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Intuitionistic fuzzy normed space is defined using concepts of t-norm and t-conorm. The concepts
of fuzzy completeness, fuzzy minimality, fuzzy biorthogonality, fuzzy basicity, and fuzzy space of
coefficients are introduced. Strong completeness of fuzzy space of coefficients with regard to fuzzy
norm and strong basicity of canonical system in this space are proved. Strong basicity criterion in
fuzzy Banach space is presented in terms of coefficient operator.

1. Introduction

The fuzzy theory, dating back to Zadeh [1], has emerged as the most active area of research
in many branches of mathematics and engineering. Fuzzy set theory is a powerful handset
for modeling uncertainty and vagueness in various problems arising in the field of science
and engineering. The concept of fuzzy topology may have very important applications
in quantum particle physics, particularly in connection with both string and ε(∞) theories
introduced and studied by El Naschie [2–4] and further developed in [5]. So, further
development in E-Infinity may lead to a set transitional resolution of quantum entanglement
[6]. A large number of research works are appearing these days which deal with the concept
of fuzzy set numbers, and the fuzzification of many classical theories has also beenmade. The
concept of Schauder basis in intuitionistic fuzzy normed space and some results related to this
concept have recently been studied in [7–9]. These works introduced the concepts of strongly
and weakly intuitionistic fuzzy (Schauder) basis in intuitionistic fuzzy Banach spaces (IFBS in
short). Some of their properties are revealed. The concepts of strongly and weakly intuitionistic
fuzzy approximation properties (sif-AP and wif-AP in short, resp.) are also introduced in these
works. It is proved that if the intuitionistic fuzzy space has a sif-basis, then it has a sif-AP.
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All the results in these works are obtained on condition that IFBS admits equivalent topology
using the family of norms generated by t-norm and t-conorm (we will define them later).

In our work, we define the basic concepts of classical basis theory in intuitionistic fuzzy
normed spaces (IFNS in short). Concepts of weakly and strongly fuzzy spaces of coefficients are
introduced. Strong completeness of these spaces with regard to fuzzy norm and strong basicity
of canonical system in them is proved. Strong basicity criterion in fuzzy Banach space is
presented in terms of coefficient operator.

In Section 2, we recall some notations and concepts. In Section 3, we state our main
results. We first define the fuzzy space of coefficients and then introduce the corresponding fuzzy
norms. We prove that for nondegenerate system the corresponding fuzzy space of coefficients is
strongly fuzzy complete. Moreover, we show that the canonical system forms a strong basis for
this space.

2. Some Preliminary Notations and Concepts

Wewill use the usual notations:N will denote the set of all positive integers, Rwill be the set
of all real numbers, C will be the set of complex numbers, andK will denote a field of scalars
(K ≡ R, or K ≡ C), R+ ≡ (0,+∞). We state some concepts and facts from IFNS theory to be
used later.

One of the most important problems in fuzzy topology is to obtain an appropriate
concept of intuitionistic fuzzy normed space. This problem has been investigated by Park
[10]. He has introduced and studied a notion of intuitionistic fuzzy metric space. We recall it.

Definition 2.1. A binary operation ∗ : [0, 1]2 → [0, 1] is a continuous t-norm if it satisfies the
following conditions:

(a) ∗ is associative and commutative,

(b) ∗ is continuous,

(c) a ∗ 1 = a, ∀a ∈ [0, 1],

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, ∀a, b, c, d ∈ [0, 1].

Example 2.2. Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b = min{a; b}.

Definition 2.3. A binary operation 	 : [0, 1]2 → [0, 1] is a continuous t-conorm if it satisfies
the following conditions:

(α) 	 is associative and commutative,

(β) 	 is continuous,

(γ) a 	 0 = a, ∀a ∈ [0, 1],

(η) a 	 b ≤ c 	 d whenever a ≤ c and b ≤ d, ∀a, b, c, d ∈ [0, 1].

