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We prove an integral inequality with singularity, which complements some known results. This
inequality enables us to study the dependence of the solution on the initial condition to a fractional
differential equation in the weighted space.

1. Introduction

Integral inequalities provide an excellent tool for the properties of solutions to differential
equations, such as boundedness, existence, uniqueness, and stability (e.g., see [1–10]). For
this reason, the study of integral inequalities has been emphasized by many authors. For
example, in 1919, Gronwall in [11] proved a remarkable inequality which can be described
by the following.

Suppose that x(t) satisfies the relation

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s)ds, t0 ≤ t < T, (1.1)

where all the functions involved are continuous on the interval [t0, T), T ≤ ∞, and k(t) ≥ 0.
Consider

x(t) ≤ h(t) +
∫ t

t0

h(s)k(s) exp

(∫ t

s

k(τ)dτ

)
ds, t0 ≤ t < T. (1.2)
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The inequality has attracted and continues to attract considerable attention in the literature.
In 2007, Ye et al. [12] reported an integral inequality with singular kernel. The inequality can
be stated as follows.

If β > 0, a(t) is a nonnegative and locally integrable on 0 ≤ t < T , g(t) is a nonnegative,
nondecreasing continuous function on 0 ≤ t < T , and g(t) ≤ M, where T ≤ ∞,M is a positive
constant. Further suppose that u(t) is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s)ds, 0 ≤ t < T. (1.3)

Then

u(t) ≤ a(t) +
∞∑
n=1

(
g(t)Γ

(
β
))n

Γ
(
nβ
)

∫ t

0
(t − s)nβ−1a(s)ds, 0 ≤ t < T. (1.4)

Besides the above-mentioned inequalities, there are still many inequalities (e.g., see [13–15]).
But in the analysis of the dependence of the solution on the initial condition of a

fractional differential equation in the weighted space, the bounds provided by the existing
inequalities are not adequate. So it is natural and necessary to seek new inequality in order
to obtain our desired results. In this paper, we present a new integral inequality, and then
apply our inequality to investigate the dependence of the solution on the initial condition of
a fractional differential equations in the weighted space.

2. An Integral Inequality

In this section, our main aim is to establish an integral inequality with singularity. Before
proceeding, we give some useful definitions and lemmas.

Definition 2.1 (see [14, 16]). The gamma function is defined by Γ(z) =
∫∞
0 e−ttz−1dt, z > 0.

Definition 2.2 (see [14, 16]). The beta function is defined by B(z,w) =∫1
0 (1 − t)z−1tw−1dt, z,w > 0.

The beta function is connected with gamma function by the following relation [3, 14]:

B(z,w) =
Γ(z)Γ(w)
Γ(z +w)

, z,w > 0. (2.1)

Lemma 2.3 (see [14]). Let z > 0, a, b ∈ R. Then the quotient expansion of two gamma functions at
infinity can be represented as follows:

Γ(z + a)
Γ(z + b)

= za−b
(
1 +O

(
1
z

))
, z → ∞. (2.2)



Abstract and Applied Analysis 3

Lemma 2.4. Let z > 0, a, b ∈ R. Then one has

Γ(z + a)
Γ(z + b)

= O
(
za−b
)
, z −→ ∞. (2.3)

Proof. By Lemma 2.3, we have limz→∞(Γ(z + a)/Γ(z + b))/za−b = limz→∞(1 + O(1/z)) =
1, which proves that Γ(z + a)/Γ(z + b) = O(za−b) as z → ∞. The proof of this lemma is
completed.

Based on Lemma 2.4, we can define a function.

Definition 2.5. Let b > a > 0, ρ > 0. Then the following definition:

Fρ,a,b(z) :=
∞∑
k=0

ckz
k, z ∈ R (2.4)

is well defined, where c0 is a positive constant, and ck+1 = (Γ(kρ + a)/Γ(kρ + b))ck.

