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Finding accurate solution of chaotic system by using efficient existing numerical methods is very
hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation
method (MHPM) is applied to the Chaotic Genesio system. The MHPM is a simple reliable
modification based on an adaptation of the standard homotopy-perturbation method (HPM).
The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate
solutions to the Chaotic Genesio system. Numerical comparisons between the MHPM and the
classical fourth-order Runge-Kutta (RK4) solutions are made. The results reveal that the new
technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.

1. Introduction

Chaos is very interesting nonlinear phenomenon and has been intensively studied in the
last three decades. The dynamical systems that exhibit chaotic behavior are sensitive to
initial conditions. Chaotic behavior can be found in a variety of systems such as electrical
circuits, lasers, fluid dynamics, mechanical devices, time evolution of the magnetic field of
celestial bodies, population growth in ecology, the dynamics of molecular vibrations, and
not forgetting the weather. The history of chaos theory has come a long way since Jacques
Hadamard who in 1898 published a significant study of a free particle gliding frictionlessly
on a surface of constant negative curvature which exhibits chaotic motion. The Genesio-Tesi
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system, proposed by Genesio and Tesi [1], is one of paradigms of chaos since it captures many
features of chaotic systems. It includes a simple part and three simple ordinary differential
equations (ODEs) that depend on three positive real parameters. The dynamic equation of
the system is as follows:

dx
dt

= y,

dy
dt

= z,
dz
dt

= −cx − by − az + x2,

(1.1)

where x, y, z are state variables, and a, b, c are positive real constants satisfying ab < c. For
instance, the system is chaotic for the parameter a = 1.2, b = 2.92, c = 6.

In recent years, much attention has been devoted to the application of the HPM [2],
to the solutions of various scientific models [3–6]. HPM yields rapidly convergent series
solutions [7, 8]. Now, the application of HPM has been extended to the thermal problems
[9]. The homotopy perturbation method admits some unknown parameters in the obtained
series solutions. In [10], Ji-Huan suggested the least square method can be used to identify
the unknown parameters involved in the series solutions.

Recently, Chowdhury et al. [11] was the first to successfully apply the multistage
homotopy-perturbation method (MHPM) to the chaotic and nonchaotic Lorenz system. The
MHPM is also applied to solve the Chen system and a class of systems of ODEs [12–14].

In this paper we are again interested in the accuracy of the MHPM for nonlinear
systems of ODEs capable of exhibiting chaotic behavior. The system which is of interest to
us is the chaotic Genesio system (1.1). Numerical comparisons with the HPM and fourth-
order Runge-Kutta (RK4) solutions show that MHPM is accurate and efficient.

2. Solution Approaches

We consider a general system of first-order ODEs:

du1
dt

+ g1(t, u1, u2, . . . , um) = f1(t),

du2
dt

+ g2(t, u1, u2, . . . , um) = f2(t),

...
dum
dt

+ gm(t, u1, u2, . . . , um) = fm(t),

(2.1)

subject to the initial conditions:

u1(t0) = c1, u2(t0) = c2, . . . , um(t0) = cm. (2.2)
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First we write system (2.1) in the operator form:

L(u1) +N1(u1, u2, . . . , um) − f1 = 0,

L(u2) +N2(u1, u2, . . . , um) − f2 = 0,

...

L(um) +Nm(u1, u2, . . . , um) − fm = 0,

(2.3)

subject to the initial conditions (2.2), where L = d/dt is a linear operator andN1,N2, . . . ,Nm

are the nonlinear operators. We will next present the solution approaches for (2.3) based on
the standard HPM and MHPM separately.

2.1. Solution by HPM

According to HPM, we construct a homotopy for (2.3)which satisfies the following relations:

L(u1) − L(v1) + pL(v1) + p
[
N1(u1, u2, . . . , um) − f1

]
= 0,

L(u2) − L(v2) + pL(v2) + p
[
N2(u1, u2, . . . , um) − f2

]
= 0,

...

