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By using an iteration procedure, regularity estimates for the linear semigroups, and a classical
existence theorem of global attractor, we prove that the reaction-diffusion equation possesses a
global attractor in Sobolev space Hk for all k > 0, which attracts any bounded subset of Hk(Ω) in
theHk-norm.

1. Introduction

This paper is concerned with the following initial-boundary problem of reaction-diffusion
systems involving an unknown function u = u(x, t):

∂u

∂t
= aΔu − g(u) in Ω × (0,∞),

u = 0, in ∂Ω × (0,∞),

u(x, 0) = ϕ, in Ω,

(1.1)

where a > 0 is a given constant. Δ is the Laplace operator. Ω denotes an open bounded set of
Rn (n = 1, 2, 3) with smooth boundary ∂Ω. g(s) is a polynomial on s ∈ R1, which is given by

g(s) =
p∑

k=1

aks
k, (1.2)
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where p should be an odd number, that is, p = 2m + 1 (m ≥ 1), and

ap > 0. (1.3)

The reaction-diffusion systems (1.1) have been extensively studied during the last
decades, one of the motivations being that such systems could account for phenomena
occurring in living organisms. In 1952, Turing [1] proposed that a combination of chemical
reaction and diffusion produces spatial patterns of chemical concentration, under certain
conditions. Such patterns are of interest because they give a possible explanation for the
development of pattern and form in developmental biology [2–4] and experimental chemical
systems [5]. Schneider et al. [6–9] have studied existence of periodic travellingwave solutions
and positive periodic solution of reaction-diffusion systems. In [10–17], asymptotic behaviour
of the nonlinear reaction-diffusion equation, such as global attractors, inertial manifolds, and
approximate inertial manifolds, has been studied.

The global asymptotical behaviors of solutions and existence of global attractors
are important for the study of the dynamical properties of general nonlinear dissipative
dynamical systems. So, many authors are interested in the existence of global attractors such
as [12–19]. As for the reaction-diffusion equation (1.1), the existence of global solutions and
global attractors in L2(Ω) has been proved by Temam [16], Marion [18, 19], and Zhong et al.
[17]. For convenience, we introduce the main results as follows.

Lemma 1.1. Under the conditions (1.2) and (1.3) for ϕ ∈ H, the following three claims hold.

(1) Equation (1.1) has a unique global weak solution u ∈ C((0,∞);H)
⋂
L2((0, T);H1/2), for

T > 0;

(2) Equation (1.1) has a unique strong solution u ∈ C([0, T);H1/2)
⋂
L2((0, T);H1) for any

T > 0;

(3) Equation (1.1) has a global attractor A ⊂ H, which attracts any bounded set of H in the
H-norm.

Here the spacesH, H1/2 and H1 are defined as follows:

H = L2(Ω), H1/2 = H1
0(Ω), H1 = H1

0(Ω)
⋂

H2(Ω). (1.4)

In this paper, we shall use the regularity estimates for the linear semigroups,
combining with the classical existence theorem of global attractors, to prove that the reaction-
diffusion equation possesses, in any kth differentiable function spaces Hk(Ω), a global
attractor, which attracts any bounded set ofHk(Ω) inHk-norm. The basic idea is an iteration
procedure, which is from recent books and papers [20–24].
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2. Preliminaries

Let X and X1 be two Banach spaces and X1 ⊂ X a compact and dense inclusion. Consider the
abstract nonlinear evolution equation defined on X, given by

du

dt
= Lu +G(u),

u(x, 0) = u0,

(2.1)

where u(t) is an unknown function, L : X1 → X a linear operator, and G : X1 → X
a nonlinear operator.

A family of operators S(t) : X → X (t ≥ 0) is called a semigroup generated by (2.1)
provided that S(t) satisfies the properties:

(1) S(t) : X → X is a continuous mapping for any t ≥ 0;

(2) S(0) = id : X → X the identity;

(3) S(t + s) = S(t) · S(s) for all t, s ≥ 0, and the solution of (2.1) can be expressed as

u(t, u0) = S(t)u0. (2.2)

Next, we introduce the concepts and definitions of invariant sets, global attractors,
ω-limit sets for the semigroup S(t).

Definition 2.1. Let S(t) be a semigroup defined on X. A set Σ ⊂ X is called an invariant set of
S(t) if S(t)Σ = Σ for all t ≥ 0. An invariant set Σ is an attractor of S(t) if Σ is compact, and
there exists a neighborhood U ⊂ X of Σ such that for any u0 ∈ U:

inf
v∈Σ

‖S(t)u0 − v‖X −→ 0, as t −→ ∞. (2.3)

In this case, we say that Σ attracts U. Especially, if Σ attracts any bounded set of X, Σ
is called a global attractor of S(t).