Proof. We only need to show that the series in (2.4) is uniformly convergent for z ∈ R. By
Lemma 2.4, we know that ck+1/ck = Γ(kρ + a)/Γ(kρ + b) = O((kρ)a−b) as k → ∞. Since
b > a > 0, ck+1/ck → 0 as k → ∞. This implies that the series in (2.4) is uniformly convergent
for z ∈ R. It follows that the definition is well defined.

Lemma 2.6. Let z,w > 0, t, s ∈ R and t /= s. Then one has

∫ t

s

(t − τ)z−1(τ − s)w−1dτ = (t − s)z+w−1 Γ(z)Γ(w)
Γ(z +w)

. (2.5)

Proof. Making the substitution τ = s + ξ(t − s) and combining the relation (2.1), we obtain

∫ t

s

(t − τ)z−1(τ − s)w−1dτ = (t − s)z+w−1
∫1

0
(1 − ξ)z−1ξw−1dξ

= (t − s)z+w−1B(z,w) = (t − s)z+w−1 Γ(z)Γ(w)
Γ(z +w)

.

(2.6)

The proof of this lemma is completed.

Now we can state the integral inequality.

Theorem 2.7. Let α, β, γ > 0, δ = α+γ−1 > 0, ν = β+γ−1 > 0, a > 0, and let b(t) be a nonnegative,
nondecreasing continuous function on 0 ≤ t < T , b(t) ≤ M, where T ≤ ∞, M is a positive constant.
Further suppose that u(t) is nonnegative and tγ−1u(t) is locally integrable on 0 ≤ t < T with

u(t) ≤ atα−1 + b(t)
∫ t

0
(t − s)β−1sγ−1u(s)ds, 0 ≤ t < T. (2.7)
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Then one has

u(t) ≤ atα−1Fν,δ,δ+β

(
Γ
(
β
)
b(t)tβ

)
, 0 ≤ t < T. (2.8)

Proof. For convenience, we define an operator

(Ru)(t) = b(t)
∫ t

0
(t − s)β−1sγ−1u(s)ds. (2.9)

Then (2.7) can be rewritten in the form

u(t) ≤ atα−1 + (Ru)(t). (2.10)

Since b(t) and u(t) are nonnegative, it is easy to induce that

u(t) ≤
n∑

k=0

(
Rkatα−1

)
(t) +

(
Rn+1u

)
(t), n ∈ N. (2.11)

Let us prove that the following relation

(Rnu)(t) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b(t)
(
Γ
(
β
)
b(t)
)n−1 n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − s)nν−γ sγ−1u(s)ds, 0 < γ < 1,

(
Γ
(
β
)
b(t)
)n
t(n−1)(γ−1)

Γ
(
nβ
)

∫ t

0
(t − s)nβ−1sγ−1u(s)ds, γ ≥ 1,

(2.12)

holds for any n ∈ N+, where
∏0

i=11 = 1, and (Rnu)(t) → 0 as n → ∞ for each t in 0 ≤ t < T .
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Obviously, inequality (2.12) is valid for n = 1, due to
∏0

i=11 = 1. Suppose that the
inequality is satisfied for any fixed n ∈ N+. Let us verify that it is also satisfied for n + 1. We
first prove the case 0 < γ < 1. According to the induction hypothesis and Lemma 2.6, we have

(
Rn+1u

)
(t) = b(t)

∫ t

0
(t − s)β−1sγ−1(Rnu)(s)ds

≤ b2(t)
(
Γ
(
β
)
b(t)
)n−1 n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − s)β−1sγ−1

∫ s

0
(s − τ)nν−γ τγ−1u(τ)dτds

= b2(t)
(
Γ
(
β
)
b(t)
)n−1 n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1sγ−1(s − τ)nν−γds

≤ b2(t)
(
Γ
(
β
)
b(t)
)n−1 n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1(s − τ)nν−1ds

= b2(t)
(
Γ
(
β
)
b(t)
)n−1 n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)(t − τ)nν+β−1

