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The asymptotic behaviour of a real two-dimensional differential system x′(t) = A(t)x(t) +∑m
k=1 Bk(t)x(θk(t))+h(t, x(t), x(θ1(t)), . . . , x(θm(t)))with unbounded nonconstant delays t−θk(t) ≥

0 satisfying limt→∞θk(t) = ∞ is studied under the assumption of instability. Here, A, Bk, and h are
supposed to be matrix functions and a vector function. The conditions for the instable properties
of solutions and the conditions for the existence of bounded solutions are given. The methods are
based on the transformation of the considered real system to one equation with complex-valued
coefficients. Asymptotic properties are studied by means of a Lyapunov-Krasovskii functional and
the suitable Ważewski topological principle. The results generalize some previous ones, where the
asymptotic properties for two-dimensional systems with one constant or nonconstant delay were
studied.

1. Introduction

Consider the real two-dimensional system

x′(t) = A(t)x(t) +
m∑

k=1

Bk(t)x(θk(t)) + h(t, x(t), x(θ1(t)), . . . , x(θm(t))), (1.1)
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where θk(t) are real functions, A(t) = (aij(t)), Bk(t) = (bijk(t))(i, j = 1, 2; k = 1, . . . , m) are
real square matrices, and h(t, x, y) = (h1(t, x, y1, . . . , ym), h2(t, x, y1, . . . , ym)) is a real vector
function, x = (x1, x2), yk = (y1k, y2k). It is supposed that the functions θk, aij are locally
absolutely continuous on [t0,∞), bijk are locally Lebesgue integrable on [t0,∞), and the
function h satisfies Carathéodory conditions on [t0,∞) × R

2(m+1).
There are a lot of papers dealing with the stability and asymptotic behaviour of n-

dimensional real vector equations with delay. Among others we should mention the recent
results [1–13]. Since the plane has special topological properties different from those of n-
dimensional space, where n ≥ 3 or n = 1, it is interesting to study the asymptotic behaviour
of two-dimensional systems by using tools that are typical and effective for two-dimensional
systems. The convenient tool is the combination of the method of complexification and the
method of Lyapunov-Krasovskii functional. For the case of instability, it is useful to add to
this combination the version of Ważewski topological principle formulated by Rybakowski
in the papers [14, 15]. Using these techniques, we obtain new and easy applicable results on
stability, asymptotic stability, instability, or boundedness of solutions of the system (1.1).

The main idea of the investigation, the combination of the method of complexification
and the method of Lyapunov-Krasovskii functional, was introduced for ordinary differential
equations in the paper by Ráb and Kalas [16] in 1990. The principle was transferred to
differential equations with delay by Kalas and Baráková [17] in 2002. The results in the
case of instability were obtained for ODEs by Kalas and Osička [18] in 1994 and for delayed
differential equations by Kalas [19] in 2005.

We extend such type of results to differential equations with a finite number of
nonconstant delays. We introduce the transformation of the considered real system to one
equation with complex-valued coefficients. We present sufficient conditions for the instability
of a solution and for the existence of a bounded solution. The applicability of the results is
demonstrated with several examples.

At the end of this introduction we append a brief overview of notation used in
the paper and the transformation of the real system to one equation with complex-valued
coefficients.

R is the set of all real numbers,

R+ the set of all positive real numbers,

R
0
+ the set of all nonnegative real numbers,

R− the set of all negative real numbers,

R
0
− the set of all nonpositive real numbers,

C the set of all complex numbers,

C the class of all continuous functions [−r, 0] → C,

ACloc(I,M) the class of all locally absolutely continuous functions I → M,

Lloc(I,M) the class of all locally Lebesgue integrable functions I → M,

K(I×Ω,M) the class of all functions I×Ω → M satisfying Carathéodory conditions
on I ×Ω,
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Rez the real part of z,

Imz the imaginary part of z, and

z the complex conjugate of z.

Introducing complex variables z = x1 + ix2,w1 = y11 + iy12,...,wm = ym1 + iym2, we can
rewrite the system (1.1) into an equivalent equation with complex-valued coefficients

z′(t) = a(t)z(t) + b(t)z(t) +
m∑

k=1

[Ak(t)z(θk(t)) + Bk(t)z(θk(t))]

+ g(t, z(t), z(θ1(t)), . . . , z(θm(t))),

(1.2)

where θk ∈ ACloc(J,R) for k = 1, . . . , m, Ak, Bk ∈ Lloc(J,C), a, b ∈ ACloc(J,C), g ∈ K(J ×
C
m+1,C), J = [t0,∞).

The relations between the functions are as follows:

a(t) =
1
2
(a11(t) + a22(t)) +

i

2
(a21(t) − a12(t)),

b(t) =
1
2
(a11(t) − a22(t)) + i

2
(a21(t) + a12(t)),

Ak(t) =
1
2
(b11k(t) + b22k(t)) +

i

2
(b21k(t) − b12k(t)),

Bk(t) =
1
2
(b11k(t) − b22k(t)) + i

2
(b21k(t) + b12k(t)),

g(t, z,w1, . . . , wm) = h1
(

t,
1
2
(z + z),

1
2i
(z − z), 1

2
(w1 +w1), . . . ,

1
2i
(wm −wm)

)

+ ih2
(

t,
1
2
(z+z),

1
2i
(z−z), 1

2
(w1+w1),

1
2i
(w1−w1), . . . ,

1
2i
(wm−wm)

)

.

