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Analytical properties like existence, uniqueness, and asymptotic behavior of solutions are studied
for the following singular initial value problem: gi(t)y′

i(t) = aiyi(t)(1 + fi(t,y(t),
∫ t
0+ Ki(t, s,y(t),

y(s))ds)), yi(0+) = 0, t ∈ (0, t0], where y = (y1, . . . , yn), ai > 0, i = 1, . . . , n are constants and t0 > 0.
An approach which combines topological method of T. Ważewski and Schauder’s fixed point
theorem is used. Particular attention is paid to construction of asymptotic expansions of solutions
for certain classes of systems of integrodifferential equations in a right-hand neighbourhood of a
singular point.

1. Introduction and Preliminaries

Singular initial value problem for ordinary differential and integro-differential equations is
fairly well studied (see, e.g., [1–16]), but the asymptotic properties of the solutions of such
equations are only partially understood. Although the singular initial value problems were
widely considered using various methods (see, e.g., [1–13, 16]), our approach to this problem
is essentially different from others known in the literature. In particular, we use a combination
of the topological method of T. Ważewski [8] and Schauder’s fixed point theorem [11]. Our
technique leads to the existence and uniqueness of solutions with asymptotic estimates in
the right-hand neighbourhood of a singular point. Asymptotic expansions of solutions are
constructed for certain classes of systems of integrodifferential equations as well.

Consider the following problem:

gi(t)y′
i(t) = aiyi(t)

(

1 + fi

(

t,y(t),
∫ t

0+
Ki(t, s,y(t),y(s))ds

))

, (1.1)
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yi(0+) = 0, t ∈ (0, t0], (1.2)

where y = (y1, . . . , yn), ai > 0 are constants, fi ∈ C0(J ×R
n ×R,R),Ki ∈ C0(J × J ×R

n ×R
n,R),

J = (0, t0], t0 > 0, i = 1, . . . , n.
Denote

(i) f(t) = O(g(t)) as t → 0+ if there is a right-hand neighbourhoodU(0) and a constant
K > 0 such that (f(t)/g(t)) ≤ K for t ∈ U(0).

(ii) f(t) = o(g(t)) as t → 0+ if there is valid limt→ 0+f(t)/g(t) = 0.

(iii) f(t) ∼ g(t) as t → 0+ if there is valid limt→ 0+f(t)/g(t) = 1.

Definition 1.1. The sequence of functions (φn(t)) is called an asymptotic sequence as t → 0+

if

φn+1(t) = o
(
φn(t)

)
as t → 0+ (1.3)

for all n.

Definition 1.2. The series
∑
cnφn(t), cn ∈ R, is called an asymptotic expansion of the function

f(t) up toNth term as t → 0+ if

(a) (φn(t)) is an asymptotic sequence,

(b)

[

f(t) −
N∑

n=1

cnφn(t)

]

= o
(
φN(t)

)
, as t → 0+. (1.4)

The functions gi, fi, andKi will be assumed to satisfy the following:

(i) gi(t) ∈ C1(J), gi(t) > 0, gi(0+) = 0, g ′
i(t) ∼ ψi(t)g

λi
i (t) as t → 0+, λi > 0, ψi(t)gτi (t) =

o(1) as t → 0+ for each τ > 0, i = 1, . . . , n,

(ii) |fi(t, u, v)| ≤ |u| + |v|, | ∫ t0+ Ki(t, s,y(t),y(s))ds| ≤ ri(t)|y|, 0 < ri(t) ∈ C(J), ri(t) =
ϕi(t, Ci)o(1) as t → 0+ where ϕi(t, Ci) = Ci exp(

∫ t
t0
(ai/gi(s))ds) is the general

solution of the equation gi(t)y′
i(t) = aiyi(t).

In the text, we will apply topological method of Ważewski and Schauder’s theorem.
Therefore we give a short summary of them.

