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An approximate analytical solution of fractional Fornberg-Whitham equation was obtained with
the help of the two-dimensional differential transformation method (DTM). It is indicated that the
solutions obtained by the two-dimensional DTM are reliable and present an effective method for
strongly nonlinear partial equations. Exact solutions can also be obtained from the known forms
of the series solutions.

1. Introduction

A homogeneous nonlinear fractional Fornberg-Whitham equation [1] is considered as in the
following form:

∂αu

∂tα
− uxxt + ux = uuxxx − uux + 3uxuxx, t > 0, 0 < α ≤ 1, (1.1)

with boundary conditions and

u(0, t) = f1(t), ux(0, t) = f2(t), (1.2)

with initial conditions

u(x, 0) = f3(x), ut(x, 0) = f4(x), (1.3)
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where u(x, t) is the fluid velocity, α is constant and lies in the interval (0, 1], t is the time and
x is the spatial coordinate.

Subscripts denote the partial differentiation unless stated otherwise. Fornberg and
Whitham obtained a peaked solution of the form u(x, t) = A exp((−1/2)|x − 4t/3|), where
A is an arbitrary constant. In recent years, considerable interest in fractional calculus used
in many fields such as electrical networks, control theory of dynamical systems, probability
and statistics, electrochemistry of corrosion, chemical physics, optics, engineering, accustics,
material science, and signal processing can be successfully modelled by linear or nonlinear
fractional order differential equations [2–8].

See fractional diffusion equation with absorbent term and external force by Das
and Gupta [9], fractional convection-diffusion equation with nonlinear source term by
Momani and Yıldırım [10], space-time fractional advection-dispersion equation by Yıldırım
and Koçak [11], fractional Zakharov-Kuznetsov equations by Yıldırım and Gülkanat [12],
boundary value problems by He [13], integro-differential equation by El-Shahed [14], non-
Newtonian flow by Siddiqui et al. [15], fractional PDEs in fluid mechanics by Yıldırım [16],
fractional Schrödinger equation [17, 18] and nonlinear fractional predator-prey model [19]
by HPM, linear PDEs of fractional order by He [20], Momani, and Odibat [21], and so forth.
In 2009, Tian and Gao [22] studied the proof of the existence of the attractor for the one-
dimensional viscous Fornberg-Whitham equation. Abidi and Omrani [23] have solved the
Fornberg-Whitham equation by the homotopy analysis method. Recently, Gupta and Singh
[24] have used homotopy perturbation method to numerical solution of fractional Fornberg-
Whitham Equation.

The goal of this paper is to extend the two-dimensional differential transform method
to solve fractional Fornberg-Whitham equation.

This paper is organized as follows.
In Section 2, we are giving definitions related to the fractional calculus theory briefly.

To show in efficiency of this method, we give the implementation of the DTM for the
Fornberg-Whitham equation and numerical results in Sections 3 and 4. The conclusions are
then given in the final Section 5.

2. Basic Definitions

Here are some basic definitions and properties of the fractional calculus theory which can be
found in [5, 6, 25, 26].

Definition 2.1. A real function f(x), x > 0, in the space Cμ, μ ∈ R if there exists a real number
p > μ, such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞) and it is said to be in the space if
f (m) ∈ Cμ, m ∈ N.

Definition 2.2. The left-sided Riemann-Liouville fractional integral operator of order α ≥ 0, of
a function f ∈ Cμ, μ ≥ −1 is defined as

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, for α > 0, x > 0 and J0f(x) = f(x). (2.1)

The properties of the operator Jα can be found in Jang et al. [25].
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Table 1: Operations of the two-dimensional differential transform.

Original function Transformed function
u(x, y) = f(x, y) ∓ g(x, y) Uα,β(k, h) = Fα,β(k, h) ∓G(k, h)

u(x, y) = ξf(x, y) Uα,β(k, h) = ξFα,β(k, h)

u(x, y) = ∂f(x, y)/∂x Uα,β(k, h) = (k + 1)F(k + 1, h)

u(x, y) = Dα
∗x0

f(x, y), 0 < α ≤ 1 Uα,β(k, h) = (Γ(α(k + 1) + 1)/Γ(αk + 1))Fα,β(k + 1, h)

u(x, y) = Dα
∗y0

f(x, y), 0 < α ≤ 1 Uα,β(k, h) = (Γ(α(h + 1) + 1)/Γ(αh + 1))Fα,β(k, h + 1)

u(x, y) = (x − x0)
mα(y − y0)

nβ Uα,β(k, h) = δ(k −m,h − n) =

{
1, k = r, h = s

0, otherwise
u(x, y) = f(x, y)g(x, y) Uα,β(k, h) =

∑k
m=0
∑h

n=0 Fα,β(m,h − n)Gα,β(k −m,n)

u(x, y) = f(x, y)g(x, y)h(x, y) Uα,β(k, h) =
∑k

k4=0
∑k−k4

k3=0

∑h
k2=0
∑h−k2

k1=0
Fα,β(k4, h − k2 − k1)

Gα,β(k3, k2)Hα,β(k − k4 − k3, k1)

Definition 2.3. The fractional derivative of f(x) in the Caputo [6] sense is defined as

Dα
∗f(x) = J(m−α)Dmf(x) =

1
Γ(m − α)

∫x

0
(x − t)(m−α−1)f (m)(t)dt,

for m − 1 < α < m, m ∈ N, x > 0, f ∈ Cn
−1.

(2.2)

The unknown function f = f(x, t) is assumed to be a casual function of fractional derivatives
(i.e., vanishing for α < 0) taken in Caputo sense as follows.