(1.3)

Conversely, putting

a11(t) = Re[a(t) + b(t)], a12(t) = Im[b(t) − a(t)],
a21(t) = Im[a(t) + b(t)], a22(t) = Re[a(t) − b(t)],

b11k(t) = Re[Ak(t) + Bk(t)], b12k(t) = Im[Bk(t) −Ak(t)],

b21k(t) = Im[Ak(t) + Bk(t)], b22k(t) = Re[Ak(t) − Bk(t)],
h1
(
t, x, y1, . . . , ym

)
= Reg

(
t, x1 + ix2, y11 + iy12, . . . , ym1 + iym2

)
,

h2
(
t, x, y1, . . . , ym

)
= Img

(
t, x1 + ix2, y11 + iy12, . . . , ym1 + iym2

)
,

(1.4)

the equation (1.2) can be written in the real form (1.1) as well.
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2. Preliminaries

We consider (1.2) in the case when

lim inf
t→∞

(∣
∣
∣
∣Ima(t)

∣
∣
∣
∣ − |b(t)|

)

> 0 (2.1)

and study the behavior of solutions of (1.2) under this assumption. This situation corresponds
to the case when the equilibrium 0 of the autonomous homogeneous system

x′ = Ax, (2.2)

where A is supposed to be regular constant matrix, is a centre or a focus. See [16] for more
details.

Regarding (2.1) and since the delay functions θk satisfy limt→∞θk(t) = ∞, there are
numbers T1 ≥ t0, T ≥ T1, and μ > 0 such that

∣
∣
∣
∣Ima(t)

∣
∣
∣
∣ > |b(t)| + μ for t ≥ T1, t ≥ θk(t) ≥ T1 for t ≥ T(k = 1, . . . , m). (2.3)

Denote

γ̃(t) = Ima(t) +

√
(

Ima(t)
)2

− |b(t)|2sgn
(

Ima(t)
)

, c̃(t) = −ib(t). (2.4)

Notice that the above-defined function γ̃ need not be positive.
Since |γ̃(t)| > |Ima(t)| and |c̃(t)| = |b(t)|, the inequality

∣
∣γ̃(t)

∣
∣ > |c̃(t)| + μ (2.5)

is valid for t ≥ T1. It can be easily verified that γ̃ , c̃ ∈ ACloc([T1,∞),C).
For the rest of this section we will denote

ϑ̃(t) =
Re

(
γ̃(t)γ̃ ′(t) − c̃(t)c̃′(t)

)
− ∣
∣γ̃(t)c̃′(t) − γ̃ ′(t)c̃(t)∣∣

γ̃2(t) − |c̃(t)|2
. (2.6)

The instability and boundedness of solutions are studied subject to suitable subsets of
the following assumptions.

(i) The numbers T1 ≥ t0, T ≥ T1, and μ > 0 are such that (2.3) holds.

(ii) There exist functions κ̃, κ̃k, � : [T,∞) → R such that
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∣
∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)

∣
∣

≤ κ̃(t)
∣
∣γ̃(t)z + c̃(t)z

∣
∣ +

m∑

k=1

κ̃k(t)
∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣ + �(t)

(2.7)

for t ≥ T , z,wk ∈ C(k = 1, . . . , m), where � is continuous on [T,∞).

(iin) There exist numbers Rn ≥ 0 and functions κ̃n, κ̃nk : [T,∞) → R such that

∣
∣ γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)

∣
∣

≤ κ̃n(t)
∣
∣γ̃(t)z + c̃(t)z

∣
∣ +

m∑

k=1

κ̃nk(t)
∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣

(2.8)

for t ≥ τn ≥ T, |z| +∑m
k=1 |wk| > Rn.

(iii) β̃ ∈ ACloc([T,∞),R0
−) is a function satisfying

θ′k(t)β̃(t) ≤ −λ̃k(t) a.e. on [T,∞), (2.9)

where λ̃k is defined for t ≥ T by

λ̃k(t) = κ̃k(t) + (|Ak(t)| + |Bk(t)|)
∣
∣γ̃(t)

∣
∣ + |c̃(t)|

∣
∣γ̃(θk(t))

∣
∣ − |c̃(θk(t))|

. (2.10)

(iiin) β̃n ∈ ACloc[T,∞),R0
−) is a function satisfying

θ′k(t)β̃n(t) ≤ −λ̃nk(t) a.e. on [τn,∞), (2.11)

where λ̃nk is defined for t ≥ T by

λ̃nk(t) = κ̃nk(t) + (|Ak(t)| + |Bk(t)|)
∣
∣γ̃(t)

∣
∣ + |c̃(t)|

∣
∣γ̃(θk(t))

∣
∣ − |c̃(θk(t))|

. (2.12)

(ivn) Λ̃n is a real locally Lebesgue integrable function satisfying the inequalities β̃′n(t) ≥
Λ̃n(t)β̃n(t), Θ̃n(t) ≥ Λ̃n(t) for almost all t ∈ [τn,∞), where Θ̃n is defined by

Θ̃n(t) = Rea(t) + ϑ̃(t) − κ̃n(t) +mβ̃n(t). (2.13)

Obviously, ifAk, Bk, κ̃k, and θ′k are locally absolutely continuous on [T,∞) and λ̃k(t) ≥
0, θ′

k
(t) > 0, the choice β̃(t) = −maxk=1,...,m[λ̃k(t)(θ′k(t))

−1] is admissible in (iii). Similarly, ifAk,
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Bk, κ̃nk, and θ′k are locally absolutely continuous on [T,∞) and λ̃nk(t) ≥ 0, θ′k(t) > 0, the choice
β̃n(t) = −maxk=1,...,m[λ̃nk(t)(θ′k(t))

−1] is admissible in (iiin).