Let f(t,y) be a continuous function defined on an open (t,y) setΩ ⊂ R×R
n,Ω0 an open

set of Ω, ∂Ω0 the boundary of Ω0, and Ω
0
the closure of Ω0. Consider the following system of

ordinary differential equations:

y′ = f(t,y). (1.5)

Definition 1.3 (see [17]). The point (t0,y0) ∈ Ω ∩ ∂Ω0 is called an egress (or an ingress point)
of Ω0 with respect to system (1.5) if for every fixed solution of the problem y(t0) = y0, there
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exists an ε > 0 such that (t,y(t)) ∈ Ω0 for t0−ε ≤ t < t0 (t0 < t ≤ t0+ε). An egress point (ingress

point) (t0,y0) ofΩ0 is called a strict egress point (strict ingress point) ofΩ0 if (t,y(t)) /∈ Ω
0
on

interval t0 < t ≤ t0 + ε1 (t0 − ε1 ≤ t < t0) for an ε1.

Definition 1.4 (see [18]). An open subset Ω0 of the set Ω is called an (u, v) subset of Ω with
respect to system (1.5) if the following conditions are satisfied.

(1) There exist functions ui(t,y) ∈ C1(Ω,R), i = 1, . . . , m and vj(t,y) ∈ C[Ω,R] j =
1, . . . , n,m + n > 0 such that

Ω0 =
{
(t,y) ∈ Ω : ui(t,y) < 0, vj(t,y) < 0 ∀i, j}. (1.6)

(2) u̇α(t,y) < 0 holds for the derivatives of the functions uα(t,y), α = 1, . . . , m along
trajectories of system (1.5) on the set

Uα =
{
(t,y) ∈ Ω : uα(t,y) = 0, ui(t,y) ≤ 0, vj(t,y) ≤ 0, ∀j and i /=α

}
. (1.7)

(3) v̇β(t,y) > 0 holds for the derivatives of the functions vβ(t,y), β = 1, . . . , n along
trajectories of system (1.5) on the set

Vβ =
{
(t,y) ∈ Ω : uβ(t,y) = 0, ui(t,y) ≤ 0, vj

(
t, y

) ≤ 0, ∀i andj /= β
}
. (1.8)

The set of all points of egress (strict egress) is denoted by Ω0
e (Ω0

se).

Lemma 1.5 (see [18]). Let the set Ω0 be a (u, v) subset of the set Ω with respect to system (1.5).
Then

Ω0
se = Ω0

e =
m⋃

α=1

Uα \
n⋃

β=1

Vβ. (1.9)

Definition 1.6 (see [18]). Let X be a topological space and B ⊂ X.

Let A ⊂ B. A function r ∈ C(B,A) such that r(a) = a for all a ∈ A is a retraction
from B to A in X.

The set A ⊂ B is a retract of B in X if there exists a retraction from B to A in X.

Theorem 1.7 (Ważewski’s theorem [18]). LetΩ0 be some (u, v) subset ofΩ with respect to system
(1.5). Let S be a nonempty compact subset ofΩ0 ∪Ω0

e such that the set S∩Ω0
e is not a retract of S but

is a retract Ω0
e. Then there is at least one point (t0,y0) ∈ S ∩Ω0 such that the graph of a solution y(t)

of the Cauchy problem y(t0) = y0 for (1.5) lies on its right-hand maximal interval of existence.

Theorem 1.8 (Schauder’s theorem [19]). Let E be a Banach space and S its nonempty convex and
closed subset. If P is a continuous mapping of S into itself and PS is relatively compact then the
mapping P has at least one fixed point.
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2. Main Results

Theorem 2.1. Let assumptions (i) and (ii) hold, then for each Ci /= 0 there is one solution y(t,C) =
(y1(t, C1), y2(t, C2), . . . , yn(t, Cn)), C = (C1, . . . , Cn) of initial problem (1.1) and (1.2) such that

∣
∣
∣y

(j)
i (t, Ci) − ϕ(j)

i (t, Ci)
∣
∣
∣ ≤ δ

(
ϕ2
i (t, Ci)

)(j)
, j = 0, 1, (2.1)

for t ∈ (0, tΔ], where 0 < tΔ ≤ t0, δ > 1 is a constant, and tΔ depends on δ,Ci, i = 1, . . . , n.