Γ
(
β
)
Γ(nν)

Γ
(
nν + β

) dτ

= b(t)
(
Γ
(
β
)
b(t)
)n n∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − τ)(n+1)ν−γ τγ−1u(τ)dτ,

(2.13)

which is estimated with the help of

sγ−1 ≤ (s − τ)γ−1, 0 ≤ τ ≤ s, 0 < γ < 1. (2.14)

So, for the case 0 < γ < 1, inequality (2.12) is true for any n ∈ N+. Now we prove the case
γ ≥ 1. Similarly, according to the induction hypothesis and Lemma 2.6, we get

(
Rn+1u

)
(t) = b(t)

∫ t

0
(t − s)β−1sγ−1(Rnu)(s)ds

≤ b(t)
∫ t

0
(t − s)β−1sγ−1

(
Γ
(
β
)
b(s)
)n
s(n−1)(γ−1)

Γ
(
nβ
)

∫s

0
(s − τ)nβ−1τγ−1u(τ)dτds

= b(t)

(
Γ
(
β
)
b(t)
)n

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1sn(γ−1)(s − τ)nβ−1ds

≤ b(t)

(
Γ
(
β
)
b(t)
)n
tn(γ−1)

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1(s − τ)nβ−1ds

= b(t)

(
Γ
(
β
)
b(t)
)n
tn(γ−1)

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)(t − τ)nβ+β−1

Γ
(
β
)
Γ
(
nβ
)

Γ
(
nβ + β

) dτ

=

(
Γ
(
β
)
b(t)
)n+1

tn(γ−1)

Γ
(
(n + 1)β

)
∫ t

0
τγ−1u(τ)(t − τ)(n+1)β−1dτ,

(2.15)
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which is calculated with the help of

sn(γ−1) ≤ tn(γ−1), 0 ≤ s ≤ t, γ ≥ 1, n ∈ N+. (2.16)

So, for the case γ ≥ 1, inequality (2.12) is true for any n ∈ N+. Based on this analysis, we
conclude that inequality (2.12) holds for any n ∈ N+.

Next, we show that (Rnu)(t) → 0 as n → ∞. Now, we go back to inequality
(2.12). For the case 0 < γ < 1, we denote Kn(t, s) = Bn(t − s)nν−γ , where Bn =
b(t)(Γ(β)b(t))n−1

∏n−1
i=1 (Γ(iν)/Γ(iν + β)). Note that

B1 = b(t),
Bn+1

Bn
= Γ
(
β
)
b(t)

Γ(nν)
Γ
(
nν + β

) . (2.17)

Since b(t) ≤ M, by Lemma 2.4, we obtain Bn+1/Bn → 0 as n → ∞. This implies that
Kn(t, s) → 0 as n → ∞. It follows that (Rnu)(t) → 0 as n → ∞ for the case 0 < γ < 1.
For the case γ ≥ 1, we denote Kn(t, s) = Bn(t − s)nβ−1, where Bn = (Γ(β)b(t))nt(n−1)(γ−1)/Γ(nβ).
Note that

B1 = b(t),
Bn+1

Bn

= Γ
(
β
)
b(t)tγ−1

Γ
(
nβ
)

Γ
(
nβ + β

) . (2.18)

Using the same arguments as above, we know that Kn(t, s) → 0 as n → ∞. It follows that
(Rnu)(t) → 0 as n → ∞ for the case γ ≥ 1. So, it has (Rnu)(t) → 0 as n → ∞ for the two
cases 0 < γ < 1 and γ ≥ 1. This, together with (2.11), leads to u(t) ≤∑∞

k=0(Rkatα−1)(t).
Finally, we show that

(
Rkatα−1

)
(t) ≤ a

(
Γ
(
β
)
b(t)
)k
ckt

α−1tkν, k ∈ N, (2.19)

where c0 = 1, ck =
∏k−1

i=0 (Γ(iν + δ)/Γ(iν + δ + β)), k ∈ N+.
Obviously, inequality (2.19) is true for k = 0. Suppose that the inequality is satisfied

for any fixed k ∈ N. Let us verify that it is also satisfied for k + 1. According to the induction
hypothesis and Lemma 2.6, we obtain