For a set D ⊂ X, we define the ω-limit set of D as follows:

ω(D) =
⋂

s≥0

⋃

t≥s
S(t)D, (2.4)

where the closure is taken in the X-norm. The following Lemma 2.2 is the classical existence
theorem of global attractor by Temam [16].

Lemma 2.2. Let S(t) : X → X be the semigroup generated by (2.1). Assume that the following
conditions hold:

(1) S(t) has a bounded absorbing set B ⊂ X, that is, for any bounded set A ⊂ X there exists a
time tA ≥ 0 such that S(t)u0 ∈ B for all u0 ⊂ A and t > tA;

(2) S(t) is uniformly compact, that is, for any bounded set U ⊂ X and some T > 0 sufficiently
large, the set

⋃
t≥T S(t)U is compact in X.
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Then, that the ω-limit set A = ω(B) of B is a global attractor of (2.1), and A is connected
providing B is connected.

Note that we used to assume that the linear operator L in (2.1) is a sectorial operator which
generates an analytic semigroup etL. It is known that there exists a constant λ ≥ 0 such that L − λI
generates the fractional power operators Lα and fractional order spaces Xα for α ∈ R1, where L =
−(L − λI). Without loss of generality, we assume that L generates the fractional power operators Lα

and fractional order spaces Xα as follows:

Lα = (−L)α : Xα −→ X, α ∈ R1, (2.5)

where Xα = D(Lα) is the domain of Lα. By the semigroup theory of linear operators (Pazy [25]), we
know that Xβ ⊂ Xα is a compact inclusion for any β > α.

Thus, Lemma 2.2 can be equivalently expressed in the following Lemma 2.3 [24].

Lemma 2.3. Let u(t, u0) = S(t)u0 (u0 ∈ X, t ≥ 0) be a solution of (2.1) and S(t) the semigroup
generated by (2.1). Let Xα be the fractional order space generated by L. Assume

(1) for some α ≥ 0, there is a bounded set B ⊂ Xα; for any u0 ∈ Xα, there exists tu0 > 0 such
that

u(t, u0) ∈ B, ∀t > tu0 ; (2.6)

(2) there is a β > α, for any bounded setU ⊂ Xβ there are T > 0 and C > 0 such that

‖u(t, u0)‖Xβ
≤ C, ∀t > T, u0 ∈ U. (2.7)

Then (2.1) has a global attractor A ⊂ Xα, which attracts any bounded set of Xα in the Xα-
norm.

For sectorial operators, we also have the following properties, which can be found in [25].

Lemma 2.4. Let L : X1 → X be a sectorial operator which generates an analytic semigroup T(t) =
etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some real number λ0 > 0, then for Lα (L = −L)
we have

(1) T(t) : X → Xα is bounded for all α ∈ R1 and t > 0;

(2) T(t)Lαx = LαT(t)x for all x ∈ Xα;

(3) for each t > 0, LαT(t) : X → X is bounded, and

‖LαT(t)‖ ≤ Cαt
−αe−δt, (2.8)

where some δ > 0, Cα > 0 is a constant only depending on α;

(4) the Xα-norm can be defined by

‖x‖Xα
= ‖Lαx‖X ; (2.9)
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(5) if L is symmetric, for any α, β ∈ R1, we have

〈Lαu, v〉H =
〈
Lα−βu,Lβv

〉

H
. (2.10)

3. Main Results

Let H and H1 be the spaces defined as in (1.4). We define the operators L : H1 → H and
G : H1 → H by

Lu = aΔu,

Gu = −g(u),
(3.1)

where g(u) is the same as one of (1.2). Thus, the reaction-diffusion equation (1.1) can be
written in the abstract form (2.1). It is well known that the linear operator L : H1 → H
given by (3.1) is a sectorial operator and L = −L. The space H1 is the same as (1.4), H1/2 is
given byH1/2 = closure ofH1 inH1(Ω), and Hk = H2k(Ω) ∩H1 for k ≥ 1.

The main result in this paper is given by the following theorem, which provides the
existence of global attractors of the reaction-diffusion equation (1.1) in any kth order space
Hk.

Theorem 3.1. Let the function g be a polynomial of order p

g(u) =
p∑

k=1

aku
k, p = 2m + 1 (m ≥ 1, m ∈ N), (3.2)

with leading coefficient

ap > 0. (3.3)

Assume p = 3 for n = 3. Then, for any α ≥ 0 (1.1) has a global attractor A in Hα, and A
attracts any bounded set of Hα in theHα-norm.