Proof. (1) Denote E the Banach space of vector-valued continuous functions h(t) on the
interval [0, t0] with the norm

‖h(t)‖ = max
t∈[0,t0]

|hi(t)|, i = 1, . . . , n. (2.2)

The subset S of Banach space E will be the set of all functions h(t) from E satisfying the
inequality

∣∣hi(t) − ϕi(t, Ci)
∣∣ ≤ δϕ2

i (t, Ci). (2.3)

The set S is nonempty, convex, and closed.
(2) Now we will construct the mapping P . Let h0(t) ∈ S be an arbitrary function.

Substituting h0(t), h0(s) instead of y(t), y(s) into (1.1), we obtain the following differential
equation:

gi(t)y′
i(t) = aiyi(t)

(

1 + fi

(

t,y(t),
∫ t

0+
Ki(t, s,h0(t),h0(s))ds

))

, i = 1, . . . , n. (2.4)

Put

yi(t) = ϕi(t, Ci) + ϕ
(1−μ)
i (t, Ci)Y0i(t), (2.5)

y′
i(t) = ϕ′

i(t, C) +
1

gi(t)
ϕ
(1−μ)
i (t, Ci)Y1i(t), (2.6)

where 0 < μ < 1 is a constant and new functions Y0i(t), Y1i(t) satisfy the differential equations
as

gi(t)Y ′
0i(t) =

(
μ − 1

)
aiY0i(t) + Y1i(t), i = 1, . . . , n. (2.7)

From (2.3), it follows

h0i(t) = ϕi(t, Ci) +H0i(t), |H0i(t)| ≤ δϕ2
i (t, Ci). (2.8)
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Substituting (2.5), (2.6), and (2.8) into (2.4), we get

Y1i(t) = aiY0i(t) +
(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t) ,

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn) +H0n(t), ϕ1(s, C1)

+H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)

.

(2.9)

Substituting (2.9) into (2.7), we get

gi(t)Y′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn) +H0n(t), ϕ1(s, C1)

+H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)

.

(2.10)

In view of (2.5) and (2.6), it is obvious that a solution of (2.10) determines a solution of (2.4).
Now we use Ważewski’s topological method. Consider an open set Ω ⊂ R

+ × R
n.

Denote Y0 = (Y01, . . . , Y0n). Define an open subset Ω0 ⊂ Ω as follows:

Ω0 = {(t,Y0) : ui(t,Y0) < 0, v(t,Y0) < 0, i = 1, . . . , n},
Uα = {(t,Y0) : uα(t,Y0) = 0, ui(t,Y0) ≤ 0, v(t,Y0) ≤ 0, i = 1, . . . , n, i /=α},

Vβ = V =
{
(t,Y0) : v(t,Y0) = 0, uj(t,Y0) ≤ 0, i = 1, . . . , n

}
,

(2.11)

where

ui(t,Y0) = Y 2
0i −

(
δϕ

(1+μ)
i (t, Ci)

)2
, v(t,Y0) = t − t0, i = 1, . . . , n. (2.12)
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Calculating the derivatives u̇α(t,Y0), v̇(t,Y0) along the trajectories of (2.10) on the set Uα, V ,
α = 1, . . . , nwe obtain

u̇α(t,Y0) =
2aα
gα(t)

[

μY 2
0α(t) +

(
Y0α(t)ϕ

μ
α(t, Cα) + Y 2

0α(t)
)

× fα
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)

.

−δ2(1 + μ)ϕ2(1+μ)
α (t, Cα)

]

.

(2.13)

Since

lim
t→+0

ψi(t)gτi (t) = 0 for any τ > 0, i = 1, . . . , n

g ′
i(t) ∼ ψi(t)gλii (t) as t → 0+, λi > 0, i = 1, . . . , n,

(2.14)

then there exists a positive constantMi such that

g ′
i(t) < Mi, t ∈ (0, t0], i = 1, . . . , n. (2.15)

Consequently,

∫ t

t0

ds

gi(s)
<

1
Mi

∫ t

t0

g ′
i(s)dt
gi(s)

=
1
Mi

ln
gi(t)
gi(t0)

−→ −∞ as t −→ 0+, i = 1, . . . , n. (2.16)

From here limt→ 0+ϕi(t, Ci) = 0 and by L’Hospital’s rule ϕτi (t, Ci)gσi (t) = o(1), for t → 0+,
i = 1, . . . , n, σ is an arbitrary real number. These both identities imply that the powers of
ϕi(t, Ci) affect the convergence to zero of the terms in (2.13), in a decisive way.