L(um) − L(vm) + pL(vm) + p
[
Nm(u1, u2, . . . , um) − fm

]
= 0,

(2.4)

where p ∈ [0, 1] is an embedding parameter and v1, v2, . . . , vm are initial approximations
satisfying the given conditions. It is obvious that when the perturbation parameter p = 0,
(2.4) become a linear system and when p = 1 we get the original nonlinear system.

Let us take the initial approximations as follows:

u1(t) = u1,0(t) + pu1,1(t) + p2u1,2(t) + p3u1,3(t) + · · · ,
u2(t) = u2,0(t) + pu2,1(t) + p2u2,2(t) + p3u2,3(t) + · · · ,

...

um(t) = um,0(t) + pum,1(t) + p2um,2(t) + p3um,3(t) + · · · ,
u1,0(t) = v1(t) = u1(t0) = c1,

u2,0(t) = v2(t) = u2(t0) = c2,

...

um,0(t) = vm(t) = um(t0) = cm,

(2.5)
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where ui,j , (i = 1, 2, . . . , m; j = 1, 2, . . .) are functions yet to be determined. Substituting (2.5)
into (2.4) and arranging the coefficients of the same powers of p, we get

L(u1,1) + L(v1) +N1(u1,0, u2,0, . . . , um,0) − f1 = 0, u1,1(t0) = 0,

L(u2,1) + L(v2) +N2(u1,0, u2,0, . . . , um,0) − f2 = 0, u2,1(t0) = 0,
...

L(um,1) + L(vm) +Nm(u1,0, u2,0, . . . , um,0) − fm = 0, um,1(t0) = 0,

L(u1,2) +N1(u1,1, u2,1, . . . , um,1) = 0, u1,2(t0) = 0,

L(u2,2) +N2(u1,1, u2,1, . . . , um,1) = 0, u2,2(t0) = 0
...

L(um,2) +Nm(u1,1, u2,1, . . . , um,1) = 0, um,2(t0) = 0,

(2.6)

and so forth. We solve the above systems of equations for the unknowns ui,j (i =
1, 2, . . . , m; j = 1, 2, . . .) by applying the inverse operator

L−1(·) =
∫ t

t0

(·)dt. (2.7)

Therefore, according to HPM the n-term approximations for the solutions of (2.3) can be
expressed as

φ1,n(t) = u1(t) = lim
p→ 1

u1(t) =
n−1∑

k=0

u1,k(t),

φ2,n(t) = u2(t) = lim
p→ 1

u2(t) =
n−1∑

k=0

u2,k(t),

...

φm,n(t) = um(t) = lim
p→ 1

um(t) =
n−1∑

k=0

um,k(t).

(2.8)

2.2. Solution by MHPM

The approximate solutions (2.8) are generally, as will be shown in the numerical experiments
of this paper, not valid for large t. A simple way of ensuring validity of the approximations for
large t is to treat (2.6) as an algorithm for approximating the solutions of (2.1) in a sequence
of intervals choosing the initial approximations as

u1,0(t) = v1(t) = u1(t∗) = c∗1,

u2,0(t) = v2(t) = u2(t∗) = c∗2,
...

um,0(t) = vm(t) = um(t∗) = c∗m,

(2.9)

where t∗ is the left-end point of each subinterval.
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Now we solve (2.6) for the unknowns ui,j (i = 1, 2, . . . , m; j = 1, 2, . . .) by applying the
inverse linear operator

L−1(·) =
∫ t

t∗
(·)dt. (2.10)

In order to carry out the iterations in every subinterval of equal length Δt, [0, t1), [t1, t2),
[t2, t3) · · · [tj−1, t), we need to know the values of the following:

u∗1,0(t) = u1(t
∗), u∗2,0(t) = u2(t

∗), . . . , u∗m,0(t) = um(t
∗). (2.11)

But, in general, we do not have these information at our clearance except at the initial point
t∗ = t0. A simple way for obtaining the necessary values could be by means of the previous
n-term approximations φ1,n, φ2,n, . . . , φm,n of the preceding subinterval given by (2.8), that is,

u∗1,0 � φ1,n(t∗), u∗2,0 � φ2,n(t∗), . . . , u∗m,0 � φm,n(t∗). (2.12)

3. Application

In this section,we will study the Genesio system (1.1) subject to the initial conditions:

x(0) = c1, y(0) = c2, z(0) = c3. (3.1)

According to the HPM, we can construct a homotopy which satisfies the following relation:

v′
1 −x′

0 + p
(
x′
0 − v2

)
= 0,

v′
2 − y′

0 + p
(
y′
0 − v3

)
= 0,

v′
3 − z′0 + p

(
z′0 + cv1 + bv2 + av3 − v2

1

)
= 0.

