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The present paper considers a diffusive Nicholson’s blowflies model with multiple delays under a Neumann boundary condition.
Delay independent conditions are derived for the global attractivity of the trivial equilibrium and the positive equilibrium,
respectively. Two open problems concerning the stability of positive equilibrium and the occurrence of Hopf bifurcation are
proposed.

1. Introduction

Since blowflies are important parasites of the sheep industry
in some countries such as Australia, based on the experimen-
tal data of Nicholson [1, 2], Gurney et al. [3] first proposed
Nicholson’s blowflies equation

̇

𝑁 (𝑡) = −𝛿𝑁 (𝑡) + 𝑝𝑁 (𝑡 − 𝜏) 𝑒

−𝑎𝑁(𝑡−𝜏)

, 𝑡 > 0,
(1)

where𝑁(𝑡) is the size of the adult blowflies population at time
𝑡; 𝑝 is the maximum per capita daily egg production rate; 1/𝑎
is the size at which the blowflies population reproduces at its
maximum rate; 𝛿 is the per capita daily adult death rate; 𝜏
is the generation time. For this equation, global attractivity
and oscillation of solutions have been investigated by several
authors (see [4–9]).

It is impossible that the size of the adult blowflies popula-
tion is independent of a spatial variable; therefore, Yang and
So [10] investigated both temporal and spatial variations of
the diffusive Nicholson’s blowflies equation

𝜕𝑁 (𝑡, 𝑥)

𝜕𝑡

= Δ𝑁 (𝑡, 𝑥) − 𝛿𝑁 (𝑡, 𝑥)

+ 𝑝𝑁 (𝑡 − 𝜏, 𝑥) 𝑒

−𝑎𝑁(𝑡−𝜏,𝑥)

,

in 𝐷 ≜ (0,∞) × Ω

(2)

under Neumann boundary condition and gave the similar
sufficient conditions for oscillation of all positive solutions

about the positive steady state. Whereafter, many authors
studied the various dynamical behaviors for this equation; we
refer to Lin and Mei [11], Saker [12], Wang and Li [13], and Yi
and Zou [14].

Meanwhile, one can consider a nonlinear equation with
several delays because of variability of the generation time; for
this purpose, Györi and Ladas [15] and Kulenović and Ladas
[6] proposed the following generalized Nicholson’s blowflies
model:

𝑁



(𝑡) = −𝛿𝑁 (𝑡) +

𝑛

∑

𝑖=1

𝑝

𝑖

𝑁(𝑡 − 𝜏

𝑖

) 𝑒

−𝑎𝑖𝑁(𝑡−𝜏𝑖)

, 𝑡 > 0. (3)

Luo and Liu [16] studied the global attractivity of the nonneg-
ative equilibria of (3).

It is of interest to investigate both several temporal and
spatial variations of the blowflies population using mathe-
matical models. Hereby, in this paper, we consider the follow-
ing system:

𝜕𝑁 (𝑡, 𝑥)

𝜕𝑡

= Δ𝑁 (𝑡, 𝑥) − 𝛿𝑁 (𝑡, 𝑥)

+

𝑛

∑

𝑖=1

𝑝

𝑖

𝑁(𝑡 − 𝜏

𝑖

, 𝑥) 𝑒

−𝑎𝑖𝑁(𝑡−𝜏𝑖 ,𝑥)

, in 𝐷

(4)
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with Neumann boundary condition

𝜕𝑁 (𝑡, 𝑥)

𝜕]
= 0, on Γ ≜ (0,∞) × 𝜕Ω,

(5)

and initial condition

𝑁(𝜃, 𝑥) = 𝜓 (𝜃, 𝑥) ≥ 0, in 𝐷

𝜏

≜ [−𝜏, 0] × Ω, (6)

where 𝜏
𝑖

≥ 0, 𝜏 = max
1≤𝑖≤𝑛

{𝜏

𝑖

}, 𝑝
𝑖

and 𝑎

𝑖

= 𝑎, 𝑖 = 1, 2, . . . , 𝑛,
are all positive constants,Ω ⊂ R𝑚 is a bounded domain with
a smooth boundary 𝜕Ω, Δ𝑁(𝑡, 𝑥) = ∑