Using the assumptions of Theorem 2.1 and the definition of Y0(t), ϕi(t, Ci), i = 1, . . . , n,
we get that the first term μY 2

0α(t, Cα) in (2.13) has the following form:

μY 2
0α(t) = μδ

2ϕ
2(1+μ)
α (t, Cα), (2.17)
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and the second term

(
Y0α(t)ϕ

μ
α(t, Cα) + Y 2

0α(t)
)

× fα
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Kα

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn)

+H0n(s))ds
)
.

(2.18)

is bounded by terms with exponents which are greater than ϕ2(1+μ)
α (t, Cα), α = 1, . . . , n. From

here, we obtain

sgn u̇α(t,Y0) = −δ2(1 + μ)ϕ2(1+μ)
α (t, Cα) = −1 (2.19)

for sufficiently small t∗, depending on Cα α = 1, . . . , n, δ, 0 < t∗ ≤ t0.
It is obvious that sgn v̇(t,Y0) = 1.
Change the orientation of the axis t into opposite. Then, with respect to the new system

of coordinates, the set Ω0 is the (u, v) subset with respect to system (2.10). By Ważewski’s
topological method, we state that there exists at least one integral curve of (2.10) lying in Ω0

for t ∈ (0, t∗). It is obvious that this assertion remains true for an arbitrary function h0(t) ∈ S.
Now we prove the uniqueness of a solution of (2.10). Let Y0(t) = (Y 01(t), . . . , Y 0n(t))

be also the solution of (2.10). Putting

Z0i = Y0i − Y 0i, i = 1, . . . , n (2.20)

and substituting into (2.10), we obtain

gi(t)Z′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiZ0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)

(
Z0i(t) + Y 01(t)

)
, . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)

(
Z0n(t) + Y 0n(t)

)
,

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)

.

(2.21)
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Define

Ω1(δ) = {(t,Z0) : 0 < t < t∗, u1i(t,Z0) < 0, v1(t,Z0) < 0, 0 < t < t∗, i = 1, . . . , n}
U1α = {(t,Z0) : u1α(t,Z0) = 0, u1i(t,Z0) ≤ 0, v1(t,Z0) ≤ 0, i = 1, . . . , n, i /=α},

V1β = V =
{
(t,Z0) : v1(t,Z0) = 0, uj(t,Z0) ≤ 0, i = 1, . . . , n

}
,

(2.22)

where

u1i(t,Z0) = Z2
0i −

(
δϕ

(1+μ−γ)
i

)2
, 0 < γ < μ, v1(t,Z0) = t − t∗. (2.23)

Using the same method as above, we have

sgn u̇1i(t,Z0) = −1, sgn v̇1(t,Z0) = 1, i = 1, . . . , n (2.24)

for sufficiently small t♦, 0 < t♦ ≤ t∗. It is obvious that Ω0 ⊂ Ω1(δ) for t ∈ (0, t♦). Let Z0(t) =
(Z01(t), . . . , Z0n(t)) be any nonzero solution of (2.10) such that (t1,Z0(t1)) ∈ Ω1 for 0 < t1 < t♦.
Let δ ∈ (0, δ) be such a constant that (t1,Z0(t1)) ∈ ∂Ω1(δ). If the curve Z0(t) lay in Ω1(δ) for
0 < t < t1, then (t1,Z0(t1))would have to be a strict egress point of ∂Ω1(δ)with respect to the
original system of coordinates. This contradicts the relation (2.24). Therefore there exists only
the trivial solution Z0(t) ≡ 0 of (2.21), so Y0 = Y0(t) is the unique solution of (2.10).

From (2.5) we obtain

∣∣yi(t, Ci) − ϕi(t, Ci)
∣∣ ≤ δϕ2

i (t, Ci), i = 1, . . . , n, (2.25)

where (y1(t, C1), . . . , yn(t, Cn)) is the solution of (2.4) for t ∈ (0, t♦]. Similarly, from (2.6) and
(2.9), we have

∣∣y′
i(t, Ci) − ϕ′

i(t, Ci)
∣∣ =

∣∣∣∣
1

gi(t)
ϕ
(1−μ)
i (t, Ci)Y1i(t)

∣∣∣∣

≤
∣∣∣∣

1
gi(t)

ϕ
(1−μ)
i (t, Ci)2aiδϕ

(1−μ)
i (t, Ci)

∣∣∣∣ = δ
(
ϕ2
i (t, Ci)

)′
.