Denote

Θ̃(t) = Rea(t) + ϑ̃(t) − κ̃(t). (2.14)

From assumption (i) it follows that

∣
∣
∣ϑ̃

∣
∣
∣ ≤

∣
∣
∣
∣Re

(
γ̃ γ̃ ′ − c̃c̃′

)∣∣
∣
∣ +

∣
∣γ̃c′ − γ̃ ′c∣∣

γ̃2 − |c̃|2
≤

(∣
∣γ̃ ′

∣
∣ + |c̃′|)(∣∣γ̃∣∣ + |c̃|)

γ̃2 − |c̃|2

=

∣
∣γ̃ ′

∣
∣ + |c̃′|

∣
∣γ̃
∣
∣ − |c̃| ≤ 1

μ

(∣
∣γ̃ ′

∣
∣ +

∣
∣c̃′

∣
∣
)
;

(2.15)

therefore the function ϑ̃ is locally Lebesgue integrable on [T,∞), assuming that (i) holds true.
If the relations β̃n ∈ ACloc([T,∞),R−), κ̃n ∈ Lloc([T,∞),R), and β̃′n(t)/β̃n(t) ≤ Θ̃n(t) for almost
all t ≥ τn together with conditions (i) and (iin) are fulfilled, then we can choose Λ̃n(t) = Θ̃n(t)
for t ∈ [T,∞) in (ivn).

3. Results

Theorem 3.1. Let assumptions (i), (ii0), (iii0), and (iv0) be fulfilled for some τ0 ≥ T . Suppose there
exist t1 ≥ τ0 and ν ∈ (−∞,∞) such that

inf
t≥t1

[∫ t

t1

Λ̃0(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

]

≥ ν. (3.1)

If z(t) is any solution of (1.2) satisfying

min
θ(t1)≤s≤t1

|z(s)| > R0, Δ(t1) > R0e
−ν, (3.2)

where

θ(t) = min
k=1,...,m

θk(t),

Δ(t) =
(∣
∣γ̃(t)

∣
∣ − |c̃(t)|)|z(t)| + β̃0(t) max

θ(t)≤s≤t
|z(s)|

m∑

k=1

∫ t

θk(t)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds,

(3.3)
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then

|z(t)| ≥ Δ(t1)∣
∣γ̃(t)

∣
∣ + |c̃(t)| exp

[∫ t

t1

Λ̃0(s)ds

]

(3.4)

for all t ≥ t1, for which z(t) is defined.

In the proof we use the following Lemma.

Lemma 3.2. Let a1, a2, b1, b2 ∈ C, |a2| > |b2|. Then,

Re
a1z + b1z
a2z + b2z

≥
Re

(
a1a2 − b1b2

)
− |a1b2 − a2b1|

|a2|2 − |b2|2
(3.5)

for z ∈ C, z/= 0.

The proof is analogous to that of Lemma 1 in [20, page 101] or to the proof of Lemma
in [16, page 131].

Proof of Theorem 3.1. Let z(t) be any solution of (1.2) satisfying (3.2). Consider the Lyapunov
functional

V (t) = U(t) + β̃0(t)
m∑

k=1

∫ t

θk(t)
U(s)ds, (3.6)

where

U(t) =
∣
∣γ̃(t)z(t) + c̃(t)z(t)

∣
∣. (3.7)

For brevity we shall denote wk(t) = z(θk(t)) and we shall write the function of variable t
simply without indicating the variable t, for example, γ̃ instead of γ̃(t).

In view of (3.6), we have

V ′ = U′ + β̃′0
m∑

k=1

∫ t

θk(t)
U(s)ds +mβ̃0

∣
∣γ̃z + c̃z

∣
∣

−
m∑

k=1

θ′kβ̃0
∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣

(3.8)

for almost all t ≥ t1 for which z(t) is defined and U′(t) exists. Put K = {t ≥ t1 :
z(t) exists, |z(t)| > R0}. Clearly U(t)/= 0 for t ∈ K. The derivative U′(t) exists for almost
all t ∈ K.
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Since z(t) is a solution of (1.2), we obtain

UU′ = Re
[(
γ̃z + c̃z

)(
γ̃ ′z + γ̃z′ + c̃′z + c̃z′

)]

= Re

{
(
γ̃z + c̃z

)
[

γ̃ ′z + c̃′z + γ̃

(

az + bz +
m∑

k=1

(Akwk + Bkwk) + g

)

+c̃
(
az + bz

)
+

m∑

k=1

(
Akwk + Bkwk + g

)
]}

= Re

{
(
γ̃z + c̃z

)
[

γ̃ ′z + c̃′z +
(
γ̃a + c̃b

)
z +

(
γ̃b + c̃a

)
z

+γ̃

(
m∑

k=1

(Akwk + Bkwk) + g

)

+ c̃

(
m∑

k=1

(
Akwk + Bkwk

)
+ g

)]}

(3.9)

for almost all t ∈ K. Taking into account

(
γ̃a + c̃b

)
c̃ =

(
γ̃b + c̃a

)
γ̃ , (3.10)

we get

UU′ ≥ Re
{(

γ̃z + c̃z
)(
γ̃a + c̃b

)(

z +
c̃

γ̃
z

)}

+ Re

{
(
γ̃z + c̃z

)
[

γ̃
m∑

k=1

(Akwk + Bkwk) + c̃
m∑

k=1

(
Akwk + Bkwk

)
]}

+ Re
{(
γ̃z + c̃z

)(
γ̃g + c̃g

)}
+ Re

{(
γ̃z + c̃z

)(
γ̃ ′z + c̃′z

)}

≥ U2Re
(

a +
c̃

γ̃
b

)

−U(∣
∣γ̃
∣
∣ + |c̃|)

(
m∑

k=1

|Akwk + Bkwk|
)

−U∣
∣γ̃g + c̃g

∣
∣ +U2Re

γ̃ ′z + c̃′z
γ̃z + c̃z

.

