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The aim of this paper is to extend the work of Sun et al. (2012) to a more general case for a wider range of function classes of 𝑓 and
𝑔. Our results include the case of the previous work, which are essential improvement of the work of Sun et al. (2012), especially.

1. Introduction

Fractional calculus can give a more vivid and accurate
description of problems in various fields of sciences than
the traditional calculus [1–3]. Recently many complicated
dynamic phenomena were modeled by fractional order cal-
culus system and have received more and more attention; see
[4–16].

In recent work [12], Sun et al. studied the existence and
uniqueness of solutions for a coupled system of multiterm
nonlinear fractional differential equations with an initial
value condition
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{1, 2, . . . , 𝑁},D is the standardRiemann-Liouville derivative,
and 𝑓, 𝑔 : [0, 1] × R𝑁+1 → R are given functions. In order
to obtain the existence and uniqueness of solutions of (1), the
following growth conditions are introduced in [12].
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However, there are many functions which cannot satisfy
conditions (H1) and (H2); for example,
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Hence the results of [12] are limited only to a small subset of
functionswhich satisfy (H1) and (H2).This paper thus aims to
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extend the work of Sun et al. [12] to a more general case with
more general conditions on𝑓 and𝑔. Ourmajor contributions
of this paper include three aspects.

(1) We extend the function classes to more general case;
that is, the power growth assumptions (H1) and (H2)
are replaced by a very general assumption where
the functions 𝜙 (|𝑥

0
|, |𝑥
1
|, . . . , |𝑥
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|) and 𝜓 (|𝑥
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function classes (see (A1)), which implies that the
function classes are extended to more general case
and also include the case of [12] as a special case. In
mathematics and applied science, this generalization
is important and interesting.

(2) In [12], the weight functions considered constants
𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑁
. But in physics, the influence of weight

functions for the whole system is important, so in
this work, we improve the weight functions to general
Lebesgue integral functions 𝑏(𝑡), 𝑑(𝑡) ∈ 𝐿1[0, 1],
which is also an essential improvement.

(3) In this paper, the nonlinearities 𝑓 and 𝑔 are allowed
to be exponential growth. However, in [12], the non-
linearities 𝑓 and 𝑔 are only allowed to be power
growth. It is known that in most cases exponential
growth is faster than power growth. From this aspect,
this is also a major contribution of this paper.

The remaining part of the paper is organized as follows.
In Section 2, some preliminary results including definitions,
notations, and lemmas are given. Section 3 presents the main
results and the proof of the results. In addition, an example is
given to illustrate the application of the main results.

2. Preliminaries and Lemmas

Definition 1 (see [1–3]). The fractional integral of order 𝛼 > 0
of a function 𝑥 : (𝑎, +∞) → 𝑅 is given by
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Definition 2 (see [1–3]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑥: (𝑎, +∞) → 𝑅 is
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𝛼, and 𝑡 > 𝑎, provided that the right-hand side is defined on
(𝑎, +∞).

Lemma 3 (see [1]). Assume that 𝑥 ∈ 𝐿1[0, 1] with a fractional
derivative of order 𝛼 > 0; then
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where 𝑛 = [𝛼] + 1 for 𝛼 ∉ N and 𝛼 = 𝑛 for 𝛼 ∈ N.

Let 𝐼 = [0, 1] and let 𝐶(𝐼) be the space of all continuous
functions defined on 𝐼. We define the space
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.
By Lemma 4, system (1) is equivalent to the following

coupled system of integral equations:
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3. Main Result
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Then the coupled system (1) has a solution.

Proof. Define a closed ball of Banach space𝑋 × 𝑌

𝐵 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 :
(𝑥, 𝑦)

𝑋×𝑌 ≤ 𝑅0} . (17)

We will prove that 𝑇 : 𝐵 → 𝐵. In fact, for any (𝑥, 𝑦) ∈ 𝐵, by
(A1), we have
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Thus it follows from (18) and (A2) that
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1
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2
𝜙 (𝑅
0
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0
, . . . , 𝑅

0
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0
.

(19)

In the same way, we also have
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𝑁

∑
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𝑦 (𝑡)
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1
+ 𝑙
2
𝜓 (𝑅
0
, 𝑅
0
, . . . , 𝑅

0
) ≤ 𝑅
0
.