𝑚

𝑖=1

((𝜕

2

𝑖

𝑁(𝑡, 𝑥))/(𝜕𝑥

2

𝑖

)),
(𝜕/𝜕]) denotes the exterior normal derivative on 𝜕Ω, and
𝜓(𝜃, 𝑥) is Hölder continuous in𝐷

𝜏

with 𝜓(0, 𝑥) ∈ 𝐶

1

(Ω).
Though the global attractivity of the nonnegative equilib-

ria of (2) has been studied by Yang and So [10] andWang and
Li [13, 17], they just gave some sufficient conditions. Further-
more, as far as we know, the stability for partial functional
differential equations with several delays was investigated by
few papers. Motivated by the above excellent works, in this
paper, we consider the global attractivity of the nonnegative
equilibria of the systems (4)–(6) and present some conditions
which depend on coefficients of the systems (4)–(6). When
𝑛 = 1, our results complement those in Yang and So [10] and
Wang and Li [13].

It is not difficult to see that if ∑𝑛
𝑖=1

𝑝

𝑖

≤ 𝛿, then (4)
has a unique nonnegative equilibrium 𝑁

0

≡ 0 and if
∑

𝑛

𝑖=1

𝑝

𝑖

> 𝛿, then (4) has a unique positive equilibrium𝑁

∗

=

(1/𝑎) ln((∑𝑛
𝑖=1

𝑝

𝑖

)/𝛿).
The rest of the paper is organized as follows.We give some

lemmas and definitions in Section 2 and state and prove our
main results in Section 3. In Section 4, several simulations are
obtained to testify our results, and some unsolved problems
are discussed.

2. Preliminaries

In this section,wewill give some lemmaswhich can be proved
by using the similar methods as those in Yang and So [10].

Lemma 1. (i) The solution 𝑁(𝑡, 𝑥) of (4)–(6) satisfies
𝑁(𝑡, 𝑥) ≥ 0 for (𝑡, 𝑥) ∈ (0,∞) × Ω.

(ii) If𝜓(𝜃, 𝑥) ̸≡ 0 on𝐷
𝜏

, then the solution𝑁(𝑡, 𝑥) of (4)–
(6) satisfies𝑁(𝑡, 𝑥) > 0 for (𝑡, 𝑥) ∈ (𝜏,∞) × Ω.

Next, we will introduce the concept of lower-upper
solution due to Redlinger [18] as adapted to (4)–(6).

Definition 2. A lower-upper solution pair for (4)–(6) is a pair
of suitably smooth function V and 𝑤 such that

(i) V ≤ 𝑤 in𝐷,
(ii) V and 𝑤 satisfy

𝜕𝑤

𝜕𝑡

≥Δ𝑤 (𝑡, 𝑥)− 𝛿𝑤+

𝑛

∑

𝑖=1

𝑝

𝑖

𝜑 (𝑡 − 𝜏

𝑖

, 𝑥)𝑒

−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

, (𝑡, 𝑥)∈𝐷,

𝜕𝑤

𝜕]
≥ 0, (𝑡, 𝑥) ∈ Γ,

𝜕V

𝜕𝑡

≤ΔV (𝑡, 𝑥)− 𝛿V +
𝑛

∑

𝑖=1

𝑝

𝑖

𝜑 (𝑡 − 𝜏

𝑖

, 𝑥) 𝑒

−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

, (𝑡, 𝑥)∈𝐷,

𝜕V

𝜕]
≤ 0, (𝑡, 𝑥) ∈ Γ

(7)

for all 𝜑 ∈ 𝐶(𝐷

𝜏

∪𝐷)with V ≤ 𝜑 ≤ 𝑤, (𝑡, 𝑥) ∈ 𝐷

𝜏

∪𝐷,
and

(iii) V(𝜃, 𝑥) ≤ 𝜑(𝜃, 𝑥) ≤ 𝑤(𝜃, 𝑥), (𝜃, 𝑥) ∈ 𝐷

𝜏

.