(2.26)

It is obvious (after a continuous extension of y(t,C) for t = 0, y(0+) = 0) that P : h0 → ymaps
S into itself and PS ⊂ S.

(3)We will prove that PS is relatively compact and P is a continuous mapping.
It is easy to see, by (2.25) and (2.26), that PS is the set of uniformly bounded and

equicontinuous functions for t ∈ [0, t♦]. By Ascoli’s theorem, PS is relatively compact.
Let {hk(t)} be an arbitrary sequence vector-valued functions in S such that

‖hk(t) − h0(t)‖ = εk, lim
k→∞

εk = 0, h0(t) ∈ S. (2.27)
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The solution Yk(t) = (Yk1, . . . , Y kn) of the following equation:

gi(t)Y ′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +Hk1(s), . . . ϕn(s, Cn) +Hkn(s)
)
ds

)

.

(2.28)

corresponds to the function hk(t) and Yk(t) ∈ Ω0 for t ∈ (0, t♦). Similarly, the solution Y0(t)
of (2.10) corresponds to the function h0(t). We will show that |Yk(t) − Y0(t)| → 0 uniformly
on [0, tΔ], where 0 < tΔ ≤ t♦, tΔ is a sufficiently small constant which will be specified later.
Consider the following region:

Ω0k =
{
(t,Y0) : 0 < t < t♦, u0ki(t,Y0) < 0, v0(t,Y0) < 0, i = 1, . . . , n

}
, (2.29)

where

u0ki(t,Y0) =
(
Y0i(t) − Y 0i(t)

)2 −
(
εkϕ

(1+μ−ν)
i (t, Ci)

)2
, 0 < ν < α, i = 1, . . . , n, k ≥ 1,

v0(t,Y0) = t − t♦.
(2.30)

There exists sufficiently small constant tΔ ≤ t♦ such that Ω0 ⊂ Ω0k for any k, t ∈ (0, tΔ).
Investigate the behaviour of integral curves of (2.28) with respect to the boundary ∂Ω0k, t ∈
(0, tΔ]. Using the same method as above, we obtain the following trajectory derivatives:

sgn u̇0k(t,Y0) = −1, sgn v̇0(t,Y0) = 1 (2.31)

for t ∈ (0, tΔ] and any k. By Ważewski’s topological method, there exists at least one solution
Yk(t) lying in Ω0k, 0 < t < tΔ. Hence, it follows that

∣∣∣Yki(t) − Y 0i(t)
∣∣∣ ≤ εkϕ1+μ−ν

i ≤Niεk, (2.32)

Ni > 0, i = 1, . . . , n are constants depending on Ci, tΔ. From (2.5), we obtain

∣∣yki(t) − y0i(t)
∣∣ = ϕ(1−μ)

i (t, Ci)
∣∣∣Yki(t) − Y 0i(t)

∣∣∣ ≤ niεk, (2.33)

where ni > 0, i = 1, . . . , n are constants depending on tΔ, Ci,Ni. This estimate implies that P
is continuous.
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We have thus proved that the mapping P satisfies the assumptions of Schauder’s fixed
point theorem and hence there exists a function h(t) ∈ S with h(t) = P(h(t)). The proof of
existence of a solution of (1.1) is complete.

Now we will prove the uniqueness of a solution of (1.1). Substituting (2.5) and (2.6)
into (1.1), we get

Y1i(t) = aiY0i(t) +
(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)Y0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)Y01(s), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)Y0n(s)

)
ds

)

.

(2.34)

Equation (2.7)may be written in the following form:

gi(t)Y ′
0i(t) = aiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)

× Y0n(t), ϕ1(s, C1) + ϕ
(1−μ)
1 (s, C1)Y01(s), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)Y0n(s)

)
ds

)

.