(3.11)

By the use of Lemma 3.2, we get

Re
γ̃ ′z + c̃′z
γ̃z + c̃z

≥ ϑ̃. (3.12)

The last inequality together with (2.12), taken for n = 0, assumption (ii0), and the
relation

Re
(

a +
c̃

γ̃
b

)

= Rea (3.13)
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yields

UU′ ≥ U2
(

Rea + ϑ̃ − κ̃0

)

−U
m∑

k=1

(
κ̃0k

∣
∣γ̃(θk)wk + c̃(θk)wk

∣
∣
)

−U(∣
∣γ̃
∣
∣ + |c̃|)

(
m∑

k=1

|Ak||wk| + |Bk||wk|∣
∣γ̃(θk)

∣
∣ − |c̃(θk)|

(∣
∣γ̃(θk)

∣
∣ − |c̃(θk)|

)
)

≥ U2
(

Rea + ϑ̃ − κ̃0

)

−U
{

m∑

k=1

[

κ̃0k + (|Ak| + |Bk|)
∣
∣γ̃
∣
∣ + |c̃|

∣
∣γ̃(θk)

∣
∣ − |c̃(θk)|

]
∣
∣γ̃(θk)wk + c̃(θk)wk

∣
∣

}

≥ U2
(

Rea + ϑ̃ − κ̃0

)

−U
m∑

k=1

λ̃0k
∣
∣γ̃(θk)wk + c̃(θk)wk

∣
∣

(3.14)

for almost all t ∈ K.
Consequently,

U′ ≥ U
(

Rea + ϑ̃ − κ̃0

)

−
m∑

k=1

λ̃0k
∣
∣γ̃(θk)wk + c̃(θk)wk

∣
∣ (3.15)

for almost all t ∈ K. Inequality (3.15) together with relation (3.8) gives

V ′ ≥ U
(

Rea + ϑ̃ − κ̃0 +mβ̃0
)

−
m∑

k=1

(
λ̃0k + θ′kβ̃0

)∣
∣γ̃(θk)wk + c̃(θk)wk

∣
∣

+ β̃′0
m∑

k=1

∫ t

θk(t)

∣
∣γ̃(s)z(s) + c̃(s)z(s)

∣
∣ds.

(3.16)

Using (2.11) and (2.13) for n = 0, we obtain

V ′(t) ≥ U(t)Θ̃0(t) + β̃′0(t)
m∑

k=1

∫ t

θk(t)
U(s)ds. (3.17)

Hence, in view of (iv0),

V ′(t) − Λ̃0(t)V (t) ≥ 0 (3.18)

for almost all t ∈ K.
Multiplying (3.18) by exp[− ∫ t

t1
Λ̃0(s)ds] and integrating over [t1, t], we get

V (t) exp

[

−
∫ t

t1

Λ̃0(s)ds

]

− V (t1) ≥ 0 (3.19)
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on any interval [t1, ω), where the solution z(t) exists and satisfies the inequality |z(t)| > R0.
Now, with respect to (3.6), (3.7), and β̃0 ≤ 0, we have

(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)|z(t)| ≥ V (t) ≥ V (t1) exp

[∫ t

t1

Λ̃0(s)ds

]

≥ Δ(t1) exp

[∫ t

t1

Λ̃0(s)ds

]

. (3.20)

If (3.2) is fulfilled, there is R > R0 such that Δ(t1) > Re−ν. By virtue of (3.1), and (3.2), we can
easily see that

|z(t)| ≥ Δ(t1)∣
∣γ̃(t)

∣
∣ + |c̃(t)| exp

[∫ t

t1

Λ̃0(s)ds

]

≥ Re−νeν = R (3.21)

for all t ≥ t1, for which z(t) is defined.

To obtain results on the existence of bounded solutions, we shall suppose that (1.2)
satisfies the uniqueness property of solutions. Moreover, we suppose that the delays are
bounded, that is, that the functions θk satisfy the condition

t − r ≤ θk(t) ≤ t for t ≥ t0 + r, (3.22)

where r > 0 is a constant. Our assumptions imply the existence of numbers T1 = t0 + r, T ≥ T1,
and μ > 0 such that

∣
∣
∣
∣Ima(t)

∣
∣
∣
∣ > |b(t)| + μ for t ≥ T1, t ≥ θk(t) ≥ t − r for t ≥ T(k = 1, . . . , m). (5′)

In view of this, we replace (2.3) in assumption (i) with (5′). All other assumptions we
keep in validity.

In the proof of the following theorem we shall utilize Ważewski topological principle
for retarded functional differential equations of Carathéodory type. Details of this theory can
be found in the paper of Rybakowski [15].