The following lemma is a special case of Redlinger [19].

Lemma 3. Let (V, 𝑤) be a lower-upper solution pair for the
initial boundary value problem (4)–(6). Then, there exists a
unique regular solution𝑁(𝑡, 𝑥) of (4)–(6) such that V ≤ 𝑁 ≤ 𝑤

on𝐷

𝜏

∪ 𝐷.

The following lemma gives us boundedness of the solu-
tion𝑁(𝑡, 𝑥).

Lemma 4. (i) The solution𝑁(𝑡, 𝑥) of (4)-(6) satisfies

lim sup
𝑡→∞

𝑁(𝑡, 𝑥) ≤

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥. (8)

(ii) There exists a constant 𝐾 = 𝐾(𝜓) ≥ 0 such that
𝑁(𝑡, 𝑥) ≤ 𝐾 on𝐷

𝜏

∪ 𝐷.

Proof. Let 𝑤(𝑡) be the solution of the following Cauchy
problem:

𝑑𝑤

𝑑𝑡

= −𝛿𝑤 +

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒

, 𝑡 > 0,

𝑤 (0) = max
(𝜃,𝑥)∈𝐷𝜏

𝜓 (𝜃, 𝑥) .

(9)

Solving the equation, we have

𝑤 (𝑡) =

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

+ 𝑒

−𝛿𝑡

(𝑤 (0) −

𝑛

∑

𝑖=1

𝑝i
𝑎𝑒𝛿

) , 𝑡 ≥ 0. (10)

Taking

𝑤 (𝑡) =

{

{

{

𝑤 (0) , 𝑡 ∈ [−𝜏, 0] ,

𝑤 (𝑡) , 𝑡 > 0,

(11)

then (𝑤(𝑡), 0) is a lower-upper solution pair for (4)–(6). In
fact, for any 𝜑 ∈ 𝐶(𝐷

𝜏

∪𝐷)with 0 ≤ 𝜑 ≤ 𝑤(𝑡), (𝑡, 𝑥) ∈ 𝐷

𝜏

∪𝐷,
one can get

𝜕𝑤 (𝑡)

𝜕𝑡

− Δ𝑤 (𝑡) + 𝛿𝑤 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝜑 (𝑡 − 𝜏

𝑖

, 𝑥) 𝑒

−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≥

𝜕𝑤 (𝑡)

𝜕𝑡

+ 𝛿𝑤 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒

=

𝑑𝑤

𝑑𝑡

+ 𝛿𝑤 −

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒

= 0.

(12)
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By Lemma 3, there is a unique regular solution 𝑁(𝑡, 𝑥) such
that

0 ≤ 𝑁 (𝑡, 𝑥) ≤ 𝑤 (𝑡) , (𝑡, 𝑥) ∈ 𝐷

𝜏

∪ 𝐷. (13)

Note that

lim
𝑡→+∞

𝑤 (𝑡) = lim
𝑡→+∞

𝑤 (𝑡) =

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

. (14)

Therefore, the formula (8) is correct, and there exists one
𝐾(𝜓) > 0 such that 𝑤(𝑡) ≤ 𝐾(𝜓) for any 𝑡 ∈ (−𝜏,∞) and

0 ≤ 𝑁 (𝑡, 𝑥) ≤ 𝐾 (𝜓) , (𝑡, 𝑥) ∈ 𝐷

𝜏

∪ 𝐷. (15)

So we complete Lemma 4.

3. Main Results and Proofs

Theorem 5. Assume that ∑𝑛
𝑖=1

𝑝

𝑖

≤ 𝛿, then every solution
𝑁(𝑡, 𝑥) of (4)–(6) tends to 𝑁

0

= 0 (uniformly in 𝑥) as 𝑡 →

+∞.