Example 2.4. Two typical examples of continuous t-conorm are a 	 b = min{a + b; 1} and
a 	 b = max{a; b}.
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Definition 2.5. LetX be a linear space over a fieldK. Functions μ; ν : X×R → [0, 1] are called
fuzzy norms on X if they hold the following conditions:

(1) μ(x; t) = 0, ∀t ≤ 0, ∀x ∈ X,

(2) μ(x; t) = 1, ∀t > 0 ⇒ x = 0,

(3) μ(cx; t) = μ(x; t/|c|), ∀c /= 0,

(4) μ(x; ·) : R → [0, 1] is a nondecreasing function of t for ∀x ∈ X and limt→∞μ(x; t) =
1, ∀x ∈ X,

(5) μ(x; s) ∗ μ(y; t) ≤ μ(x + y; s + t), ∀x, y ∈ X, ∀s, t ∈ R,

(6) ν(x; t) = 1, ∀t ≤ 0, ∀x ∈ X,

(7) ν(x; t) = 0, ∀t < 0 ⇒ x = 0,

(8) ν(cx; t) = ν(x; t/|c|), ∀c /= 0,

(9) ν(x; ·) : R → [0, 1] is a nonincreasing function of t for ∀x ∈ X and limt→∞ν(x; t) = 0,
∀x ∈ X,

(10) ν(x; s) 	 ν(y; t) ≥ ν(x + y; s + t), ∀x, y ∈ X, ∀s, t ∈ R,

(11) μ(x; t) + ν(x; t) ≤ 1, ∀x ∈ X, ∀t ∈ R.

Then the 5-tuple (X;μ; ν; ∗; 	) is said to be an intuitionistic fuzzy normed space (shortly
IFNS).

Example 2.6. Let (X; ‖ · ‖) be a normed space. Denote a ∗ b = ab and a 	 b = min{a + b; 1},
for ∀a, b ∈ [0, 1], and define μ and ν as follows:

μ(x; t) =

⎧
⎨

⎩

t

t + ‖x‖ , t > 0,

0, t ≤ 0,

ν(x; t) =

⎧
⎨

⎩

t

t + ‖x‖ , t > 0,

1, t ≤ 0.

(2.1)

Then (X;μ; ν; ∗; 	) is an IFNS.
The above concepts allow to introduce the following kinds of convergence (or

topology) in IFNS.

Definition 2.7. Let (X;μ; ν) be a fuzzy normed space, and let {xn}n∈N ⊂ X be some sequence,
then it is said to be strongly intuitionistic fuzzy convergent to x ∈ X (denoted by xn

s→ x,
n → ∞ or s-limn→∞xn = x in short) if and only if for ∀ε > 0, ∃n0 = n0(ε) : μ(xn − x; t) ≥ 1 − ε,
ν(xn − x; t) ≤ ε, ∀n ≥ n0, ∀t ∈ R.

Definition 2.8. Let (X;μ; ν) be a fuzzy normed space, and let{xn}n∈N ⊂ X be some sequence,
then it is said to beweakly intuitionistic fuzzy convergent to x ∈ X (denoted by xn

w→ x, n →
∞, orw-limn→∞xn = x in short) if and only if for ∀t ∈ R+, ∀ε > 0, ∃n0 = n0(ε; t) : μ(xn − x; t) ≥
1 − ε, ν(xn − x; t) ≤ ε, ∀n ≥ n0. More details on these concepts can be found in [10–19].
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Let (X;μ; ν) be an IFNS, and let M ⊂ X be some set. By L[M], we denote the linear
span of M in X. The weakly (strongly) intuitionistic fuzzy convergent closure of L[M]
will be denoted by Ls[M] (Lw[M]). If X is complete with respect to the weakly (strongly)
intuitionistic fuzzy convergence, then we will call it intuitionistic fuzzy weakly (strongly)
Banach space (IFBwS or Xw (IFBsS or Xs) in short). Let X be an IFBsS (IFBwS). We denote
by X∗

s (X
∗
w) the linear space of linear and continuous in IFBsS (IFBwS) functionals over the

same field K.
Now, we define the corresponding concepts of basis theory for IFNS. Let {xn}n∈N ⊂ X

be some system.

Definition 2.9. System {xn}n∈N is called s-complete (w-complete) in Xs (in Xw) if
Ls[{xn}n∈N] ≡ Xs (Lw[{xn}n∈N] ≡ Xw).

Definition 2.10. System {x∗
n}n∈N ⊂ X∗

s ({x∗
n}n∈N ⊂ X∗

w) is called s-biorthogonal (w-
biorthogonal) to the system {xn}n∈N if x∗

n(xk) = δnk, ∀n, k ∈ N, where δnk is the Kronecker
symbol.