Theorem 3.3. Let conditions (i), (ii), and (iii) be fulfilled, and let Λ̃, θ′
k

(k = 1, . . . , m) be continuous
functions such that the inequality Λ̃(t) ≤ Θ̃(t) holds a.e. on [T,∞), where Θ̃ is defined by (2.14).
Suppose that ξ : [T − r,∞) → R is a continuous function such that

Λ̃(t) + β̃(t)
m∑

k=1

θ′k(t) exp

[

−
∫ t

θk(t)
ξ(s)ds

]

− ξ(t) > �(t)C−1 exp

[

−
∫ t

T

ξ(s)ds

]

(3.23)
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for t ∈ [T,∞] and some constant C > 0. Then, there exist t2 > T and a solution z0(t) of (1.2)
satisfying

|z0(t)| ≤ C
∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]

(3.24)

for t ≥ t2.

Proof. Write (1.2) in the form

z′ = F(t, zt), (2′)

where F : J × C → C is defined by

F
(
t, ψ

)
= a(t)ψ(0) + b(t)ψ(0) +

m∑

k=1

[
Ak(t)ψ(θk(t) − t) + Bk(t)ψ(θk(t) − t)

]

+ g
(
t, ψ(0), ψ(θ1(t) − t), . . . , ψ(θm(t) − t)

)
(3.25)

and zt is the element of C defined by the relation zt(θ̃) = z(t + θ̃), θ̃ ∈ [−r, 0]. Let τ > T . Put

Ũ(t, z, z) =
∣
∣γ̃(t)z + c̃(t)z

∣
∣ − ϕ(t),

ϕ(t) = C exp

[∫ t

T

ξ(s)ds

]

,

Ω0 =
{
(t, z) ∈ (τ,∞) × C : Ũ(t, z, z) < 0

}
,

ΩŨ =
{
(t, z) ∈ (τ,∞) × C : Ũ(t, z, z) = 0

}
.

(3.26)

It can be easily verified thatΩ0 is a polyfacial set generated by the functions Û(t) = τ−t,
Ũ(t, z, z) (see Rybakowski [15, page 134]). It holds that ΩŨ ⊂ ∂Ω0. As (|γ̃(t)| + |c̃(t)|)|z(t)| ≥
|γ̃(t)z + c̃(t)z|, we have

|z| ≥ ϕ(t)
∣
∣γ̃(t)

∣
∣ + |c̃(t)| =

C
∣
∣γ̃(t)

∣
∣ + |c̃(t)| exp

[∫ t

T

ξ(s)ds

]

> 0 (3.27)

for (t, z) ∈ ΩŨ. It holds that

D+Û(t) =
∂

∂t
(τ − t) = −1 < 0. (3.28)
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Let (t∗, ζ) ∈ ΩŨ and φ ∈ C be such that φ(0) = ζ and (t∗ + θ̃, φ(θ̃)) ∈ Ω0 for all θ̃ ∈ [−r, 0). If
(t, ψ) ∈ (τ,∞) × C, then

D+Ũ
(
t, ψ(0), ψ(0)

)
: = lim sup

h→ 0+

(
1
h

)[
Ũ
(
t + h, ψ(0) + hF

(
t, ψ

)
, ψ(0) + hF

(
t, ψ

))

−Ũ(
t, ψ(0), ψ(0)

)]

=
∂Ũ

(
t, ψ(0) , ψ(0)

)

∂t
+
∂Ũ

(
t, ψ(0), ψ(0)

)

∂z
F
(
t, ψ

)

+
∂Ũ

(
t, ψ(0), ψ(0)

)

∂z
F
(
t, ψ

)
.

(3.29)

Therefore,

D+Ũ
(
t, ψ(0), ψ(0)

)
=
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣Re

γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
1
2
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣−1

×
{[
γ̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
+
(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
c̃(t)

]
F
(
t, ψ

)

+
[
c̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
+ γ̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)]
F
(
t, ψ

)}

(3.30)

provided that the derivatives γ̃ ′(t), c̃′(t) exist and that ψ(0)/= 0. Thus,

D+Ũ
(
t, ψ(0), ψ(0)

)
=
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣Re

γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣−1Re

{
γ̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
F
(
t, ψ

)

+ c̃(t)
(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
F
(
t, ψ

)}

=
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣Re

γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣−1 Re

{(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)

×
(
γ̃(t)F

(
t, ψ

)
+ c̃(t)F

(
t, ψ

))}
.

(3.31)

Using (3.10), (3.13), and (ii), similarly to the proof of Theorem 3.1, we obtain

D+Ũ
(
t, ψ(0), ψ(0)

) ≥ ∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣Rea(t)

−
m∑

k=1

∣
∣Ak(t)ψ(θk(t) − t) + Bk(t)ψ(θk(t) − t)

∣
∣
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

− κ̃(t)
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣
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−
m∑

k=1

κ̃k(t)
∣
∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣
∣

+ ϑ̃(t)
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣ − �(t) − ϕ′(t)

(3.32)

and consequently, with respect to (iii),

D+Ũ
(
t, ψ(0), ψ(0)

) ≥
(

Rea(t) + ϑ̃(t) − κ̃(t)
)
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣

−
m∑

k=1

λ̃k(t)
∣
∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣
∣ − �(t) − ϕ′(t)

≥ Θ̃(t)
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣

+ β̃(t)
m∑

k=1

θ′k(t)
∣
∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣
∣ − �(t) − ϕ′(t)

≥ Λ̃(t)
∣
∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣
∣

+ β̃(t)
m∑

k=1

θ′k(t)
∣
∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣
∣ − �(t) − ϕ′(t)

(3.33)

for almost all t ∈ (τ,∞) and for ψ ∈ C sufficiently close to φ. Replacing t and ψ by t∗ and φ,
respectively, in the last expression, we get