Proof. By Lemma 4, without loss of generality, let 0 <

𝑁(𝑡, 𝑥) ≤ ∑

𝑛

𝑖=1

(𝑝

𝑖

/𝑎𝑒𝛿) for (𝑡, 𝑥) ∈ 𝐷

𝜏

∪ 𝐷. Under the
condition∑

𝑛

𝑖=1

𝑝

𝑖

≤ 𝛿, we can get

0 < 𝑁 (𝑡, 𝑥) ≤

1

𝑎𝑒

<

1

𝑎

for (𝑡, 𝑥) ∈ 𝐷

𝜏

∪ 𝐷. (16)

Define𝑚(𝑡) and 𝑦(𝑡) to be the solutions of the following two
delay equations, respectively:

𝑚



(𝑡) = − 𝛿𝑚 (𝑡) +

𝑛

∑

𝑖=1

𝑝

𝑖

𝑚(𝑡 − 𝜏

𝑖

) 𝑒

−𝑎𝑚(𝑡−𝜏𝑖)

, 𝑡 > 0,

𝑚 (𝜃) = min
𝑥∈Ω

𝜓 (𝜃, 𝑥) , 𝜃 ∈ [−𝜏, 0] ,

𝑦



(𝑡) = − 𝛿𝑦 (𝑡) +

𝑛

∑

𝑖=1

𝑝

𝑖

𝑦 (𝑡 − 𝜏

𝑖

) 𝑒

−𝑎𝑦(𝑡−𝜏𝑖)

, 𝑡 > 0,

𝑦 (𝜃) = max
𝑥∈Ω

𝜓 (𝜃, 𝑥) , 𝜃 ∈ [−𝜏, 0] .

(17)

By using the similar methods to prove Lemma 4, we can get
that

lim sup
𝑡→∞

𝑚(𝑡) ≤

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

<

1

𝑎

, lim sup
𝑡→∞

𝑦 (𝑡) ≤

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

<

1

𝑎

(18)

under the condition ∑

𝑛

𝑖=1

𝑝

𝑖

≤ 𝛿, and here 𝑚(𝑡) and 𝑦(𝑡) are
the solutions of (17).

Because of𝑁(𝑡, 𝑥) < 1/𝑎, for any 𝜑 ∈ 𝐶(𝐷

𝜏

∪ 𝐷),𝑚(𝑡) ≤

𝜑 ≤ 𝑦(𝑡) < 1/𝑎, one can get

𝜕𝑚 (𝑡)

𝜕𝑡

− Δ𝑚 (𝑡) + 𝛿𝑚 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝜑 (𝑡 − 𝜏

𝑖

, 𝑥) 𝑒

−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≤

𝜕𝑚 (𝑡)

𝜕𝑡

+ 𝛿𝑚 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝑚(𝑡 − 𝜏

𝑖

) 𝑒

−𝑎𝑚(𝑡−𝜏𝑖)

= 0,

𝜕𝑦 (𝑡)

𝜕𝑡

− Δ𝑦 (𝑡) + 𝛿𝑦 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝜑 (𝑡 − 𝜏

𝑖

, 𝑥) 𝑒

−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≥

𝜕𝑦 (𝑡)

𝜕𝑡

+ 𝛿𝑦 (𝑡) −

𝑛

∑

𝑖=1

𝑝

𝑖

𝑦 (𝑡 − 𝜏

𝑖

) 𝑒

−𝑎𝑦(𝑡−𝜏𝑖)

= 0.

(19)

Therefore, from Definition 2, (𝑚(𝑡), 𝑦(𝑡)) is a lower-upper
pair of (4)-(5) with initial condition 𝑚(𝜃) ≤ 𝜓(𝜃, 𝑥) ≤ 𝑦(𝜃)

on𝐷

𝜏

. Consequently, by Lemma 3, we have

𝑚(𝑡) ≤ 𝑁 (𝑡, 𝑥) ≤ 𝑦 (𝑡) on [−𝜏, +∞) × Ω. (20)

ByTheorem 1 of Luo and Liu [16], it follows from∑

𝑛

𝑖=1

𝑝

𝑖

≤ 𝛿

that the solutions𝑚(𝑡) and 𝑦(𝑡) of (17) both satisfy

lim
𝑡→∞

𝑚(𝑡) = 0, lim
𝑡→∞

𝑦 (𝑡) = 0. (21)

Hence, we complete the proof of Theorem 5.