(2.35)

Now we know that there exists the solution y0(t) = (y01(t, C1), . . . , y0n(t, Cn)) of (1.1)
satisfying (1.2) such that

y0i(t, Ci) = ϕi(t, Ci) + ϕ
(1−μ)
i (t, Ci)T0i(t), i = 1, . . . , n, (2.36)

where T0(t) = (T01(t), . . . , T0n(t)) is the solution of (2.35).
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DenoteWi0(t) = Y0i(t) − T0i(t), i = 1, . . . , n. SubstitutingWi0(t) into (2.35), we obtain

gi(t)W ′
0i(t) = aiW0i(t) +

(
aiϕ

μ

i (t, Ci) + aiW0i(t)
)

×
[

fi

(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× (W01(s) + T01(s)), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)(W0n(s) + T0n(s))

)
ds

)

− fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn)T0n(t)

+ ϕ(1−μ)
n (t, Cn)T0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× T01(s), . . . ϕn(s, Cn) + ϕ
(1−μ)
n (s, Cn)T0n(s)

)
ds

)]

.

(2.37)

Let

1Ω0 =
{
(t,W0) : 0 < t < tΔ, u1i(t,W0) < 0, v1(t,W0) < 0

}
, (2.38)

where

u1i(t,W0) =W2
1i −

(
δϕ

(1+μ−ρ)
i (t, Ci)

)2
, 0 < ρ < μ, v1(t,W0) = t − tΔ, i = 1, . . . , n. (2.39)

If (2.37) had only the trivial solution lying in 1Ω0, then Y0(t) = T0(t) would be only one
solution of (2.37) and from here, by (2.35), y0(t)would be only one solution of (1.1) satisfying
(1.2) for t ∈ (0, tΔ].
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We will suppose that there exists nontrivial solution W0(t) of (2.37) lying in 1Ω0.
Substituting W0i(s) instead of W0i(s), i = 1, . . . , n into (2.37), we obtain the following
differential equation:

gi(t)W ′
0i(t) = aiW0i(t) +

(
aiϕ

μ

i (t, Ci) + aiW0i(t)
)

×
[

fi

(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

×
(
W01(s) + T01(s)

)
, . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)

(
W0n(s) + T0n(s)

))
ds

)

− fi
(

t, ϕ1(t, C1) + ϕ
(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn)T0n(t)

+ ϕ(1−μ)
n (t, Cn)T0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× T01(s), . . . ϕn(s, Cn) + ϕ
(1−μ)
n (s, Cn)T0n(s)

)
ds

)]

.

(2.40)

Calculating the derivative u̇1i(t,W0) along the trajectories of (2.40) on the set ∂1Ω0, we
get sgn u̇1i(t,W0) = −1 for t ∈ (0, tΔ], i = 1, . . . , n.

By the same method as in the case of the existence of a solution of (1.1), we obtain that
in 1Ω0 there is only the trivial solution of (2.40). The proof is complete.

3. Asymptotic Expansions of Solutions

Diblı́k [3] investigated a singular initial problem for implicit ordinary differential equations
and constructed asymptotic expansions of solutions in a right-hand neighbourhood of a
singular point. Some results about asymptotic expansions of solutions for integrodifferential
equations with separable kernels are given in [3, 10, 12].
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The aim of this section is to show that results of paper [2] for ordinary differential
equations are possible to extend on certain classes systems integrodifferential equations with
a separable kernel in the following form:

g(t)y′
i = yi +

∫ t

0+

⎛

⎝
Ni∑

|σi|+|ωi|=2
uσiωi(t)vσiωi(s)y

σi(t)yωi(s)

⎞

⎠ds, (3.1)

whereNi ∈ N, σi = (li1, . . . , lin), ωi = (ji1, . . . , jin), lik, jik ∈ N ∪ {0}, k = 1, . . . , n,

|σi| =
n∑

k=1

lik, |ωi| =
n∑

k=1

jik, yσi(t) =
n∏

k=1

ylik
k (t), yωi(s) =

n∏

k=1

y
jik
k (s),

uσiωi(t), vσiωi(t) ∈ C0(J), J = (0, t0], i = 1, . . . , n.