Definition 2.4. For m as the smallest integer that exceeds α, the Caputo time-fractional
derivative operator of order α > 0 is defined as

Dα
∗tf(x, t) =

∂αf(x, t)
∂tα

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ(m − α)

∫ t

0
(t − τ)m−α−1 ∂

mf(x, τ)
∂tm

dτ, m − 1 < α < m,

∂mf(x, t)
∂tm

, α = m ∈ N.

(2.3)

3. Two-Dimensional Differential Transformation Method

DTM is an analytic method based on the Taylor series expansion which constructs an
analytical solution in the form of a polynomial. The traditional high order Taylor series
method requires symbolic computation. However, the DTM obtains a polynomial series
solution by means of an iterative procedure. The method is well addressed by Odibat
and Momani [26]. The proposed method is based on the combination of the classical two-
dimensional DTM and generalized Taylor’s Table 1 formula. Consider a function of two
variables u(x, y) and suppose that it can be represented as a product of two single-variable
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functions, that is, u(x, y) = f(x)g(y). The basic definitions and fundamental operations of
the two-dimensional differential transform of the function are expressed as follows [25–38].
Two-dimensional differential transform of u(x, y) can be represented as:

u
(
x, y
)
=

∞∑
k=0

Fα(k)(x − x0)kα
∞∑
h=0

Gβ(k)
(
y − y0

)hβ

=
∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x − x0)kα
(
y − y0

)hβ
,

(3.1)

where 0 < α, β ≤ 1,Uα,β(k, h) = Fα(k)Gβ(h) is called the spectrum of u(x, y). The generalized
two-dimensional differential transform of the function u(x, y) is given by

Uα,β(k, h) =
1

Γ(αk + 1)Γ
(
βh + 1

)
[(
Dα

∗x0

)k(
D

β
∗y0

)h
u(x, y)

]
(x0,y0)

, (3.2)

where (Dα
∗x0

)k = Dα
∗x0

Dα
∗x0

· · ·Dα
∗x0︸ ︷︷ ︸

k

.

In case of α = 1, and β = 1, the generalized two-dimensional differential transform
(3.2) reduces to the classical two-dimensional differential transform.

From the above definitions, it can be found that the concept of two-dimensional
differential transform is derived from two-dimensional differential transform which is
obtained from two-dimensional Taylor series expansion.

4. The DTM Applied to Fractional Fornberg-Whitham Equation

In this section, we will research the solution of fractional Fornberg-Whitham equation, which
has been widely examined in the literature. We described the implementation of the DTM for
the fractional Fornberg-Whitham equation in detail. To solve (1.1)–(1.3), according to DTM,
(1.2)-(1.3) with initial condition become

u(x, 0) = ex/2, ut(x, 0) = −2
3
ex/2, (4.1)

with boundary conditions

u(0, t) = e−2t/3, ux(0, t) =
1
2
e−2t/3. (4.2)
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Applying the differential transform of (1.1), (4.1), and (4.2), then

Γ(αh + 1)
Γ(α(h + 1) + 1)

Uα,1(k, h + 1) − (k + 1)(k + 2)(h + 1)Uα,1(k + 2, h + 1) + (k + 1)Uα,1(k + 1, h)

−
k∑

r=0

h∑
s=0

(k − r + 1)(k − r + 2)(k − r + 3)Uα,1(r, h − s)Uα,1(k − r + 3, s)

+
k∑

r=0

h∑
s=0

(k − r + 1)Uα,1(r, h − s)Uα,1(k − r + 1, s)

− 3
k∑

r=0

h∑
s=0

(k − r + 1)(k − r + 2)(r + 1)Uα,1(r + 1, h − s)Uα,1(k − r + 2, s) = 0.

(4.3)

Uα,1(k, 0) =
∞∑
k=0

1
k!

(x
2

)k
, Uα,1(k, 1) = −2

3
Uα,1(k, 0),

Uα,1(0, h) =
∞∑
h=0

1
h!

(
−2t
3

)h

, Uα,1(1, h) =
1
2
Uα,1(0, h).

(4.4)

Substituting (4.3) into (4.4), we obtain the closed form solution as

u(x, t) =
∞∑
k=0

∞∑
h=0

Uα,1(k, h)xkthα

=

(
1 +

x

2
+
x2

8
+
x3

48
+ · · ·

)(
1 +

(−2t/3)α
Γ(α + 1)

+
(−2t/3)2α
Γ(2α + 1)

+
(−2t/3)3α
Γ(3α + 1)

+ · · ·
)
.

(4.5)

As α = 1, this series has the closed form e(x/2−2t/3), which is an exact solution of the classical
gas dynamics equation.

The graphs of exact and DTM solutions belonging to examples examined above are
shown in Figure 1. It can be deduced that DTM solution corresponds to the exact solutions.

Both the exact results and the approximate solutions obtained for the DTM
approximations are plotted in Figure 1. There are no visible differences in the two solutions
of each pair of diagrams.

5. Conclusions

In this paper, the applicability of the fractional differential transformation method to the
solution of fractional Fornberg-Whitham equation with a number of initial and boundary
values has been proved. DTM can be applied to many complicated linear and strongly
nonlinear partial differential equations and does not require linearization, discretization, or
perturbation. The obtained results indicate that this method is powerful and meaningful for
solving the nonlinear fractional Fornberg-Whitham type differential equations.
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Figure 1: The surface shows the solution u(x, t) for (1.1): (a) α = 1/3, (b) α = 1/2, (c) α = 2/3, (d) α = 3/4,
(e) α = 1, and (f) exact solution.
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