Theorem 6. If 1 < ∑

𝑛

𝑖=1

(𝑝

𝑖

/𝛿) ≤ 𝑒, then every nontrivial solu-
tion𝑁(𝑡, 𝑥) of (4)–(6) satisfies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁

∗

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥. (22)

Proof. Let 𝑓(𝑥) = 𝑥𝑒

−𝑎𝑥, then the function 𝑓(𝑥) is increasing
on (0, (1/𝑎)) and decreasing on ((1/𝑎), +∞), 𝑓(1/𝑎) =

max
𝑥∈[0,∞)

𝑓(𝑥), 𝑁∗ = (1/𝑎) ln(∑𝑛
𝑖=1

(𝑝

𝑖

/𝛿)) ≤ 1/𝑎 for 1 <

∑

𝑛

𝑖=1

(𝑝

𝑖

/𝛿) ≤ 𝑒. Let 𝑔(𝑦) = ∑

𝑛

𝑖=1

𝑝

𝑖

𝑓(𝑦), then it is not
difficult to verify that the function 𝑔(𝑦) satisfies the following
conditions:

(𝑔

1

) the function 𝑔(𝑦) is increasing on (0, (1/𝑎)) and
decreasing on ((1/𝑎), +∞), max

𝑥∈[0,∞)

𝑔(𝑥) =

𝑔(1/𝑎) = ∑

𝑛

𝑖=1

(𝑝

𝑖

/𝑎𝑒),
(𝑔

2

) 𝑔(𝑦) > 𝛿𝑦 for 𝑦 ∈ (0,𝑁

∗

) and 𝑔(𝑦) < 𝛿𝑦 for 𝑦 ∈

(𝑁

∗

, +∞).

There are now two possible cases to consider.

Case 1 (𝑁∗ < 1/𝑎). In view of Lemma 4, we may also assume
without loss of generality that every solution 𝑁(𝑡, 𝑥) of (4)–
(6) satisfies

0 ≤ 𝑁 (𝑡, 𝑥) ≤

𝑔 (1/𝑎)

𝛿

=

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

<

1

𝑎

, on 𝐷

𝜏

∪ 𝐷.

(23)
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Let 𝑁(𝑡) = min
𝑥∈Ω

𝑁(𝑡, 𝑥), 𝑁(𝑡) = max
𝑥∈Ω

𝑁(𝑡, 𝑥), 𝑁 =

lim inf
𝑡→∞

𝑁(𝑡) and𝑁 = lim sup
𝑡→∞

𝑁(𝑡). By (23), we have

0 ≤ 𝑁 ≤ 𝑁 ≤

𝑔 (1/𝑎)

𝛿

=

𝑛

∑

𝑖=1

𝑝

𝑖

𝑎𝑒𝛿

<

1

𝑎

. (24)

From Lemma 1(ii), let

𝑧

0

= min{ min
(𝑡,𝑥)∈[2𝜏,∞)×Ω

𝑁(𝑡, 𝑥) ,𝑁

∗

} > 0,

𝑦

0

=

1

𝑎

.

(25)

Let 𝐼
∞

= {1, 2, . . .}. Now, we define two sequences {𝑧
𝑘

} and
{𝑦

𝑘

} to satisfy, respectively,

𝑧

𝑘

=

𝑔 (𝑧

𝑘−1

)

𝛿

, 𝑘 ∈ 𝐼

∞

,

𝑦

𝑘

=

𝑔 (𝑦

𝑘−1

)

𝛿

, 𝑘 ∈ 𝐼

∞

.