Definition 2.11. System {xn}n∈N ⊂ Xs ({xn}n∈N ⊂ Xw) is called s-linearly (w-linearly)
independent in X if

∑∞
n=1 λnxn = 0 in Xs (in Xw) implies λn = 0, ∀n ∈ N.

Definition 2.12. System {xn}n∈N ⊂ Xs ({xn}n∈N ⊂ Xw) is called s-basis (w-basis) forXs (forXw)
if ∀x ∈ X, ∃!{λn}n∈N ⊂ K :

∑∞
n=1 λnxn = x in Xs (in Xw).

We will also need the following concept.

Definition 2.13. System {xn}n∈N ⊂ X is called nondegenerate if xn /= 0, ∀n ∈ N.

3. Main Results

3.1. Space of Coefficients

Let X be an IFNS, and let {xn}n∈N ⊂ X be some system.
Assume that

Kw
x ≡
{

{λn}n∈N ⊂ C :
∞∑

n=1

λnxn converges in Xw

}

,

Ks
x ≡
{

{λn}n∈N ⊂ C :
∞∑

n=1

λnxn converges in Xs

}

.

(3.1)

It is not difficult to see that Kw
x
and Ks

x
are linear spaces with regard to component-

specific summation and component-specific multiplication by a scalar. Take ∀λ ≡ {λn}n∈N ∈
Kw

x
, and assume that

μK

(
λ; t
)
= inf

m
μ

(
m∑

n=1

λnxn; t

)

; νK
(
λ; t
)
= sup

m
ν

(
m∑

n=1

λnxn; t

)

. (3.2)
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Let us show that μK and νK satisfy the conditions (1)–(11).

(1) It is clear that μK(λ; t) = 0, ∀t ≤ 0.

(2) Let μK(λ; t) = 1, ∀t > 0. Hence, μ(
∑m

n=1 λnxn; t) = 1, ∀m ∈ N, ∀t > 0. Suppose that
the system {xn}n∈N is nondegenerate. It follows from the above-stated relations
that, form = 1, we have μ(λ1x1; t) = 1, ∀t > 0. Hence, λ1x1 = 0 ⇒ λ1 = 0. Continuing
this way, we get at the end of this process that λn = 0, ∀n ∈ N, that is, λ = 0.

(3) The validity of relation μK(Aλ; t) = μK(λ; t/|c|), ∀c /= 0 is beyond any doubt.

(4) As μ(x; ·) is a nondecreasing function on R it is not difficult to see that μK(λ; ·) has
the same property. Let us show that limt→∞μK(λ; t) = 1. Take ∀ε > 0. Let Sm =
∑m

n=1 λnxn andw-limm→∞Sm = S ∈ Xw. It is clear that ∃t0 > 0 : μ(S; t0) ≥ 1− ε. Then
it follows from the definition of w-limm that ∃m0(ε; t0) : μ(Sm − S; t0) ≥ 1 − ε, ∀m ≥
m0(ε; t0). Property (4) implies

μ(Sm; 2t0) = μ(Sm − S + S; t0 + t0) ≥ μ(Sm − S; t0) ∗ μ(S; t0). (3.3)

As a result, we get

μ(Sm; t0) ≥ 1 − ε, ∀m ≥ m0(ε; t0). (3.4)

As μ(x; ·) is a nondecreasing function of t, it follows from (3.4) that

μ(Sm; t) ≥ 1 − ε, ∀m ≥ m0(ε; t0), ∀t ≥ t0. (3.5)

We have

μK

(
λ; t
)
= inf

m
μ(Sm; t) = min

{

μ(S1; t); . . . ;μ(Sm0−1; t); inf
m≥m0

μ(Sm; t)
}

, (3.6)

where m0 = m0(ε; t0). As limt→∞μ(Sk; t) = 1 for ∀k ∈ N, we have ∃tk(ε); ∀t ≥
tk(ε) : μ(Sk; t) ≥ 1 − ε, k = 1, m0 − 1. Let t0ε = max{tk(ε), k = 1, m0 − 1 }, then it is
clear that

μ(Sk; t) ≥ 1 − ε, ∀t ≥ t0ε. (3.7)

It follows from (3.5) and (3.6) that

inf
m≥m0

μ(Sm; t) ≥ 1 − ε, ∀t ≥ t0. (3.8)

Let tε = max{t0; t0ε}. Hence, we obtain from (3.6) and (3.7) that

μK

(
λ; t
)
≥ 1 − ε, ∀t ≥ tε. (3.9)