(20)

Consequently, ‖𝑇
1
𝑥‖
𝑋

≤ 𝑅
0
and ‖𝑇

2
𝑦‖
𝑌
≤ 𝑅
0
, and then

‖𝑇‖
𝑋×𝑌

≤ 𝑅
0
for any (𝑥, 𝑦) ∈ 𝐵; that is, 𝑇 : 𝐵 → 𝐵.

By [12], we know that the operator 𝑇 is completely
continuous. Therefore, the Schauder fixed point theorem
implies that coupled system (1) has a solution in 𝐵. The proof
is completed.
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FromTheorem 5, we easily obtain the following corollar-
ies.

Corollary 6. Let 𝑓, 𝑔 : [0, 1] × R𝑁+1 → R be continuous.
Assume that

(A1) there exist nonnegative functions 𝑐, 𝑑 ∈ 𝐿1[0, 1] and
nonnegative nondecreasing functions 𝜙, 𝜓 with respect
to each variable 𝑥

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑁, such that

𝑓 (𝑡, 𝑥0, 𝑥1, . . . , 𝑥𝑁)
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 ,
𝑥1

 , . . . ,
𝑥𝑁

) ;

(21)

(A2) there exists a positive constant 𝑅
0
such that

𝜙 (𝑅
0
, 𝑅
0
, . . . , 𝑅

0
) ≤

𝑅
0

𝑘
2

,

𝜓 (𝑅
0
, 𝑅
0
, . . . , 𝑅

0
) ≤

𝑅
0

𝑙
2

,

(22)

where

𝑘
2
= max
𝑡∈𝐼

(
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

|𝑏 (𝑠)| 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝛼 − 𝜌
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1

|𝑏 (𝑠)| 𝑑𝑠) ,

𝑙
2
= max
𝑡∈𝐼

(
1

Γ (𝜎)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−1

|𝑑 (𝑠)| 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝜎 − 𝛽
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−𝛽
𝑗
−1

|𝑑 (𝑠)| 𝑑𝑠) .

(23)

Then the coupled system (1) has a solution.

Corollary 7. Let 𝑓, 𝑔 : [0, 1] × R𝑁+1 → R be continuous.
Assume that

(A∗1) there exist nonnegative functions 𝑎, 𝑐 ∈ 𝐿1[0, 1] such
that

𝑓 (𝑡, 𝑥0, 𝑥1, . . . , 𝑥𝑁)
 ≤ 𝑎 (𝑡) ,

𝑔 (𝑡, 𝑥0, 𝑥1, . . . , 𝑥𝑁)
 ≤ 𝑐 (𝑡) .

(24)

Then the coupled system (1) has a solution.

Proof. In fact, let us choose 𝑅
0
= max {𝑘

1
, 𝑙
1
}, where

𝑘
1
= max
𝑡∈𝐼

(
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

|𝑎 (𝑠)| 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝛼 − 𝜌
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1

|𝑎 (𝑠)| 𝑑𝑠) ,

𝑙
1
= max
𝑡∈𝐼

(
1

Γ (𝜎)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−1

|𝑐 (𝑠)| 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝜎 − 𝛽
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−𝛽
𝑗
−1

|𝑐 (𝑠)| 𝑑𝑠) ,

(25)

and construct a closed ball of Banach space𝑋 × 𝑌

𝐵 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 :
(𝑥, 𝑦)

𝑋×𝑌 ≤ 𝑅0} . (26)

The rest of proof is similar to Theorem 5.

Remark 8. The condition (A1) is weaker than (H1) and (H2).
Clearly, 𝜙 (|𝑥

0
|, |𝑥
1
|, . . . , |𝑥

𝑁
|) and 𝜓 (|𝑥

0
|, |𝑥
1
|, . . . , |𝑥

𝑁
|)

include 𝑐
0
|𝑥
0
|𝛾0 + 𝑐

1
|𝑥
1
|𝛾1 + ⋅ ⋅ ⋅ + 𝑐

𝑁
|𝑥
𝑁
|𝛾𝑁 and 𝑑

0
|𝑥
0
|𝜃0+

𝑑
1
|𝑥
1
|𝜃1 + ⋅ ⋅ ⋅ + 𝑑

𝑁
|𝑥
𝑁
|𝜃𝑁 , 𝜃
𝑖
, 𝛾
𝑖
̸= 1 as special cases. Moreover

(A1) also includes the case 𝜃
𝑖
= 1 or/and 𝛾

𝑖
= 1, but (H1) and

(H2) do not be allowed.