(26)

Weprove that {𝑧
𝑘

} and {𝑦
𝑘

} aremonotonic and bounded. First
of all, we prove that {𝑧

𝑘

} is monotonically increasing, and𝑁∗
is the least upper bounded. Note (𝑔

1

) and (𝑔

2

), we have

𝑧

1

=

𝑔 (𝑧

0

)

𝛿

> 𝑧

0

, 𝑧

1

=

𝑔 (𝑧

0

)

𝛿

<

𝑔 (𝑁

∗

)

𝛿

= 𝑁

∗

.

(27)

By induction and direct computation, we have

0 < 𝑧

0

< 𝑧

1

< ⋅ ⋅ ⋅ < lim
𝑘→∞

𝑧

𝑘

= 𝑁

∗

. (28)

Similarly, we have

0 > 𝑦

0

> 𝑦

1

> ⋅ ⋅ ⋅ > lim
𝑘→∞

𝑦

𝑘

= 𝑁

∗

. (29)

Define V
1

(𝑡) and 𝑤

1

(𝑡) to be the solutions of the following
differential equations, respectively:

V


1

(𝑡) = − 𝛿 [V
1

(𝑡) − 𝑧

1

] , 𝑡 ≥ 3𝜏,

V
1

(𝜃) = 𝑧

0

< 𝑁

∗

, 𝜃 ∈ [2𝜏, 3𝜏] ,

𝑤



1

(𝑡) = − 𝛿 [𝑤

1

(𝑡) − 𝑦

1

] , 𝑡 ≥ 3𝜏,

𝑤

1

(𝜃) = 𝑦

0

> 𝑁

∗

, 𝜃 ∈ [2𝜏, 3𝜏] .

(30)

It follows from (24) and (25) that 𝑧
0

≤ 𝑁(𝑡, 𝑥) ≤ 𝑦

0

for any
(𝑡, 𝑥) ∈ [2𝜏,∞) ×Ω. Consider (30), for any (𝑡, 𝑥) ∈ [2𝜏,∞] ×

Ω, we have

𝜕V
1

(𝑡)

𝜕𝑡

= ΔV
1

(𝑡) − 𝛿V
1

(𝑡) + 𝑔 (𝑧

0

)

≤ ΔV
1

(𝑡) − 𝛿V
1

(𝑡) + 𝑔 (𝑁 (𝑡 − 𝜏, 𝑥)) ,

𝜕𝑤

1

(𝑡)

𝜕𝑡

= Δ𝑤

1

(𝑡) − 𝛿𝑤

1

(𝑡) + 𝑔 (𝑦

0

)

≥ Δ𝑤

1

(𝑡) − 𝛿𝑤

1

(𝑡) + 𝑔 (𝑁 (𝑡 − 𝜏, 𝑥)) .

(31)

Therefore, from Definition 2, (V
1

(𝑡), 𝑤

1

(𝑡)) is a lower-upper
pair of (4)-(5) with initial condition 𝑧

0

≤ 𝑁(𝑡, 𝑥) ≤ 𝑦

0

on
[2𝜏, 3𝜏] × Ω. Consequently, by Lemma 3, we have

V
1

(𝑡) ≤ 𝑁 (𝑡, 𝑥) ≤ 𝜔

1

(𝑡) on [2𝜏,∞] × Ω. (32)

Note that 𝑤

1

(𝑡) is monotonically decreasing for 𝑡 ≥

3𝜏 and lim
𝑡→∞

𝑤

1

(𝑡) = 𝑦

1

, while V
1

(𝑡) is monotonically
increasing for 𝑡 ≥ 3𝜏 and lim

𝑡→∞

V
1

(𝑡) = 𝑧

1

. Hence,

𝑧

1

= lim
𝑡→∞

V
1

(𝑡) ≤ 𝑁 ≤ 𝑁 ≤ lim
𝑡→∞

𝑤

1

(𝑡) = 𝑦

1

. (33)

Define V
𝑛

(𝑡) and 𝑤

𝑛

(𝑡) to be the solutions of the following
differential equations, respectively:

V


𝑛

(𝑡) = − 𝛿 [V
𝑛

(𝑡) − 𝑧

𝑛

] , 𝑡 ≥ 3𝜏,

V
𝑛

(𝜃) = 𝑧

𝑛−1

< 𝑁

∗

, 𝜃 ∈ [2𝜏, 3𝜏] ,

𝑤



𝑛

(𝑡) = − 𝛿 [𝑤

𝑛

(𝑡) − 𝑦

𝑛

] , 𝑡 ≥ 3𝜏,

𝑤

𝑛

(𝜃) = 𝑤

𝑛−1

< 𝑁

∗

, 𝜃 ∈ [2𝜏, 3𝜏] .

(34)

Repeating the above procedure, we have the following rela-
tion:

𝑧

1

< 𝑧

2

< ⋅ ⋅ ⋅ < 𝑧

𝑛

≤ 𝑁 ≤ 𝑁 ≤ 𝑦

𝑛

< ⋅ ⋅ ⋅ < 𝑦

2

< 𝑦

1

. (35)

By (28) and (29), and taking limits on both sides of (35), we
have

𝑁

∗

= lim
𝑛→∞

𝑧

𝑛

≤ 𝑁 ≤ 𝑁 ≤ lim
𝑛→∞

𝑦

𝑛

= 𝑁

∗

, (36)

which implies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁

∗

, uniformly in 𝑥. (37)

Case 2 (𝑁∗ = 𝑦

0

). Similarly, let 𝑦
𝑘

= 𝑁

∗ and 𝑧

𝑘

be the same
as in the proof of Case 1; we can also get (35). Hence, the proof
of Theorem 6 is complete.

Remark 7. Our main results are also valid when 𝑁 does not
depend on a spatial variable 𝑥 ∈ Ω in (4).

4. Numerical Simulations and Discussion

In this section, we will give some numerical simulations to
verify our main results in Section 3 and present several
interesting phenomena by simulations that we cannot give a
theoretical proof. We just consider the case 𝑛 = 2 in (4).

4.1. Numerical Simulations. Different parameters will be used
for simulations, and some data come from [20]. Figure 1
corresponds to the case with 𝛿 = 0.4, 𝑝

1

= 0.1, 𝑝
2

= 0.15,
𝑎 = 0.1, 𝜏

1

= 12, and 𝜏
2

= 15, and under the above conditions,
we have 0 < (𝑝

1

+ 𝑝

2

)/𝛿 = 0.625 < 1. We choose the initial
condition 𝜓(𝜃, 𝑥) = 1, (𝜃, 𝑥) ∈ [−15, 0] × [0, 1], and the
solution𝑁(𝑡, 𝑥) is decreasing and almost zero at time 160.

Figure 2 corresponds to the case with 𝛿 = 0.1, 𝑝
1

= 0.1,
𝑝

2

= 0.15, 𝑎 = 0.2, 𝜏
1

= 12, and 𝜏
2

= 15, and under the above
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Figure 1: Parameters: 𝛿 = 0.4, 𝑝
1

= 0.1, 𝑝
2

= 0.15, 𝑎 = 0.1, 𝜏
1

= 12,
and 𝜏
2

= 15. Initial condition is𝜓(𝜃, 𝑥) = 1, (𝜃, 𝑥) ∈ [−15, 0]×[0, 1].

conditions, we have 1 < (𝑝

1

+ 𝑝

2

)/𝛿 = 2.5 < 𝑒 and 𝑁

∗

=

4.58145. Choose the initial condition 𝜓(𝜃, 𝑥) = 4 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1]. From Figure 2, we can observe that
the solution𝑁(𝑡, 𝑥) oscillates around 13 and 14 days; however,
𝑁(𝑡, 𝑥) tends to 𝑁

∗ as time 𝑡 tends to 100 days. Therefore,
Figures 1 and 2 support our main results (Theorems 5 and 6).