Thus, limt→∞μK(λ; t) = 1, ∀λ ∈ Kw
x
.
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(5) Let λ, μ ∈ Kw
x
(λ ≡ {λn}n∈N ; μ ≡ {μn}n∈N) and s, t ∈ R. We have

μK

(
λ + μ; s + t

)
= inf

m
μ

(
m∑

n=1

(
λn + μn

)
xn; s + t

)

= inf
m
μ

(
m∑

n=1

λnxn +
m∑

n=1

μnxn; s + t

)

≥ inf
m

[

μ

(
m∑

n=1

λnxn; s

)

∗ μ
(

m∑

n=1

μnxn; t

)]

=

[

inf
m
μ

(
m∑

n=1

λnxn; s

)]

∗
[

inf
m
μ

(
m∑

n=1

μnxn; t

)]

= μ
(
λ; s
)
∗ μ(μ; t).

(3.10)

(6) As ν(x; t) = 1, ∀t ≤ 0, it is clear that νK(λ; t) = 1, ∀t ≤ 0, ∀λ ∈ Kw
x
.

(7) Let the system {xn}n∈N be nondegenerate. Assume that νK(λ; t) = 0, ∀t > 0,
then ν(

∑m
n=1 λnxn; t) = 0, ∀t > 0, ∀m ∈ N. For m = 1, we have ν(λ1x1; t) = 0, ∀t >

0 ⇒ λ1x1 = 0 ⇒ λ1 = 0. Continuing this process, we get λn = 0, ∀n ∈ N ⇒ λ = 0.

(8) Clearly, νK(cλ; t) = νK(λ; t/|c|), ∀c /= 0.

(9) It follows from the property (9) that ν(x; ·) is a nonincreasing function on
R. Therefore, νK(λ; ·) is a nonincreasing function on R. Let us show that
limt→∞νK(λ; t) = 0. Let Sm =

∑m
n=1 λnxn and w-limm→∞Sm = S ∈ X. Take ∀ε > 0. It

is clear that ∃t0 > 0 : ν(S; t0) ≤ ε. Then it follows from the definition of w-limm that
∃m0 = m0(ε; t0) : ν(Sm − S; t0) ≤ ε, ∀m ≥ m0. We have

ν(Sm; t0) = ν(Sm − S + S; t0 + t0) ≤ ν(Sm − S; t0) 	 ν(S; t0) ≤ ε, ∀m ≥ m0 (3.11)

As ν(x; ·) is a nonincreasing function, it is clear that

ν(Sm; t) ≤ ε, ∀m ≥ m0, ∀t ≥ t0. (3.12)

We have

νK
(
λ; t
)
= sup

m
ν (Sm; t) = max

{

ν(S1; t); . . . ; ν(Sm0−1; t); sup
m≥m0

ν(Sm; t)

}

. (3.13)

As limt→∞ν(Sk; t) = 0 for ∀k ∈ N, we have ∃tk(ε); ∀t ≥ tk(ε) : ν(Sk; t) ≤ ε, k =
1, m0 − 1. Let t0ε = max{tk(ε), k = 1, m0 − 1 }. It is clear that ν(Sk; t) ≤ ε, ∀t ≥ t0ε . It
follows from (3.12) that supm≥m0

ν(Sm; t) ≤ ε, ∀t ≥ t0. Let tε = max{t0; t0ε}, then it is

clear that νK(λ; t) ≤ ε, ∀t ≥ tε ⇒ limt→∞νK(λ; t) = 0.
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(10) Let λ, μ ∈ Kw
x
(λ ≡ {λn}n∈N ; μ ≡ {μn}n∈N) and s, t ∈ R. We have

νK
(
λ + μ; s + t

)
= sup

m
ν

(
m∑

n=1

(
λn + μn

)
xn; s + t

)

≤ sup
m

[

ν

(
m∑

n=1

λnxn; s

)

	 ν
(

m∑

n=1

μnxn; t

)]

=

[

sup
m

ν

(
m∑

n=1

λnxn; s

)]

	
[

sup
m

ν

(
m∑

n=1

μnxn; t

)]

= νK
(
λ; s
)
	 νK

(
μ; t
)
.