Λ̃(t∗)
∣
∣
∣γ̃(t∗)φ(0) + c̃(t∗)φ(0)

∣
∣
∣ + β̃(t∗)

m∑

k=1

θ′k(t
∗)
∣
∣
∣γ̃(θk(t∗))φ(θk(t∗) − t∗) + c̃(θk(t∗))φ(θk(t∗) − t∗)

∣
∣
∣

− �(t∗) − ϕ′(t∗)

≥ Λ̃(t∗)
∣
∣
∣γ̃(t∗)ζ + c̃(t∗)ζ

∣
∣
∣ + β̃(t∗)

m∑

k=1

θ′k(t
∗)ϕ(θk(t∗)) − �(t∗) − ϕ′(t∗)

≥ Λ̃(t∗)ϕ(t∗) + β̃(t∗)
m∑

k=1

θ′k(t
∗)ϕ(θk(t∗)) − �(t∗) − ϕ′(t∗)

= Λ̃(t∗)C exp

[∫ t∗

T

ξ(s)ds

]

+ β̃(t∗)
m∑

k=1

θ′k(t
∗)C exp

[∫θk(t∗)

T

ξ(s)ds

]

− �(t∗) − Cξ(t∗) exp
[∫ t∗

T

ξ(s)ds

]

=

{

Λ̃(t∗) + β̃(t∗)
m∑

k=1

θ′k(t
∗) exp

[

−
∫ t∗

θk(t∗)
ξ(s)ds

]

− ξ(t∗)
}

C exp

[∫ t∗

T

ξ(s)ds

]

− �(t∗) > 0.
(3.34)



14 Abstract and Applied Analysis

Therefore, in view of the continuity, D+Ũ(t, ψ(0), ψ(0)) > 0 holds for ψ sufficiently close to φ
and almost all t sufficiently close to t∗. Hence, Ω0 is a regular polyfacial set with respect to
(2′).

Choose Z = {(t2, z) ∈ Ω0 ∪ΩŨ}, where t2 > τ + r is fixed. It can be easily verified that
Z ∩ΩŨ is a retract of ΩŨ, but Z ∩ΩŨ is not a retract of Z. Let η ∈ C be such that η(0) = 1 and
0 ≤ η(θ) < 1 for θ ∈ [−r, 0). Define the mapping p : Z → C for (t2, z) ∈ Z by the relation

p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)

(
γ̃2(t2 + θ) − |c̃(t2 + θ)|2

)
ϕ(t2)

[(
γ̃(t2)γ̃(t2 + θ) − c̃(t2)c̃(t2 + θ)

)
z

+
(
γ̃(t2 + θ)c̃(t2) − γ̃(t2)c̃(t2 + θ)

)
z
]

(3.35)

The mapping p is continuous, and it holds that

p(t2, z)(0) = z for (t2, z) ∈ Z, p(t2, 0)(θ) = 0 for θ ∈ [−r, 0]. (3.36)

Since

γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)

ϕ(t2)
(
γ̃(t2)z + c̃(t2)z

)
, (3.37)

we have

∣
∣γ̃(t2)z + c̃(t2)z

∣
∣ < ϕ(t2), (3.38)

∣
∣
∣γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ)

∣
∣
∣ < ϕ(t2 + θ) (3.39)

for (t2, z) ∈ Z ∩ Ω0 and θ ∈ [−r, 0]. Clearly, inequality (3.39) holds also for (t2, z) ∈ Z ∩ ΩŨ

and θ ∈ [−r, 0).
Using a topological principle for retarded functional differential equations (see

Rybakowski [15, Theorem 2.1]), we see that there is a solution z0(t) of (1.2) such that
(t, z0(t)) ∈ Ω0 for all t ≥ t2 for which the solution z0(t) exists. Obviously, z0(t) exists for
all t ≥ t2 and

(∣
∣γ̃(t)

∣
∣ − |c̃(t)|)|z0(t)| ≤

∣
∣γ̃(t)z0(t) + c̃(t)z0(t)

∣
∣ ≤ ϕ(t) for t ≥ t2. (3.40)

Hence

|z0(t)| ≤
ϕ(t)

∣
∣γ̃(t)

∣
∣ − |c̃(t)| for t ≥ t2. (3.41)

Theorem 3.4. Suppose that hypotheses (i), (ii), (iin), (iii), (iiin), and (ivn) are fulfilled for τn ≥ T and
n ∈ N, where Rn > 0, infn∈NRn = 0. Let Λ̃, θ′

k
be continuous functions satisfying the inequality
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Λ̃(t) ≤ Θ̃(t) a.e. on [T,∞), where Θ̃ is defined by (2.14). Assume that ξ : [T − r,∞) → R is a
continuous function such that

Λ̃(t) + β̃(t)
m∑

k=1

θ′k(t) exp

[

−
∫ t

θk(t)
ξ(s)ds

]

− ξ(t) > ρ(t)C−1 exp

(

−
∫ t

T

ξ(s)ds

)

(3.42)

for t ∈ [T,∞) and some constant C > 0. Suppose that

lim sup
t→∞

[∫ t

T

(
Λ̃n(s) − ξ(s)

)
ds + ln

∣
∣γ̃(t)

∣
∣ − |c̃(t)|

∣
∣γ̃(t)

∣
∣ + |c̃(t)|

]

= ∞, (3.43)

lim
t→∞

[

β̃n(t) max
θ(t)≤s≤t

exp
[∫s
T ξ(σ) dσ

]

∣
∣γ̃(s)