(
Rk+1atα−1

)
(t) ≤ b(t)

∫ t

0
(t − s)β−1sγ−1

(
Rkasα−1

)
(s)ds

≤ a
(
Γ
(
β
)
b(t)
)k
ckb(t)

∫ t

0
(t − s)β−1skν+δ−1ds

= a
(
Γ
(
β
)
b(t)
)k
ckb(t)tkν+δ+β−1

Γ
(
β
)
Γ(kν + δ)

Γ
(
kν + δ + β

)

= a
(
Γ
(
β
)
b(t)
)k+1

ck+1t
α−1t(k+1)ν.

(2.20)
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This proves that inequality (2.19) is satisfied for any k ∈ N. In other words, we have proved
that

u(t) ≤
∞∑
k=0

a
(
Γ
(
β
)
b(t)
)k
ckt

α−1tkν, (2.21)

where c0 = 1, ck =
∏k−1

i=0 (Γ(iν + δ)/Γ(iν + δ + β)), k ∈ N+. By virtue of Definition 2.5, we can
arrive at inequality (2.8) and the proof of this theorem is completed.

For the case b(t) ≡ b > 0 in Theorem 2.7, we can obtain the following corollary, which
can be found in [17].

Corollary 2.8. Let α, β, γ > 0, δ = α + γ − 1 > 0, ν = β + γ − 1 > 0, a, b > 0. And suppose that u(t)
is nonnegative and tγ−1u(t) is locally integrable on 0 ≤ t < T (T ≤ ∞) with

u(t) ≤ atα−1 + b

∫ t

0
(t − s)β−1sγ−1u(s)ds, 0 ≤ t < T. (2.22)

Then one has

u(t) ≤ atα−1Fν,δ,δ+β

(
Γ
(
β
)
btβ
)
, 0 ≤ t < T. (2.23)

For α = γ = 1 in Theorem 2.7, we can arrive at the following corollary, which can be
found in [12].

Corollary 2.9. Let β, a > 0, b(t) be a nonnegative, nondecreasing continuous function on 0 ≤ t < T ,
b(t) ≤ M, where T ≤ ∞, M is a positive constant. And suppose that u(t) is nonnegative and locally
integrable on 0 ≤ t < T with

u(t) ≤ a + b(t)
∫ t

0
(t − s)β−1u(s)ds, 0 ≤ t < T. (2.24)

Then one has

u(t) ≤ aEβ

(
Γ
(
β
)
b(t)tβ

)
, 0 ≤ t < T. (2.25)

3. Application

In this section, we will apply our established result to study the dependence of the solution
on the initial condition of a fractional differential equation with the Riemann-Liouville
derivative.

For the reader’s convenience, we first recall several definitions of the Reimann-
Liouville integral and derivative. From now on, we assume that T is a finite positive constant,
that is, T /=∞.
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Definition 3.1 (see [14, 16]). Let 0 < p < 1. The Riemann-Liouville integral of order p is defined
by

(
I
p

0+x
)
(t) =

1
Γ
(
p
)
∫ t

0
(t − s)p−1x(s)ds, 0 ≤ t ≤ T. (3.1)

Definition 3.2 (see [14, 16]). Let 0 < p < 1. The Riemann-Liouville derivative of order p is
defined by

(
D

p

0+x
)
(t) =

1
Γ
(
1 − p

) d

dt

∫ t

0
(t − s)−px(s)ds, 0 ≤ t ≤ T. (3.2)

Now we consider the following initial value problem of the form

(
D

p

0+x
)
(t) = f(t, x(t)), lim

t→ 0+

(
I
1−p
0+ x

)
(t) = x0, 0 < p < 1, 0 < t ≤ T, x0 ∈ R. (3.3)

With regard to problem (3.3), the existence and uniqueness of the solution can be
found in the book by Kilbas et al. [14]. For the completeness of this paper, we give the
existence and uniqueness of the solution to (3.3) in the weighted spaceC1−p([0, T]). The space
C1−p([0, T]) consists of all functions x ∈ C((0, T]) such that t1−px(t) ∈ C([0, T]), which turns
out to be a Banach space when endowed with the norm |x|1−p = max0≤t≤T |t1−px(t)|.