(3.14)

(11) Consider the following:

μK

(
λ; t
)
+ νK

(
λ; t
)
= inf

m
μ

(
m∑

n=1

λnxn; t

)

+ sup
m

ν

(
m∑

n=1

λnxn; t

)

≤ sup
m

[

μ

(
m∑

n=1

λnxn; t

)

+ ν

(
m∑

n=1

λnxn; t

)]

≤ 1, ∀λ ∈ Kw
x
, ∀λ ∈ R.

(3.15)

Thus, we have proved the validity of the following.

Theorem 3.1. Let (X;μ; ν) be a fuzzy normed space, and let {xn}n∈N ⊂ X be a nondegenerate system,
then the space of coefficients (Ks

x
;μK; νK) is also strongly fuzzy normed space.

The following theorem is proved in absolutely the same way.

Theorem 3.2. Let (X;μ; ν) be a fuzzy normed space, and let {xn}n∈N ⊂ X be a nondegenerate system,
then the space of coefficients (Kw

x
;μK; νK) is also weakly fuzzy normed space.

3.2. Completeness of the Space of Coefficients

Subsequently, we assume that (X;μ; ν) is IFBS. Let us show that (Ks
x
;μK; νK) is a strongly

fuzzy complete normed space. First, we prove the following.

Lemma 3.3. Let x0 /= 0, x0 ∈ X, and let {λn}n∈N ⊂ R be some sequence. If s-limn→∞(λnx0) = 0,
that is, ∀ε > 0, ∃n0 = n0(ε) : μ(λnx0; t) > 1 − ε, ν(λnx0; t) < ε, ∀t ∈ R+, and ∀n ≥ n0, then λn → 0,
n → ∞.

Proof. As x0 /= 0, it is clear that ∃t0 > 0 : μ(x0; t0) < 1. We have μ(λnx0; t) = μ(x0; (t)/|λn|)
for λn /= 0. Assume that the relation limn→∞λn = 0 is not true, then ∃{λnk}k∈N and ∃δ > 0 :
|λnk | ≥ δ, ∀k ∈ N. It is clear that limk→∞μ(λnkx0; t) = 1 uniformly in t. On the other hand,
for tk = |λnk | t0, we have μ(λnkx0; tk) = μ(x0; t0) < 1. So we came upon a contradiction which
proves the lemma.
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Further, we assume that the following condition is also fulfilled.

(12) The functions μ(x; ·), ν(x; ·) : R → [0, 1] are continuous for ∀x ∈ X.

Take s-fundamental sequence {λn}n∈N ⊂ Ks
x
, λn ≡ {λ(n)

k
}
k∈N . Then limn,m→∞μK(λn −

λm; t) = 1 uniformly in t ∈ R, that is,

lim
n,m→∞

inf
r
μ

(
r∑

k=1

(
λ
(n)
k − λ

(m)
k

)
xk

)

= 1, (3.16)

uniformly in t ∈ R. Take ∀k0 ∈ N and fix it. We have

(
λ
(n)
k0

− λ
(m)
k0

)
xk0 =

k0∑

k=1

(
λ
(n)
k − λ

(m)
k

)
xk −

k0−1∑

k=1

(
λ
(n)
k − λ

(m)
k

)
xk. (3.17)

Then from property (5), we get

μ
((

λ
(n)
k0

− λ
(m)
k0

)
xk0 ; t

)
≥ μ

(
k0∑

k=1

(
λ
(n)
k − λ

(m)
k

)
xk;

t

2

)

∗ μ
(

k0−1∑

k=1

(
λ
(n)
k − λ

(m)
k

)
xk;

t

2

)

. (3.18)

It follows directly from this relation that limn,m→∞μ((λ
(n)
k0

− λ
(m)
k0

)xk0 ; t) = 1 uniformly in

t. As xk0 /= 0, Lemma 3.3 implies limn,m→∞|λ(n)k0
− λ

(m)
k0

| = 0, that is, the sequence {λ(n)
k0

}
n∈N

is fundamental in R. Let λ
(n)
k0

→ λk0 , as n → ∞. Denote λ ≡ {λn}n∈N . Let us show

that limn→∞μK(λn − λ; t) = 1 uniformly in t. Take ∀ε > 0. It is clear that ∃n0, ∀n ≥ n0,
∀p ∈ N : μK(λn − λn+p; t) > 1 − ε, ∀t ∈ R. Consequently,

inf
r
μ

(
r∑

k=1

(
λ
(n)
k

− λ
(n+p)
k

)
xk; t

)