∣
∣ − |c̃(s)|

m∑

k=1

∫ t

θk(t)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds

]

= 0, (3.44)

inf
τn≤s≤t<∞

[∫ t

s

Λ̃n(σ)dσ − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

]

≥ ν (3.45)

for n ∈ N, where θ(t) = mink=1,...,mθk(t) and ν ∈ (−∞,∞). Then, there exists a solution z0(t) of
(1.2) such that

lim
t→∞

min
θ(t)≤s≤t

|z0(s)| = 0. (3.46)

Proof. By the use of Theorem 3.3 we observe that there is a t2 ≥ T and a solution z0(t) of (1.2)
with property

|z0(t)| ≤ C
∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]

(3.47)

for t ≥ t2. Suppose that (3.46) is not satisfied. Then, there is ε0 > 0 such that

lim sup
t→∞

min
θ(t)≤s≤t

|z0(s)| > ε0. (3.48)

ChooseN ∈ N such that

max
{

RN,
2
μ
RNe

−ν
}

< ε0. (3.49)

It holds that

min
θ(τ)≤s≤τ

|z0(s)| > max
{

RN,
2
μ
RNe

−ν
}

(3.50)
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for some τ > max{T, τN, t2}. In view of (3.44), we can suppose that

∣
∣
∣β̃N(τ)

∣
∣
∣C max

θ(τ)≤s≤τ

exp
[∫s
T ξ(σ) dσ

]

∣
∣γ̃(s)

∣
∣ − |c̃(s)|

m∑

k=1

∫ τ

θk(τ)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds < 1

2
RNe

−ν. (3.51)

Therefore, taking into account (2.5), (3.47), (3.50), and (3.51) and the nonpositiveness of βN ,
we have

(∣
∣γ̃(τ)

∣
∣ − |c̃(τ)|)|z0(τ)| + β̃N(τ) max

θ(τ)≤s≤τ
|z0(s)|

m∑

k=1

∫ τ

θk(τ)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds

≥ (∣
∣γ̃(τ)

∣
∣ − |c̃(τ)|)|z0(τ)|

+ β̃N(τ)C max
θ(τ)≤s≤τ

exp
[∫s
T ξ(σ) dσ

]

∣
∣γ̃(s)

∣
∣ − |c̃(s)|

m∑

k=1

∫ τ

θk(τ)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds

≥ μ 2
μ
RNe

−ν − 1
2
RNe

−ν > RNe
−ν.

(3.52)

Moreover, (3.45) implies that

inf
τ≤t<∞

[∫ t

τ

Λ̃N(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

]

≥ ν > −∞. (3.53)

By Theorem 3.1, we obtain an estimation

|z0(t)| ≥ Ψ(τ)
∣
∣γ̃(t)

∣
∣ + |c̃(t)| exp

[∫ t

τ

Λ̃N(s)ds

]

(3.54)

for all t ≥ τ , Ψ being defined by

Ψ(τ) =
(∣
∣γ̃(τ)

∣
∣ − |c̃(τ)|)|z0(τ)| + β̃N(τ) max

θ(τ)≤s≤τ
|z0(s)|

m∑

k=1

∫ τ

θk(τ)

(∣
∣γ̃(s)

∣
∣ + |c̃(s)|)ds. (3.55)

Relation (3.47) together with (3.54) yields

Ψ(τ)
∣
∣γ̃(t)

∣
∣ + |c̃(t)| exp

[∫ t

τ

Λ̃N(s)ds

]

≤ C
∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]

, (3.56)

that is

∫ t

T

[
Λ̃N(s) − ξ(s)

]
ds + ln

∣
∣γ̃(t)

∣
∣ − |c̃(t)|

∣
∣γ̃(t)

∣
∣ + |c̃(t)| ≤

∫ τ

T

Λ̃N(s)ds − ln
[
C−1Ψ(τ)

]
(3.57)

for t ≥ τ . However, the last inequality contradicts (3.43) and Theorem 3.4 is proved.
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From Theorem 3.1 we easily obtain several corollaries.

Corollary 3.5. Let the assumptions of Theorem 3.1 be fulfilled with R0 > 0. If

lim inf
t→∞

[∫ t

t1

Λ̃0(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

]

= ς > ν, (3.58)

then for any ε, 0 < ε < R0e
ς−ν, there is t2 ≥ t1 such that

|z(t)| > ε (3.59)

for all t ≥ t2, for which z(t) is defined.

Proof. Without loss of generality we can assume that ε > R0. Choose χ, 0 < χ < 1 such that
R0 < ε < χR0e

ς−ν. In view of (3.58), there is t2 ≥ t1 such that

∫ t

t1

Λ̃0(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|) > ς + lnχ (3.60)

for t ≥ t2. Hence,

∫ t

t1

Λ̃0(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|) > ν + ln

ε

R0
(3.61)

for t ≥ t2. Estimation (3.4) together with (3.2) now yields

|z(t)| > R0e
−νeν

ε

R0
= ε (3.62)

for all t ≥ t2, for which z(t) is defined.

Corollary 3.6. Let the assumptions of Theorem 3.1 be fulfilled with R0 > 0. If

lim
t→∞

[∫ t

t1

Λ̃0(s)ds − ln
(∣
∣γ̃(t)

∣
∣ + |c̃(t)|)

]

= ∞, (3.63)

then for any ε > 0 there exists t2 ≥ t1 such that (3.59) holds for all t ≥ t2, for which z(t) is defined.

The efficiency of Theorem 3.1 and Corollary 3.6 is demonstrated in the following
example.