Remark 9. In Corollary 7, for the special case 𝑎, 𝑐 ∈ 𝐶[0, 1],
clearly𝑓, 𝑔 : [0, 1]×R𝑁+1 → R are continuous and bounded.
This leads to the Corollary 3.1 of [12].Therefore, Corollary 3.1
of [12] is only a special case of Corollary 7.

In the following, we focus on the uniqueness of the solu-
tion of the system (1).

Theorem 10. Let 𝑓, 𝑔 : [0, 1] × R𝑁+1 → R be continuous.
Assume that

(B1) there exist nonnegative functions 𝑎, 𝑐 ∈ 𝐿1[0, 1] and
nonnegative nondecreasing functions 𝜙, 𝜓 with respect
to each variable 𝑥

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑁, such that

𝑓 (𝑡, 𝑢0, 𝑢1, . . . , 𝑢𝑁) − 𝑓 (𝑡, V0, V1, . . . , V𝑁)


≤ 𝑎 (𝑡) 𝜙 (
𝑢0 − V

0

 ,
𝑢1 − V

1

 , . . . ,
𝑢𝑁 − V

𝑁

) ,

𝑔 (𝑡, 𝑢0, 𝑢1, . . . , 𝑢𝑁) − 𝑔 (𝑡, V0, V1, . . . , V𝑁)


≤ 𝑏 (𝑡) 𝜓 (
𝑢0 − V

0

 ,
𝑢1 − V

1

 , . . . ,
𝑢𝑁 − V

𝑁

) ;

(27)

(B2) for any 𝑠 > 0,

𝜙 (𝑠, 𝑠, . . . , 𝑠) ≤ 𝑠, 𝜓 (𝑠, 𝑠, . . . , 𝑠) ≤ 𝑠, (28)

andmax {𝑘2
1
, 𝑙2
1
} < 1, where
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𝑘
1
= max
𝑡∈𝐼

(
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠) 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝛼 − 𝜌
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1𝑎 (𝑠) 𝑑𝑠) ,

𝑙
1
= max
𝑡∈𝐼

(
1

Γ (𝜎)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−1𝑐 (𝑠) 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝜎 − 𝛽
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−𝛽
𝑗
−1𝑐 (𝑠) 𝑑𝑠) .

(29)

Then coupled system (1) has a unique solution.

Proof. We prove that the operator 𝑇 : 𝑋 × 𝑌 → 𝑋 × 𝑌 is
contraction. To do this, let (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ 𝑋×𝑌; we have

𝑇1𝑥2 (𝑡) − 𝑇1𝑥1 (𝑡)


=


1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝑓 (𝑠, 𝑦
2
(𝑠) ,D

𝛽
1𝑦
2
(𝑠) , . . . ,D

𝛽
𝑁𝑦
2
(𝑠)) 𝑑𝑠

−
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

×𝑓 (𝑠, 𝑦
1
(𝑠) ,D

𝛽
1𝑦
1
(𝑠) , . . . ,D

𝛽
𝑁𝑦
1
(𝑠)) 𝑑𝑠



≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠)

×𝜙 (
𝑦2 (𝑠)−𝑦1 (𝑠)

 ,
D
𝛽
1𝑦
2
(𝑠) −D

𝛽
1𝑦
1
(𝑠)
 , . . . ,

D
𝛽
𝑁𝑦
2
(𝑠) −D

𝛽
𝑁𝑦
1
(𝑠)
) 𝑑𝑠

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠)

× 𝜙 (
𝑦2 − 𝑦1

 ,
D
𝛽
1𝑦
2
−D
𝛽
1𝑦
1

 , . . . ,

D
𝛽
𝑁𝑦
2
−D
𝛽
𝑁𝑦
1

) 𝑑𝑠

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠)

× 𝜙 (
𝑦2 − 𝑦1

𝑌,
𝑦2 − 𝑦1

𝑌, . . . ,
𝑦2 − 𝑦1

𝑌) 𝑑𝑠

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠) 𝑑𝑠

𝑦2 − 𝑦1
𝑌,

D
𝜌
𝑗𝑇
1
𝑥
2
(𝑡) −D

𝜌
𝑗𝑇
1
𝑥
1
(𝑡)


=
𝐼
𝛼−𝜌
𝑗 (𝑓 (𝑡, 𝑦

2
(𝑡) ,D

𝛽
1𝑦
2
(𝑡) , . . . ,D

𝛽
𝑁𝑦
2
(𝑡))

−𝑓 (𝑡, 𝑦
1
(𝑡) ,D

𝛽
1𝑦
1
(𝑡) , . . . ,D

𝛽
𝑁𝑦
1
(𝑡)))