> 1 − ε, ∀n ≥ n0, ∀p ∈ N, ∀t ∈ R+. (3.19)

Hence,

μ

(
r∑

k=1

(
λ
(n)
k

− λ
(n+p)
k

)
xk; t

)

> 1 − ε, ∀n ≥ n0, ∀r, p ∈ N, ∀t ∈ R+. (3.20)

As shown above, limn,m→∞μ((λ
(n)
k − λ

(m)
k )xk; t) = 1 uniformly in t ∈ R+. Now let us take into

account the fact that limm→∞μ(λ
(m)
k

xk; t) = μ(λkxk; t), ∀t ∈ R+. Indeed, if λk = 0, then μ(0; t) =
1, ∀t ∈ R+, and clearly, limm→∞μ(λ

(m)
k

xk; t) = 1 for ∀t ∈ R+. If λk /= 0, then for sufficiently large
values ofm we have λ(m)

k /= 0, and as a result,

μ
(
λ
(m)
k xk; t

)
= μ

⎛

⎝xk;
t

∣
∣
∣λ

(m)
k

∣
∣
∣

⎞

⎠ m→∞−→ μ

(

xk;
t

|λk|
)

= μ(λkxk; t), ∀t ∈ R+. (3.21)
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Passage to the limit in the inequality (3.20) as p → ∞ yields

μ

(
r∑

k=1

(
λ
(n)
k

− λk
)
xk; t

)

≥ 1 − ε, ∀n ≥ n0, ∀r ∈ N, ∀t ∈ R+. (3.22)

We have

μ

(
r+p∑

k=r

(
λ
(n)
k − λk

)
xk; t

)

= μ

(
r+p∑

k=1

(
λ
(n)
k − λk

)
xk −

r−1∑

k=1

(
λ
(n)
k − λk

)
xk; t

)

≥ μ

(
r+p∑

k=1

(
λ
(n)
k − λk

)
xk;

t

2

)

∗ μ
(

r−1∑

k=1

(
λ
(n)
k − λk

)
xk;

t

2

)

≥ 1 − ε, ∀n ≥ n0, ∀r, p ∈ N, ∀t ∈ R+.

(3.23)

As λn ∈ Ks
x, it is clear that ∃m

(n)
0 : ∀m ≥ m

(n)
0 , ∀p ∈ N:

μ

(
m+p∑

k=m

λ
(n)
k xk; t

)

> 1 − ε, ∀t ∈ R+. (3.24)

We have

μ

(
m+p∑

k=m

λkxk; t

)

= μ

(
m+p∑

k=m

(
λk − λ

(n)
k

)
xk +

m+p∑

k=m

λ
(n)
k xk; t

)

≥ μ

(
m+p∑

k=m

(
λk − λ

(n)
k

)
xk;

t

2

)

∗ μ
(

m+p∑

k=m

λ
(n)
k xk;

t

2

)

≥ 1 − ε, ∀m ≥ m
(n)
0 , ∀p ∈ N, ∀t ∈ R+.

(3.25)

It follows that the series
∑∞

k=1 λkxk is strongly fuzzy convergent, that is, ∃ s-
limm→∞

∑m
k=1 λkxk. Consequently, λ ∈ Ks

x
, and the relation (3.22) implies that limn→∞μK(λn−

λ; t) = 1 uniformly in, ∀t ∈ R+. It can be proved in a similar way that limn→∞νK(λn − λ; t) = 0
uniformly in ∀t ∈ R+. As a result, we obtain that the space (Ks

x
;μK; νK) is strongly fuzzy

complete. Thus, we have proved the following.

Theorem 3.4. Let (X;μ; ν) be a fuzzy Banach space with condition (12), and let {xn}n∈N ⊂ X be a
nondegenerate system, then the space of coefficients (Ks

x
;μK; νK) is a strongly fuzzy complete normed

space.

Consider operator T : Ks
x
→ X defined by

Tλ =
∞∑

n=1

λnxn, λ ≡ {λn}n∈N ∈ Ks
x. (3.26)
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Let s-limn→∞λn = λ inKs
x
, where λn ≡ {λ(n)k }

k∈N ∈ Ks
x. We have

μ
(
Tλn − Tλ; t

)
= μ

( ∞∑

k=1

(
λ
(n)
k − λk

)
xk; t

)

≥ inf
m
μ

(
m∑

k=1

(
λ
(n)
k − λk

)
xk; t

)

= μ
(
λn − λ; t

)
.