Example 3.7. Consider (1.2) where a(t) ≡ 4 + 3i, b(t) ≡ 2, Ak(t) ≡ 0, Bk(t) ≡ 0 for k = 1, . . . , m,
θk(t) = t + (1/2k)(cos kt − 1), g(t, z,w1, . . . , wm) = 3z +

∑m
k=1(1/2m)e−twk.
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Obviously, t− (1/k) ≤ θk(t) ≤ t and 1/2 ≤ θ′k(t) ≤ (3/2). Suppose that t0 = 1 and T ≥ 2.
Then, γ̃ ≡ 3 +

√
5, c̃ ≡ −2i. Further,

∣
∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)

∣
∣ ≤ 3

∣
∣γ̃(t)z + c̃(t)z

∣
∣

+
m∑

k=1

1
2m

−t
e
∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣.

(3.64)

Taking κ̃0(t) ≡ 3, κ̃0k(t) = (1/2m)e−t, τ0 = T , R0 = 0, ϑ̃(t) ≡ 0, β̃0(t) = −(1/m)e−t,
Λ̃0(t) = Θ̃0(t) = 1 − e−t (> 0) in Theorem 3.1, we have

θ′k(t)β̃0(t) ≤ −λ̃0k(t), β̃′0(t) ≥ Θ̃0(t)β̃0(t) (3.65)

for t ∈ [T,∞) and Theorem 3.1 and Corollary 3.6 are applicable to the considered equation.
As a corollary of Theorem 3.3 we obtain sufficient conditions for the existence of a

bounded solution of (1.2) or the existence of a solution z0(t) of (1.2) satisfying limt→∞z0(t) =
0.

Corollary 3.8. Let the assumptions of Theorem 3.3 be satisfied. If

lim sup
t→∞

[
1

∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]

<∞, (3.66)

then there is a bounded solution z0(t) of (1.2). If

lim
t→∞

[
1

∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]

= 0, (3.67)

then there is a solution z0(t) of (1.2) such that

lim
t→∞

z0(t) = 0. (3.68)

The next example shows how Theorem 3.3 and Corollary 3.8 (namely the first part)
can be used.

Example 3.9. Consider (1.2) where a(t) ≡ 4 + 3i, b(t) ≡ i, Ak(t) ≡ 0, Bk(t) ≡ 0, θk(t) = t − e−kt
for k = 1, . . . , m, g(t, z,w1, . . . , wm) = (1/2)z +

∑m
k=1(1/4m)wk + e−t.

Obviously t − 1 ≤ θk(t) ≤ t and θ′
k
(t) = 1 + ke−kt ≥ 1 > 0 for t ≥ 0. Suppose that t0 = 1

and T ≥ 2. Then,

γ̃(t) = Ima(t) +

√
(

Ima(t)
)2

− |b(t)|2sgn
(

Ima(t)
)

≡ 3 + 2
√
2,

c̃(t) = −ib(t) ≡ 1.

(3.69)
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Further,

∣
∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)

∣
∣

≤
∣
∣γ̃
∣
∣ + |c̃|

∣
∣γ̃
∣
∣ − |c̃|

1
2
∣
∣γ̃(t)z + c̃(t)z

∣
∣

+

∣
∣γ̃
∣
∣ + |c̃|

∣
∣γ̃
∣
∣ − |c̃|

m∑

k=1

[
1
4m

∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣
]

+
−t
e

=
√
2
2

∣
∣γ̃(t)z + c̃(t)z

∣
∣ +

√
2
m∑

k=1

[
1
4m

∣
∣γ̃(θk(t))wk + c̃(θk(t))wk

∣
∣
]

+
−t
e .

(3.70)

If we take κ̃(t) ≡ √
2/2, κ̃k(t) =

√
2/4m, ϑ̃(t) ≡ 0, β̃(t) = −√2/4m, Λ̃(t) = Θ̃(t) =

4 − (
√
2/2) in Theorem 3.3, we observe that

θ′k(t)β̃(t) = −
(

1 + k
−kt
e
)√

2
4m

≤ −
√
2

4m
= −λ̃k(t) (3.71)

for t ∈ [T,∞). Then, for ξ ≡ 0 and C = 1, we have

Λ̃(t) + β̃(t)
m∑

k=1

θ′k(t) exp

[

−
∫ t

θk(t)
ξ(s)ds

]

− ξ(t)

= 4 −
√
2
2

−
√
2

4m

m∑

k=1

(

1 + k
−kt
e
)

≥ 4 −
√
2
2

−
√
2

4m
· 2m = 4 −

√
2 > 1

>
−t
e= ρ(t)C−1 exp

(

−
∫ t

T

ξ(s)ds

)

(3.72)

for t ∈ [T,∞) and

lim sup
t→∞

[
1

∣
∣γ̃(t)

∣
∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]

=
1

2 + 2
√
2
<∞, (3.73)

and hence the assertions of Theorem 3.3 and the first part of Corollary 3.8 hold true.

4. Summary

We investigated the problem of instability and asymptotic behaviour of real two-dimensional
differential system with a finite number of nonconstant delays. We focused on the case
corresponding to the situation when the equilibrium 0 of the autonomous system (2.2) is
a focus or a centre and it is unstable. We obtained several criteria for instability properties
of the solutions as well as conditions for the existence of bounded solutions. We used the
methods of complexification, the method of Lyapunov-Krasovskii functional and aWażewski
topological principle for retarded functional differential equations of Carathéodory type. At
the end we supplied several corollaries and explanatory examples.
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