(3.2)

We take the initial approximations as:

v1(t) = v1,0(t) + pv1,1(t) + p2v1,2(t) + p3v1,3(t) + · · · ,
v2(t) = v2,0(t) + pv2,1(t) + p

2v2,2(t) + p3v2,3(t) + · · · ,
v3(t) = v3,0(t) + pv3,1(t) + p

2v3,2(t) + p3v3,3(t) + · · · ,
v1,0(t) = x0(t) = x(t

∗) = c1,

v2,0(t) = y0(t) = y(t
∗) = c2,

v3,0(t) = z0(t) = z(t∗) = c3,

(3.3)
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where vi,j , i, j = 1, 2, 3, . . . are functions yet to be determined. Substituting (3.3) into (3.2) and
collecting terms the same powers of p, we have

v′
1,1 − v2,0 = 0,

v′
2,1 − v3,0 = 0,

v′
3,1 +cv1,0 + bv2,0 + av3,0 − v2

1,0 = 0,
v′
1,2 − v2,1 = 0,
v′
2,2 − v3,1 = 0,

v′
3,2 + cv1,1 + bv2,1 + av3,1 − 2v1,0v1,1 = 0,

v′
1,3 − v2,2 = 0,

v′
2,3 − v3,2 = 0,

v′
3,3 + cv1,2 + bv2,2 + av3,2 − 2v1,0v1,2 − v2

1,1 = 0.

(3.4)

In order to obtain the unknowns vi,j(t), i, j = 1, 2, 3, we solve the above system taking the
initial conditions vi,j(0) = 0, i, j = 1, 2, 3, we obtain,

v1,1(t) = c2(t − t∗),
v2,1(t) = c3(t − t∗),

v3,1(t) =
(
c21 − cc1 − bc2 − ac3

)
(t − t∗),

v1,2(t) =
1
2
c3(t − t∗)2,

v2,2(t) =
1
2
[
c21 − cc1 − bc2 − ac3

]
(t − t∗)2,

v3,2(t) =
1
2
[
2c1c2 − cc2 − bc3 − ac21 + acc1 + abc2 + a2c3

]
(t − t∗)2,

v1,3(t) =
1
6
[
c21 − cc1 − bc2 − ac3

]
(t − t∗)3,

v2,3(t) =
1
6
[
2c1c2 − cc2 − bc3 − ac21 + acc1 + abc2 + a2c3

]
(t − t∗)3,

v3,3(t) =
1
6
[
2c22 + bcc1 + 2abc3 − a2cc1 − a2bc2 − 2ac1c2 + acc2
+2c1c3 − bc21 + b2c2 + a2c21 − a3c3 − cc3

]
(t − t∗)3.

(3.5)

Hence, the solution to the Genesio system (1.1) is:

x =
∞∑

m=0

v1,m(t),

y =
∞∑

m=0
v2,m(t),

z =
∞∑

m=0
v3,m(t).