(3.27)

It follows directly that s-limn→∞Tλn = Tλ, that is, the operator T is strongly fuzzy continuous.
Let λ ∈ Ker T , that is, Tλ = 0 ⇒ ∑∞

n=1 λnxn = 0, where λ ≡ {λn}n∈N ∈ Ks
x
. It is clear that if the

system {xn}n∈N is s-linearly independent, then λn = 0, ∀n ∈ N, and as a result, Ker T = {0}. In
this case, ∃T−1 : ImT→ Ks

x
. If, in addition, ImT is s-closed in X, then T−1 is also continuous.

Denote by {en}n∈N ⊂ Ks
x
a canonical system in Ks

x
, where en = {δnk}k∈N ∈ Ks

x
.

Obviously, Ten = xn, ∀n ∈ N. Let us prove that {en}n∈N forms an s-basis for Ks
x
. Take

∀λ ≡ {λn}n∈N ∈ Ks
x
and show that the series

∑∞
n=1 λnen is strongly fuzzy convergent inKs

x
. In

fact, the existence of s-limm→∞
∑m

n=1 λnxn in Xs implies that ∀ε > 0, ∃m0 ∈ N,

μ

(
m+p∑

n=m
λnxn; t

)

> 1 − ε, ∀m ≥ m0, ∀p ∈ N, ∀t ∈ R+. (3.28)

We have

μK

(
m+p∑

n=m
λnen; t

)

= inf
r

(
r∑

n=m
λnxn; t

)

≥ 1 − ε, ∀m ≥ m0, ∀p ∈ N, ∀t ∈ R+. (3.29)

It follows that the series
∑∞

n=1 λnen is strongly fuzzy convergent inKs
x
. Moreover,

μK

(

λ −
m∑

n=1

λnen; t

)

= μK({. . . ; 0;λm+1; . . .}; t) = inf
r
μ

(
r∑

n=m+1

λnxn; t

)

≥ 1 − ε, ∀m ≥ m0, ∀t ∈ R+.

(3.30)

Consequently, s-limm→∞
∑m

n=1 λnen = λ, that is, λ s=
∑m

n=1 λnen. Consider the functionals
e∗n(λ) = λn, ∀n ∈ N. Let us show that they are s-continuous. Let s-limn→∞λn = λ, where
λn ≡ {λ(n)

k
}
k∈N ∈ Ks

x
. As established in the proof of Theorem 3.4, we have λ

(n)
k

→ λk as

n → ∞, that is, e∗k(λn) → e∗k(λ) as n → ∞ for ∀k ∈ N. Thus, e∗k is s-continuous in Ks
x
for

∀k ∈ N. On the other hand, it is easy to see that e∗n(ek) = δnk, ∀n, k ∈ N, that is, {e∗n}n∈N is
s-biorthogonal to {en}n∈N . As a result, we obtain that the system {en}n∈N forms an s-basis for
Ks

x
. So we get the validity of the following.

Theorem 3.5. Let (X;μ; ν) be a fuzzy Banach space with condition (12), and let {xn}n∈N ⊂ X be
a nondegenerate system. Then the corresponding space of coefficients (Ks

x
;μK; νK) is strongly fuzzy

complete with canonical s-basis {en}n∈N .

Suppose that the system {xn}n∈N is s-linearly independent and ImT is closed, then it is
easily seen that {xn}n∈N forms an s-basis for ImT, and in case of its s-completeness in Xs, it
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forms an s-basis for Xs. In this case, Ks
x
and Xs are isomorphic, and T is an isomorphism

between them. The opposite of it is also true, that is, if the above-defined operator T is an
isomorphism between Ks

x
and Xs, then the system {xn}n∈N forms an s-basis for Xs. We will

call T a coefficient operator. Thus, the following theorem holds.

Theorem 3.6. Let (X;μ; ν) be a fuzzy Banach space with condition (12), let {xn}n∈N ⊂ X be a
nondegenerate system, let (Ks

x
;μK; νK) be a corresponding strongly fuzzy complete normed space,

and let T : Ks
x
→ Xs be a coefficient operator. System {xn}n∈N forms an s-basis for Xs if and only if

the operator T is an isomorphism betweenKs
x
and Xs.
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