constants, which denote the wavelet scale
number and the maximum of the scale number, respectively.
𝛼
1

𝑗,𝑘
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,𝑘
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, 𝛼2
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, and 𝛼
3

𝑗,𝑘
11
,𝑘
12

are the wavelet coefficients at
the discretization point (𝑥𝑗
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According to above definitions, the curvature of the level

set 𝜙(𝑥, 𝑦, 𝑡) can be expressed approximately as
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Substituting (14) and (13) into (11), we obtain

𝜕𝜙
𝐽
(𝑥, 𝑦, 𝑡)

𝜕𝑡
− 𝛿
𝜀
(𝜙
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× [𝜈div(
∇𝜙
𝐽
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∇𝜙
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1


2

]
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𝜀
(𝜙
𝐽
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2


2

= 0.

(15)

Obviously, (15) is a nonlinear ordinary differential equa-
tion.
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(a) C-V model (b) Target controllable model

Figure 3: Special object segmentation.

Figure 4: Locust’s coelom image segmentation results by the target
controllable model.

3.2. HPM on Discretization Format of C-V Model. There are
various ways to construct a homotopy function. For (15), a
linear homotopy function can be constructed as

𝑑𝜙
𝐽
(𝑥, 𝑦, 𝑡)

𝑑𝑡
= (1 − 𝜀) 𝐹

𝑛
+ 𝜀𝐹
𝑛+1

, 𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] , (16)

where

𝐹
𝑛
= 𝛿
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𝑛
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2


2

] , 𝑛 ∈ Z,

(17)

where 𝜈 is the weight parameter. According to the perturba-
tion theory, the solution of (16) can be expressed as the power
series expansion of 𝑝

𝜙
𝐽
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2
𝜙
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Substituting (18) into (16) and rearranging based on powers
of 𝜀-terms, we have

𝜀
0
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where 𝑓
1
and 𝑓

2
are functions with respect to 𝜀

1 and 𝜀
2,

respectively. It is easy to identify the homotopy parameter as
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𝑛
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𝑛
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Thus, based on the definition of the Taylor series, 𝜙𝐽
1
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Substituting 𝜙𝐽
0
(𝑥, 𝑦, 𝑡) and 𝜙

𝐽

1
(𝑥, 𝑦, 𝑡) into (18) and assuming

𝜀 = 1, the numerical solution of (16) can be obtained
subsequently:
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𝑛
) . (22)

Then, the wavelet coefficient can be obtained as follows:
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0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)) ] ,

𝛼
2

𝑗,𝑘1,𝑘2
(𝑡
𝑛+1

) = 𝜙
𝐽
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
, 𝑡
𝑛+1

)

− [

1

∑

𝑘01=0

1

∑

𝑘02=0

𝜙
𝐽
(𝑥
0

𝑘01
, 𝑦
0

𝑘02
, 𝑡
𝑛+1

)

× 𝑤
0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)) ] ,

𝛼
3

𝑗,𝑘1,𝑘2
(𝑡
𝑛+1

) = 𝜙
𝐽
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
, 𝑡
𝑛+1

)

− [

1

∑

𝑘01=0

1

∑

𝑘02=0

𝜙
𝐽
(𝑥
0

𝑘01
, 𝑦
0

𝑘02
, 𝑡
𝑛+1

)

× 𝑤
0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)) ] ,

(23)

where

𝑥
𝑗

𝑘
= 𝑥min +

𝑥max − 𝑥min
2𝑗

, 𝑦
𝑗

𝑘
= 𝑦min +

𝑦max − 𝑦min
2𝑗

.

(24)

𝑤
𝑗

𝑘1,𝑘2
(𝑥, 𝑦) is the quasi-Shannon wavelet function; that is,

𝑤
𝑗

𝑘1,𝑘2
(𝑥, 𝑦) =

sin [(𝜋/Δ𝑗
1
) (𝑥 − 𝑥

𝑗

𝑘1
)]

(𝜋/ΔΔ𝑗
1
) (𝑥 − 𝑥

𝑗

𝑘1
)

×
sin [(𝜋/Δ𝑗

2
) (𝑦 − 𝑦

𝑗

𝑘2
)]

(𝜋/Δ𝑗
2
) (𝑦 − 𝑦

𝑗

𝑘2
)

× exp(−
1

2𝑟2

(𝑥 − 𝑥
𝑗

𝑘1
)
2

(Δ𝑗
1
)
2

)

× exp(−
1

2𝑟2

(𝑦 − 𝑦
𝑗

𝑘2
)
2

(Δ𝑗
2
)
2

) ,

Δ𝑗
1
=
𝑥max − 𝑥min

2𝑗
, Δ𝑗

2
=
𝑦max − 𝑦min

2𝑗
.

(25)
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Substituting the three wavelet coefficients into (16),
𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡
𝑛+1

) can be obtained; then we can obtain
𝐹
𝑛+1

as follows:

𝐹
𝑛+1

= 𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
))

× [𝜈div(
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
)


∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
)


) −
𝐼0 − 𝑐

1


2

+𝑝
𝐼0 − 𝑐

2


2

] , 𝑛 ∈ Z.

(26)

At last, we can obtain the image segmentation result ex-
pressed in the level set as follows:

𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
) = 𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛
) +

𝑡
𝑛+1

− 𝑡
𝑛

2
(𝐹
𝑛
+ 𝐹
𝑛+1

) . (27)

4. Numerical Experiences and Discussion

In this section, we take some multiobject images as examples
to illustrate the efficiency of the target controllable image seg-
mentationmodel comparedwith the C-Vmodel.The original
image showed in Figure 1 consisted of three geometrical solid
objects. The color of the background is white, and whole area
is 1.The gray level values and the areas of the three objects are
showed in Table 1. The image segmentation aims to get the
circular and the rectangular objects. In other words, we want
to take the black elliptical object as the background.

The segmentation results of C-V model are showed in
Figure 1. With the increasing of the iteration times, the rect-
angular object becomes a part of the background gradually
instead of the elliptical object, which does not meet our
requirement obviously.

The segmentation results with the target controllable
model are showed in Figure 2. The final 𝑐

1
= 255 × 0.7976/

(0.7976 + 0.0568) = 238.05, and 𝑐
2

= (163 × 0.0723 + 7 ×

0.0733)/(0.0723 + 0.0733) = 86.464. It should be pointed out
that the final 𝑐

1
and 𝑐
2
can be obtained by priori knowledge in

most cases. At the beginning of the segmentation, all the three
objects are obtained as the foreground.With the increasing of
the iteration times, the black object is gradually pushed into
the background and out of the object region.

Figure 3 is an enlarged local image of the locust body
cavity. The objects have an irregular shape with a slightly
serrated border which can introduce over an insufficient
segmentation. So it is difficult to segmentwith othermethods.
Using the target controllable model, we can get the right
object easily. This example shows that the novel model and
the corresponding numerical method are practical. Indeed,
the novel model has been used to segment the locust’s coelom
images (Figure 4).

5. Conclusions

C-V model is a kind of the modified Mumford-Shah model
which has been widely used in medical images, and its

Table 1: The gray level values and areas of all objects.

Ellipse Circle Squareness Background
Gray level value 0 163 7 255
Area 0.0568 0.0723 0.0733 0.7976

mathematical properties are well analyzed. But the segmen-
tation result is usually uncontrollable. The target controllable
image segmentation model proposed in this paper is based
on the idea of HPM. The numerical experiences show that
the novel model and the corresponding numerical algorithm
are effective and practical. It meets the requirement of the
medical images segmentation.
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