(3.6)

To carry out the iterations on every subinterval of equal length Δt, we need to know the
values of the following initial conditions:

c1 = x(t∗), c2 = y(t∗), c3 = z(t∗). (3.7)
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Table 1: A determination of the accuracy of RK4 for the Genesio system (1.1).

t
Δ = |RK40.01 − RK40.001| Δ = |RK40.001 − RK40.0001|

Δx Δy Δz Δx Δy Δz

1 2.130E−10 1.525E−10 6.681E−10 2.12E − 14 1.58E − 14 6.68E − 14
2 3.299E−10 8.467E−10 9.038E−10 3.36E − 14 8.40E − 14 9.30E − 14
3 4.957E−10 1.443E−09 2.394E−09 4.85E − 14 1.461E−13 2.362E−13
4 1.533E−09 9.664E−10 5.188E−09 1.540E−13 9.27E − 14 5.232E−13
5 3.154E−10 4.876E−09 1.175E−09 3.51E − 14 4.884E−13 1.044E−13
6 3.474E−09 2.279E−09 1.324E−08 3.455E−13 2.380E−13 1.322E−12
7 3.567E−09 8.028E−09 9.569E−09 3.631E−13 7.955E−13 9.820E−13
8 3.430E−09 1.243E−08 1.969E−08 3.341E−13 1.257E−12 1.942E−12
9 1.132E−08 5.660E−09 3.797E−08 1.135E−12 5.373E−13 3.824E−12
10 1.655E−09 2.685E−08 2.350E−09 1.881E−13 2.688E−12 1.640E−13
11 1.674E−08 1.348E−08 7.314E−08 1.667E−12 1.402E−12 7.308E−12
12 2.241E−08 4.278E−08 6.208E−08 2.270E−12 4.234E−12 6.351E−12
13 1.873E−08 5.370E−08 6.170E−08 1.822E−12 5.436E−12 6.050E−12
14 3.733E−08 2.187E−08 1.333E−07 3.770E−12 2.083E−12 1.348E−11
15 1.595E−08 1.228E−07 1.926E−08 1.679E−12 1.232E−11 1.565E−12
16 7.856E−08 4.718E−08 2.002E−07 7.808E−12 4.950E−12 1.999E−11
17 1.317E−08 7.821E−08 9.779E−08 1.510E−12 7.839E−12 1.008E−11
18 2.585E−08 8.743E−08 1.959E−07 2.601E−12 9.132E−12 1.983E−11
19 9.424E−08 6.053E−08 2.934E−07 9.655E−12 5.883E−12 3.032E−11
20 5.455E−08 4.084E−08 1.401E−07 5.290E−12 4.470E−12 1.423E−11

In general, we do not have these information at our clearance except at the initial point t∗ =
t0 = 0, but we can obtain these values following the MHPM as given in Section 2.2. We note
that the 10-term approximations of x, y, and z are denoted as x(t) � φ10(t) =

∑9
i=0 v1,i, y(t) �

ψ10(t) =
∑9

i=0 v2,i, and z(t) � ξ10(t) =
∑9

i=0 v3,i.

4. Results and Discussions

The MHPM algorithm is coded in the computer algebra package Maple and we employ the
Maple’s built-in fourth-order Runge-Kutta procedure (RK4). The Maple environment
variable digits controlling the number of significant digits are set to 16 in all the calculations
done in this paper. For the comparison, we set the parameter a = 1.2, b = 2.92, and c = 6
where the system exhibits chaotic behavior, alongside with its initial conditions x(0) = 0.2,
y(0) = −0.3, and z(0) = 0.1. The time range studied in this work is t = 0 to 20. In general,
there is not a known exact solution for the Genesio system. Thus, the accuracy of the present
method will be determined by its comparison to the numerical solution by Runge-kutta
method. We determine the accuracy of RK4 for the solution of (1.1) for different time steps.
From the results presented in Table 1 we see that the maximum difference between the RK4
solutions on time steps Δt = 0.001 and Δt = 0.0001 is of the order of magnitude of 10−11.
So based on these observations we choose the RK4 solutions on the time step Δt = 0.001 as
the benchmark for our comparison purposes. So now we can compare the accuracy of the
HPM and MHPM with the RK4 method on the chosen time step Δt = 0.001. We choose this
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Table 2: Differences between 10-term HPM and 10-term MHPM with RK4 solutions on Δt = 0.001.