Theorem 3.3 (see [14]). Let 0 < p < 1, and f(t, x) : (0, T] × R → R be a function such that for
any x ∈ R, f(t, x) ∈ C1−p([0, T]). Further assume that for any t ∈ (0, T], x, y ∈ R, the following
inequality

∣∣f(t, x) − f
(
t, y
)∣∣ ≤ L

∣∣x − y
∣∣ (3.4)

holds, where L > 0 is a constant. Then there exists a unique solution x(t) to problem (3.3) in the space
C1−p([0, T]).

Theorem 3.4. Let 0 < p < 1, and f(t, x) : (0, T] × R → R be a function such that for any x ∈ R,
f(t, x) ∈ C1−p([0, T]). Further assume that for any t ∈ (0, T], x, y ∈ R, the following inequality

∣∣f(t, x) − f
(
t, y
)∣∣ ≤ L

∣∣x − y
∣∣ (3.5)

holds, where L > 0 is a constant. Assume that x and y are the solutions of problem (3.3) and

(
D

p

0+y
)
(t) = f

(
t, y(t)

)
, lim

t→ 0+

(
I
1−p
0+ y

)
(t) = y0, 0 < t ≤ T, y0 ∈ R, (3.6)
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respectively. Then, for 0 ≤ t ≤ T , one has

t1−p
∣∣x(t) − y(t)

∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣x0 − y0
∣∣

Γ
(
p
) F2p−1,p,2p(Lt),

1
2
< p < 1, 0 ≤ t ≤ T,

∣∣x0 − y0
∣∣

Γ
(
p
) F2p+q−1,p+q,2p+q(L∗t), 0 < p ≤ 1

2
, 0 ≤ t < 1,

∣∣x0 − y0
∣∣

Γ
(
p
) F2p+q′−1,p+q′,2p+q′(L′t), 0 < p ≤ 1

2
, 1 ≤ t ≤ T,

(3.7)

where q, q′, L∗, L′ are positive constants such that

1 − 2p < q < logL/L
∗

t , 0 < p ≤ 1
2
, 0 < t < 1,

q′ > max
{
1 − 2p, logL/L

′
t

}
, 0 < p ≤ 1

2
, 1 ≤ t ≤ T.

(3.8)

Proof. The proof is rather technical. We first prove the case 1/2 < p < 1 and 0 ≤ t ≤ T . Since
x(t) and y(t) are the solutions of (3.3) and (3.6), we have

x(t) =
x0t

p−1

Γ
(
p
) +

1
Γ
(
p
)
∫ t

0
(t − s)p−1f(s, x(s))ds,

(3.9)

y(t) =
y0t

p−1

Γ
(
p
) +

1
Γ
(
p
)
∫ t

0
(t − s)p−1f

(
s, y(s)

)
ds. (3.10)

Subtracting (3.10) from (3.9) and using the Lipschitz condition (3.5), we obtain

∣∣x(t) − y(t)
∣∣ ≤
∣∣x0 − y0

∣∣tp−1
Γ
(
p
) +

L

Γ
(
p
)
∫ t

0
(t − s)p−1

∣∣x(s) − y(s)
∣∣ds. (3.11)

Taking into account that x(t), y(t) ∈ C1−p([0, T]), wemultiply at both sides of inequality (3.11)
by t1−p to get

t1−p
∣∣x(t) − y(t)