≤
1

Γ (𝛼 − 𝜌
𝑗
)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1

×
𝑓 (𝑡, 𝑦2 (𝑡) ,D

𝛽
1𝑦
2
(𝑡) , . . . ,D

𝛽
𝑁𝑦
2
(𝑡))

−𝑓 (𝑡, 𝑦
1
(𝑡) ,D

𝛽
1𝑦
1
(𝑡) , . . . ,D

𝛽
𝑁𝑦
1
(𝑡))

 𝑑𝑠

≤
1

Γ (𝛼 − 𝜌
𝑗
)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1𝑎 (𝑠)

× 𝜙 (
𝑦2 − 𝑦1

 ,
D
𝛽
1𝑦
2
−D
𝛽
1𝑦
1

 , . . . ,

D
𝛽
𝑁𝑦
2
−D
𝛽
𝑁𝑦
1

) 𝑑𝑠

≤
1

Γ (𝛼 − 𝜌
𝑗
)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1𝑎 (𝑠)

× 𝜙 (
𝑦2 − 𝑦1

𝑌,
𝑦2 − 𝑦1

𝑌, . . . ,
𝑦2 − 𝑦1

𝑌) 𝑑𝑠

≤
1

Γ (𝛼 − 𝜌
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1𝑎 (𝑠) 𝑑𝑠

𝑦2 − 𝑦1
𝑌.

(30)

Thus it follows from (30) and (B2) that

𝑇1𝑥2 − 𝑇1𝑥1
𝑋

= max
𝑡∈𝐼

𝑇1𝑥2 (𝑡) − 𝑇1𝑥1 (𝑡)


+
𝑁

∑
𝑗=1

max
𝑡∈𝐼

D
𝜌
𝑗 (𝑇
1
𝑥
2
(𝑡) − 𝑇

1
𝑥
1
(𝑡))



≤ (
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑎 (𝑠) 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝛼 − 𝜌
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−𝜌
𝑗
−1𝑎 (𝑠) 𝑑𝑠)

𝑦2 − 𝑦1
𝑌

≤ 𝑘
1

𝑦2 − 𝑦1
𝑌.

(31)
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Similarly, we can get
𝑇1𝑦2 (𝑡) − 𝑇1𝑦1 (𝑡)



≤
1

Γ (𝜎)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−1𝑐 (𝑠) 𝑑𝑠

𝑥2 − 𝑥1
𝑋,

D
𝛽
𝑗𝑇
1
𝑦
2
(𝑡) −D

𝛽
𝑗𝑇
1
𝑦
1
(𝑡)


≤
1

Γ (𝜎 − 𝛽
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−𝛽
𝑗
−1𝑐 (𝑠) 𝑑𝑠

𝑥2 − 𝑥1
𝑋,

𝑇1𝑦2 − 𝑇1𝑦1
𝑌

= max
𝑡∈𝐼

𝑇1𝑦2 (𝑡) − 𝑇1𝑦1 (𝑡)


+
𝑁

∑
𝑗=1

max
𝑡∈𝐼

D
𝜌
𝑗 (𝑇
1
𝑦
2
(𝑡) − 𝑇

1
𝑦
1
(𝑡))



≤ (
1

Γ (𝜎)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−1𝑐 (𝑠) 𝑑𝑠

+
𝑁

∑
𝑗=1

1

Γ (𝜎 − 𝛽
𝑗
)
∫
𝑡

0

(𝑡 − 𝑠)
𝜎−𝛽
𝑗
−1𝑐 (𝑠) 𝑑𝑠)

𝑥2 − 𝑥1
𝑋

≤ 𝑙
1

𝑥2 − 𝑥1
𝑋.

(32)

Hence, for the Euclidean distance 𝑑 on R2, we get
𝑑 (𝑇 (𝑥

2
, 𝑦
2
) , 𝑇 (𝑥

1
, 𝑦
1
))

= √
𝑇1𝑥2 − 𝑇1𝑥1


2

𝑋
+
𝑇1𝑦2 − 𝑇1𝑦1


2

𝑌

≤ √𝑘2
1

𝑥2 − 𝑥1

2

𝑋
+ 𝑙2
1

𝑦2 − 𝑇1

2

𝑌

≤ √max {𝑘2
1
, 𝑙2
1
}√
𝑥2 − 𝑥1


2

𝑋
+
𝑦2 − 𝑇1


2

𝑌

= √max {𝑘2
1
, 𝑙2
1
}𝑑 ((𝑥

2
, 𝑦
2
) , (𝑥
1
, 𝑦
1
)) .