(3.2)

We will construct the solution of (3.1) in the form of one parametric asymptotic
expansions as

yi(t, C) =
∞∑

h=1

fih(t)φh(t, C), i = 1, . . . , n, (3.3)

where φ(t, C) is the general solution of the differential equation g(t)y′ = y so that

φ(t, C) = C exp

[∫ t

t0

dτ

g(τ)

]

, (3.4)

fi1(t) ≡ 1, fih(t), h ≥ 2, i = 1, . . . , n are unknown functions, C/= 0 is a constant.
Consider the following differential equation:

g(t)y′ = qy + p(t). (3.5)

Diblı́k [3] proved asymptotic estimates of the solution of (3.5) which we can be formulated
as follows.

Theorem 3.1. Assume that

(I) Let q be a constant, q < 0, g(t) ∈ C1(J), g(t) > 0, limt→ t+0
g(t) = 0, g ′(t) ∼ ψ1(t)gλ1(t) as

t → t+0 , λ1 > 0, limt→ t+0
ψ1(t)gτ(t) = 0, τ is any positive number.

(II) p(t) ∈ C(J), p(t) = b0(t)gλ(t) + O(b1(t)gλ+ε(t)), ε > 0, limt→ t+0
bm(t)g ′(t) = 0,

m = 0, 1, b0(t) ∈ C(J), b0(t)/= 0, b′0(t) ∼ ψ2(t)gλ2(t) as t → t+0 , λ2 + 1 > 0,
limt→ t+0

ψ2(t)gτ(t) = 0, limt→ t+0
gτ(t)(b0(t))

−1 = 0.



14 Abstract and Applied Analysis

Then (3.5) has a unique solution on (0, t], 0 < t ≤ t0, satisfying asymptotic estimates

y(x) =
−1
q
b0(x)gλ(x) +O

(
gν(x)

)
, y′(x) = O

(
gν−1(x)

)
, (3.6)

where ν ∈ (λ, λ +min{λ1, λ2 + 1, ε}).

Now we will show the results of Theorem 3.1. regarding only differential equation
(3.5) we can apply to system of integrodifferential equations (3.1).

Substituting (3.3) into (3.1) and comparing the terms with the same powers of φ(t, C),
we obtain the following system of recurrence equations:

g(t)f ′
ih = (1 − h)fih + φ−h(t, C)

∫ t

0+
Rih(t, s)ds, (3.7)

h ≥ 2, i = 1, . . . , n and

Rih(t, s) = Rih

[
f11(t), . . . , fih−1(t), . . . , fn1(t), . . . , fnh−1(t),

f11(s), . . . , f1h−1(s), . . . , fn1(s), . . . , fnh−1(s)
]
.

(3.8)

Denote

pih(t) = φ−h(t, C)
∫ t

0+
Rih(t, s)ds, (3.9)

then it is obvious that the recurrence equations

g(t)f ′
ih = (1 − h)fih + pih(t) (3.10)

h ≥ 2, i = 1, . . . , n have the same form as (3.5) with the constant q = 1 − h. Hence we can
apply Theorem 3.1, after the modification of assumption (II) of Theorem 3.1 for indices h ≥ 2,
i = 1, . . . , n, to recurrence (3.10) which we will demonstrate with the following example.

Example 3.2. Consider the following system of integrodifferential equations:

t2y′
1 = y1 +

∫ t

0+

1
t3
y1(s)y2(s)ds,

t2y′
2 = y2 +

∫ t

0+

√
ty1(t)y2(s)ds.

(3.11)

System (3.11) has the form of system (3.1) for

σ1ω1 = (0, 0, 1, 1), uσ1ω1(t) =
1
t3
, vσ1ω1(s) = 1, N1 = 2

σ2ω2 = (1, 0, 0, 1), uσ2ω2(t) =
√
t, vσ2ω2(s) = 1, N2 = 2.

(3.12)
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We will construct a solution of system (3.11) in the following form:

y1 =
∞∑

k=1

f1k(t)φk(t, C), y2 =
∞∑

k=1

f2k(t)φk(t, C), (3.13)

where φ(t, C) is the general solution of the equation t2y′ = y. We will demonstrate the
calculation of coefficients fih for h = 3. Substituting (3.13) in (3.11) and comparing the terms
with the same powers of φ(t, C), we obtain the following system of recurrence equations:

φ1(t, C): 1 = 1,

1 = 1.
(3.14)

φ2(t, C): t2f ′
12 = −f12 + φ−2(t, C)

∫ t

0+

1
t3
φ2(s, C)ds,

t2f ′
22 = −f22 + φ−2(t, C)

∫ t

0+

√
t φ(t, C)φ(s, C)ds.