∣∣ ≤
∣∣x0 − y0

∣∣
Γ
(
p
) +

Lt1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp−1s1−p

∣∣x(s) − y(s)
∣∣ds. (3.12)

Denote u(t) = t1−p|x(t) − y(t)|. Then, (3.12) can be written as

u(t) ≤
∣∣x0 − y0

∣∣
Γ
(
p
) +

Lt1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp−1u(s)ds. (3.13)
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Putting a = |x0 − y0|/Γ(p), b(t) = Lt1−p/Γ(p), α = 1, β = p, γ = p, we see that α, β, γ > 0,
δ = α + γ − 1 = p > 0, ν = β + γ − 1 = 2p − 1 > 0, a > 0, and b(t) is a nondecreasing continuous
function due to p, L > 0. So, applying Theorem 2.7 to (3.13), we obtain

u(t) ≤
∣∣x0 − y0

∣∣
Γ
(
p
) F2p−1,p,2p(Lt),

1
2
< p < 1, 0 ≤ t ≤ T. (3.14)

Next, we prove the case 0 < p ≤ 1/2 and 0 ≤ t < 1. Notice that the Lipschitz condition
(3.5) holds for each t in t ∈ (0, T]. Since t > 0 and L > 0, we can always choose two positive
constants q, L∗ such that

1 − 2p < q < logL/L
∗

t , 0 < t < 1. (3.15)

Condition (3.15) means that 0 ≤ 1 − 2p < q and L < L∗tq. That is to say, if the Lipschitz
condition (3.5) holds for each t in t ∈ (0, T], then we can always choose two positive constants
q, L∗ such that the following condition

0 ≤ 1 − 2p < q,
∣∣f(t, u) − f(t, v)

∣∣ ≤ L∗tq|u − v| (3.16)

holds for each t in t ∈ (0, T].
Subtracting (3.10) from (3.9) and using condition (3.16), we obtain

∣∣x(t) − y(t)
∣∣ ≤
∣∣x0 − y0

∣∣tp−1
Γ
(
p
) +

L∗

Γ
(
p
)
∫ t

0
(t − s)p−1sq

∣∣x(s) − y(s)
∣∣ds. (3.17)

Multiplying t1−p on both sides of (3.17), we get

u(t) ≤
∣∣x0 − y0

∣∣
Γ
(
p
) +

L∗t1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp+q−1u(s)ds, (3.18)

where u(t) is defined as before. Now, putting a = |x0 − y0|/Γ(p), b(t) = L∗t1−p/Γ(p), α = 1,
β = p, γ = p + q, we see that α, β, γ > 0, δ = α + γ − 1 = p + q > 0, ν = β + γ − 1 = 2p + q − 1 =
q − (1 − 2p) > 0, a > 0, b(t) is a nondecreasing continuous function due to p, L∗ > 0. So,
applying Theorem 2.7 to (3.18), we have

u(t) ≤
∣∣x0 − y0

∣∣
Γ
(
p
) F2p+q−1,p+q,2p+q(L∗t), 0 < p ≤ 1

2
, 0 ≤ t < 1. (3.19)

Finally, we prove the case 0 < p ≤ 1/2 and 1 ≤ t ≤ T . Since t > 0 and L > 0, we can
always choose two positive constants q′, L′ such that

q′ > max
{
1 − 2p, logL/L

′
t

}
, 1 ≤ t ≤ T. (3.20)
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Condition (3.20)means that 0 ≤ 1 − 2p < q′ and L < L′tq. Using the same arguments as above,
we can obtain that

u(t) ≤
∣∣x0 − y0

∣∣
Γ
(
p
) F2p+q′−1,p+q′,2p+q′

(
L′t
)
, 0 < p ≤ 1

2
, 1 ≤ t ≤ T, (3.21)

where u(t) is defined as before. So the conclusion of this theorem is true.

From the proof of Theorem 3.4, we can see that the integral inequality in Theorem 2.7
is very useful. This demonstrates that our investigation is meaningful.
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