t
Δ = |HPM − RK40.001| Δ = |MHPM0.001 − RK40.001|

Δx Δy Δz Δx Δy Δz

1 1.856E−05 6.289E−05 0.0002355 2.12E − 14 1.58E − 14 6.68E − 14
2 0.01626 0.04539 0.2211 3.36E − 14 8.40E − 14 9.30E − 14
3 0.8815 1.912 10.73 4.85E − 14 1.461E−13 2.362E−13
4 14.83 28.01 154.9 1.540E−13 9.27E − 14 5.232E−13
5 126.8 236.3 1193 3.51E − 14 4.885E−13 1.044E−13
6 703.5 1373 6293 3.456E−13 2.380E−13 1.322E−12
7 2910 6063 2.573e+04 3.631E−13 7.956E−13 9.821E−13
8 9790 2.174E+04 8.736E+04 3.341E−13 1.257E−12 1.942E−12
9 2.827E+04 6.649E+04 2.570E+05 1.135E−12 5.373E−13 3.824E−12
10 7.263E+04 1.795E+05 6.751E+05 1.881E−13 2.688E−12 1.640E−13
11 1.700E+05 4.386E+05 1.617E+06 1.667E−12 1.403E−12 7.308E−12
12 3.687E+05 9.877E+05 3.587E+06 2.270E−12 4.234E−12 6.352E−12
13 7.510E+05 2.078E+06 7.464E+06 1.822E−12 5.436E−12 6.050E−12
14 1.450E+06 4.130E+06 1.470E+07 3.771E−12 2.083E−12 1.348E−11
15 2.675E+06 7.813E+06 2.763E+07 1.679E−12 1.232E−11 1.565E−12
16 4.741E+06 1.417E+07 4.983E+07 7.809E−12 4.950E−12 1.999E−11
17 8.117E+06 2.475E+07 8.667E+07 1.510E−12 7.840E−12 1.008E−11
18 1.348E+07 4.184E+07 1.460E+08 2.601E−12 9.133E−12 1.983E−11
19 2.177E+07 6.870E+07 2.391E+08 9.656E−12 5.884E−12 3.032E−11
20 3.431E+07 1.099E+08 3.817E+08 5.291E−12 4.470E−12 1.424E−11

time step since a smaller one is computationally costly. We note that increasing the number
of terms in the series solutions (1.1) improves the accuracy of the MHPM solutions but at the
expense of increased computational efforts. In this work we fix the number of terms used to
be ten. The details of the differences between the 10-termHPM solutions and 10-termMHPM
solutions (Δt = 0.001) and the RK4 solutions on Δt = 0.001 are given in Table 2. In Table 2,
we see that the 10-term MHPM solutions on the time step Δt = 0.001 agree with the RK4
solutions at least 10 decimal places, while the 10-term classical HPM solutions are only valid
for t ≈ 1. For the chaotic Genesio system we observe that the MHPM has the advantage over
the RK4 on achieving a good accuracy with a larger time step.

In Figure 1 we reproduce the well-known x-y, x-z, y-z, and x-y-z phase portraits
of the chaotic Genesio system using the 10-term MHPM solutions on Δt = 0.001. Having
determined the benchmark timestep, we can now investigate the accuracy of the HPM and
MHPM as compared to RK4. In Figure 2 we plot the 10-term HPM solutions and 10-term
MHPM solutions (on Δt = 0.001) against the RK4 solutions on Δt = 0.001. Both the 10-term
MHPM solutions on Δt = 0.001 and RK4 solutions on Δt = 0.001 seem to overlap on the scale
used in figure, but the numerical results from the standard HPM start to stay away at about
t ≈ 2 for x(t), y(t), and z(t).

5. Conclusions

In this work, the MHPMwas applied to the solutions of the well-known Genesio system. The
MHPM is only a simple modification of the standard HPM. Comparisons between the HPM
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Figure 1: Phase portraits using 10-term MHPM.
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and MHPM solutions and the fourth-order Runge-Kutta (RK4) numerical solutions were
made. For the chaotic Genesio system studied we found that the 10-termMHPM solutions on
a larger time step achieved comparable accuracy compared with the RK4 solutions on amuch
smaller time step. We note that the MHPM solutions were computed via a simple algorithm
with less amount of computations and without any need for perturbation techniques, special
transformations, linearization, or discretization.
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