4.2. Discussion. In Section 3, we obtain two main results
under the conditions∑𝑛

𝑖=1

(𝑝

𝑖

/𝛿) ≤ 1 and 1 < ∑

𝑛

𝑖=1

(𝑝

𝑖

/𝛿) ≤ 𝑒,
which are independent of the delays 𝜏

𝑖

, 𝑖 = 1, 2, . . . , 𝑛. A
natural problem is what will happen when ∑

𝑛

𝑖=1

(𝑝

𝑖

/𝛿) > 𝑒

and the delays 𝜏
𝑖

, 𝑖 = 1, 2, . . . , 𝑛 are changed.
It is similar to Theorem 3 in Luo and Liu [16]; we present

the following open problems.

Open Problem 1. If∑𝑛
𝑖=1

(𝑝

𝑖

/𝛿) > 𝑒 and 𝑎𝑁∗(𝑒𝛿𝜏−1) ≤ 1, then
every nontrivial solution𝑁(𝑡, 𝑥) of (4)–(6) satisfies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁

∗

, uniformly in 𝑥. (38)

Figure 3 corresponds to the case with 𝛿 = 0.01, 𝑝
1

= 0.5,
𝑝

2

= 0.5, 𝑎 = 0.2, 𝜏
1

= 12, 𝜏
2

= 15, and 𝑁

∗

= 23.0259, and
initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃, (𝜃, 𝑥) ∈ [−15, 0] ×

[0, 1]. Under the above conditions, we have (𝑝

1

+ 𝑝

2

)/𝛿 =

100 > 𝑒 and 𝑎𝑁

∗

(𝑒

𝛿𝜏

− 1) = 0.745274 < 1. Sufficient
conditions are dependent on coefficients and delay for the
global attractivity of equilibria 𝑁∗, and Figure 3 shows that
the Open Problem 1 is right, but we cannot prove that.

From Figure 4, we have ((𝑝

1

+ 𝑝

2

)/𝛿) = 5 > 𝑒 and
𝑎𝑁

∗

(𝑒

𝛿𝜏

− 1) = 30.717 > 1. The condition is not satisfied, but
𝑁

∗ is still globally attractive.
From Figure 5, we have ((𝑝

1

+ 𝑝

2

)/𝛿) = 50 > 𝑒 and
𝑎𝑁

∗

(𝑒

𝛿𝜏

− 1) = 13.6204 > 1. The condition is not
satisfied, but the global attractivity𝑁∗ is not true. Moreover,
Figure 5 shows that there is a periodic solution, which is very
interesting. We guess that the reason is that the system brings
Hopf bifurcation as the parameters change. Therefore, we
state the following open problem.
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Figure 2: Parameters: 𝛿 = 0.1, 𝑝
1

= 0.1, 𝑝
2

= 0.15, 𝑎 = 0.2, 𝜏
1

= 12,
𝜏

2

= 15, and 𝑁

∗

= 4.58145. Initial condition is 𝜓(𝜃, 𝑥) = 4 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 3: Parameters: 𝛿 = 0.01, 𝑝
1

= 0.5, 𝑝
2

= 0.5, 𝑎 = 0.2, 𝜏
1

= 12,
𝜏

2

= 15, and𝑁

∗

= 23.0259. Initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 4: Parameters: 𝛿 = 0.2, 𝑝
1

= 0.5, 𝑝
2

= 0.5, 𝑎 = 0.2, 𝜏
1

= 12,
𝜏

2

= 15, and 𝑁

∗

= 8.04719. Initial condition is 𝜓(𝜃, 𝑥) = 9 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 5: Parameters: 𝛿 = 0.1, 𝑝
1

= 3, 𝑝
2

= 2, 𝑎 = 0.2, 𝜏
1

= 12,
𝜏

2

= 15, and𝑁

∗

= 19.5601. Initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].

Open Problem 2. Under suitable conditions, the systems (4)–
(6) will lead to Hopf bifurcation.

Remark 8. Now, we have not intensively studied these two
problems. Because the nonmonotonicity of the nonlinear
term in (4) makes it very difficult for us to solve Open
Problem 1, and we cannot prove Open Problem 2 because of
multiple delays.
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