(3.15)

φ3(t, C): t2f ′
13 = −2f13 + φ−3(t, C)

∫ t

0+

1
t3
[
f12(s) + f22(s)

]
φ3(s, C)ds,

t2f ′
23 = −2f23 + φ−3(t, C)

∫ t

0+

√
t
[
f12(t)φ2(t, C)φ(s, C)

+f22(s)φ2(s, C)φ(t, C)
]
ds.

(3.16)

Put

u1 = φ−2(t, C)
∫ t

0+
φ2(s, C)ds, u2 = φ−1(t, C)

∫ t

0+
φ(s, C)ds. (3.17)

Differentiating both equations (3.17), we obtain the following differential equations:

t2u′1 = −2u1 + t2, (3.18)

t2u′2 = −u2 + t2. (3.19)

Equation (3.18) satisfies assumptions of Theorem 3.1. with following functions and
coefficients:

a = −2, b0(t) = 1, gλ(t) =
(
t2
)1 ⇒ λ = 1, b1(t) = 0,

g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 ⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t).

(3.20)
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Hence we can choose a constant λ2 + 1 > 1/2 and similarly ε > 1/2. By Theorem 3.1.,
we have

u1 =
1
2
t2 +O

(
t2ν1

)
, ν1 ∈

(
1,

3
2

)
. (3.21)

Second equation (3.19) is different from (3.18) only in the constant a = −1. Thus

u2 = t2 +O
(
t2ν2

)
, ν2 ∈

(
1,

3
2

)
. (3.22)

Substituting solutions (3.21) and (3.22) into (3.15) instead of integral terms, we obtain for
unknown coefficients f12, f22 the following differential equations:

t2f ′
12 = −f12 + 1

2t
+O

(
t2ν1−3

)
, (3.23)

t2f ′
22 = −f22 + t5/2 +O

(
t2ν2+1/2

)
. (3.24)

For (3.23), we can put

a = −1, b0(t) =
1
2
, gλ(t) =

(
t2
)−1/2

, λ = −1
2
, b1(t) = 1,

ε = ν1 − 1, g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 ⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t).

(3.25)

Then we can choose a constant λ2 + 1 > 1/2. By Theorem 3.1., we get

f12(t) =
1
2t

+O
(
t2ν12

)
, f ′

12(t) = O
(
t2ν12−2

)
, ν12 ∈

(
−1
2
, 0
)
. (3.26)

Similarly for (3.24), we can put a = −1, b0(t) = 1, gλ(t) = (t2)5/4, λ = 5/4, b1(t) = 1, ε = ν2 − 1,

g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 =⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t). (3.27)

Then we can choose a constant λ2 + 1 > 1/2. By Theorem 3.1., we have

f22(t) = t5/2 +O
(
t2ν22

)
, f ′

22(t) = O
(
t2ν22−2

)
, ν22 ∈

(
5
4
,
7
4

)
. (3.28)
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Substituting coefficients f12, f22 into (3.16) and using the same method as in the calculation
of coefficients f12, f22, we have

f13(t) =
1

12t2
+O

(
t2ν13

)
, f ′

13(t) = O
(
t2ν13−1

)
, ν13 ∈

(
−1,−1

2

)
,

f23(t) =
1
4
t3/2 +O

(
t2ν23

)
, f ′

23(t) = O
(
t2ν23−1

)
, ν23 ∈

(
3
4
,
5
4

)
.

(3.29)

Thus the solution of system (3.11) has for h = 3 the following asymptotic expansions:

y1 ≈ φ(t, C) +
[
1
2t

+O
(
t2ν12

)]
φ2(t, C) +

[
1

12t2
+O

(
t2ν13

)]
φ3(t, C),

y2 ≈ φ(t, C) +
[
t5/2 +O

(
t2ν22

)]
φ2(t, C) +

[
1
4
t3/2 +O

(
t2ν23

)]
φ3(t, C).

(3.30)
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[2] V. A. Čečik, “Investigation of systems of ordinary differential equations with a singularity,” Trudy
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