(33)

Thus 𝑇 is a contraction since√max{𝑘2
1
, 𝑙2
1
} < 1.

By Banach contraction principle, 𝑇 has a unique fixed
point, which is a solution of the coupled system (1).The proof
is completed.

An Example. Consider the existence of solutions for the
following coupled system of multiterm nonlinear fractional
differential equations:

−D
3.5𝑥 (𝑡) =

𝑡

6.08
+

1

25.26
[𝑦 (𝑡) + 𝑒

(D0.8𝑦(𝑡))] ,

D
3.5𝑥 (0) = 0, 𝑖 = 1, 2, . . . , 4,

−D
4.2𝑦 (𝑡) =

10000

5501
[𝑡−1/2𝑥0.2 (𝑡) + 𝑡

2(D0.5𝑥 (𝑡))
0.5

] ,

D
4.2−𝑗𝑦 (0) = 0, 𝑗 = 1, 2, . . . , 5,

(34)
where 𝑡 ∈ (0, 1].

Let

𝑓 (𝑡, 𝑥
0
, 𝑥
1
) =

𝑡

6.08
+

1

25.26
[𝑥
0
+ 𝑒𝑥1] ,

𝑔 (𝑡, 𝑥
0
, 𝑥
1
) = 𝑡−1/2𝑥0.2

0
+ 𝑡2𝑥0.5
1
,

(35)

and choose

𝑎 (𝑡) =
𝑡

6.08
, 𝑏 (𝑡) =

1

25.26
,

𝜙 (𝑥
0
, 𝑥
1
) = 𝑥
0
+ 𝑒𝑥1 , 𝑐 (𝑡) = 0,

𝑑 (𝑡) =
10000

5501
[𝑡−1/2 + 𝑡2] ,

𝜓 (𝑥
0
, 𝑥
1
) = 𝑥0.2
0
+ 𝑥0.5
1
.

(36)

Then

𝑓 (𝑡, 𝑥
0
, 𝑥
1
) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) 𝜙 (𝑥

0
, 𝑥
1
) ,

𝑔 (𝑡, 𝑥
0
, 𝑥
1
) ≤ 𝑐 (𝑡) + 𝑑 (𝑡) 𝜓 (𝑥

0
, 𝑥
1
) ;

(37)

consequently, (A1) holds.
In the following, we check the condition (A1). Since

𝑘
1
= max( 1

Γ (3.5)
∫
𝑡

0

(𝑡 − 𝑠)2.5𝑠

6.08
𝑑𝑠 +

1

Γ (3)
∫
𝑡

0

(𝑡 − 𝑠)2𝑠

6.08
𝑑𝑠)

= 0.01,

𝑘
2
= max( 1

Γ (3.5)
∫
𝑡

0

(𝑡 − 𝑠)2.5

25.26
𝑑𝑠 +

1

Γ (3)
∫
𝑡

0

(𝑡 − 𝑠)2

25.26
𝑑𝑠)

= 0.01,

𝑙
1
= 0,

𝑙
2
=
10000

5501

×max( 1

Γ (4.2)
∫
𝑡

0

(𝑡 − 𝑠)
3.2 (𝑠−1/2 + 𝑠2) 𝑑𝑠

+
1

Γ (3.4)
∫
𝑡

0

(𝑡 − 𝑠)
2.4 (𝑠−1/2 + 𝑠2) 𝑑𝑠) = 1,

(38)

take 𝑅
0
= 5; we have

𝜙 (𝑅
0
, 𝑅
0
) = 𝑅
0
+ 𝑒𝑅0 = 5 + 𝑒5

= 153.44 <
𝑅
0
− 𝑘
1

𝑘
2

=
5 − 0.01

0.01
= 499,

𝜓 (𝑅
0
, 𝑅
0
) = 𝑅0.2
0
+ 𝑅0.5
0

= 50.2 + 50.5

= 3.6158 <
𝑅
0
− 𝑙
1

𝑙
2

= 5,

(39)

which implies that (A2) is satisfied. Hence, byTheorem 5, the
coupled system of fractional differential equation (34) has a
solution.
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Remark 11. In the coupled system of fractional differential
equation (34), the nonlinear function 𝑓 involves exponential
growth, but the results of [12] are only allowed to be power
growth; that is, (34) cannot be solved by using the results of
[12]. So the results obtained in this paper give a significant
improvement of the previous work in [12].
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