Proof. From Lemma 1.1, we know that the solution of system (1.1) is a weak solution for any
ϕ ∈ H. Hence, the solution u(t, ϕ) of system (1.1) can be written as

u
(
t, ϕ

)
= etLϕ +

∫ t

0
e(t−τ)LG(u)dτ. (3.4)

By (3.1), we rewrite (3.4) as

u
(
t, ϕ

)
= etLϕ −

∫ t

0
e(t−τ)Lg(u)dτ. (3.5)

Next, according to Lemma 2.3, we prove Theorem 3.1 in the following six steps.
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Step 1. We prove that for any bounded setU ⊂ H1/2 there is a constant C > 0 such that
the solution u(t, ϕ) of system (1.1) is uniformly bounded by the constant C for any ϕ ∈ U
and t ≥ 0. To do that, we firstly check that system (1.1) has a global Lyapunov function as
follows:

F(u) =
∫

Ω

(
1
2
|∇u|2 + f(u)

)
dx, (3.6)

where

f(z) =
∫z

0
g(z)dz =

p∑

k=1

1
k + 1

akz
k+1. (3.7)

In fact, if u(t, ·) is a weak solution of system (1.1), we have

d

dt
F
(
u
(
t, ϕ

))
=
〈
DF(u),

du

dt

〉

H

. (3.8)

By (3.1) and (3.6), we get

du

dt
= Lu +G(u) = −DF(u). (3.9)

Hence, it follows from (3.8) and (3.9) that

dF(u)
dt

= 〈DF(u),−DF(u)〉H = −‖DF(u)‖2H, (3.10)

which implies that (3.6) is a Lyapunov function.
Integrating (3.10) from 0 to t gives

F
(
u
(
t, ϕ

))
= −

∫ t

0
‖DF(u)‖2Hdt + F

(
ϕ
)
. (3.11)

Using (1.2) and (3.6), we have

F(u) =
∫

Ω

(
1
2
|∇u|2 + f(u)

)
dx =

∫

Ω

(
1
2
|∇u|2 + 1

p + 1
apu

p+1 +
p−1∑

k=1

1
k + 1

aku
k+1

)
dx

≥
∫

Ω

(
1
2
|∇u|2 + 1

p + 1
apu

p+1 −
p−1∑

k=1

1
k + 1

|ak||u|k+1
)
dx



Abstract and Applied Analysis 7

≥
∫

Ω

(
1
2
|∇u|2 + 1

p + 1
apu

p+1 −
p−1∑

k=1

1
k + 1

|ak|
(
ε|u|p+1 + ε−(k+1)/(p−k)

))
dx

=
∫

Ω

(
1
2
|∇u|2 + 1

p + 1
apu

p+1 − ε

(
p−1∑

k=1

1
k + 1

|ak|
)
|u|p+1 −

p−1∑

k=1

1
k + 1

|ak|ε−(k+1)/(p−k)
)
dx.

(3.12)

Choosing ε such that ε(
∑p−1

k=1(1/(k + 1))|ak|) = (1/2(p + 1))ap, and noting that p is an odd
number, that is, p = 2m + 1 (m ≥ 1), we get

F(u) ≥
∫

Ω

(
1
2
|∇u|2 + 1

p + 1
apu

p+1 − 1
2
(
p + 1

)ap|u|p+1 −
p−1∑

k=1

1
k + 1

|ak|ε−(k+1)/(p−k)
)
dx

=
∫

Ω

(
1
2
|∇u|2 + 1

2
(
p + 1

)ap|u|p+1 −
p−1∑

k=1

1
k + 1

|ak|ε−(k+1)/(p−k)
)
dx

≥ C1

∫

Ω

(
|∇u|2 + |u|p+1

)
dx − C2.

(3.13)

Combining with (3.11) yields

C1

∫

Ω

(
|∇u|2 + |u|p+1

)
dx − C2 ≤ −

∫ t

0
‖DF(u)‖2Hdt + F

(
ϕ
)
,

C1

∫

Ω

(
|∇u|2 + |u|p+1

)
dx +

∫ t

0
‖DF(u)‖2Hdt ≤ F

(
ϕ
)
+ C2,

∫

Ω

(
|∇u|2 + |u|p+1

)
dx ≤ C, ∀t ≥ 0, ϕ ∈ U,

(3.14)

which implies

∥∥u
(
t, ϕ

)∥∥
H1/2

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ H1/2. (3.15)

where C1, C2, and C are positive constants. C only depends on ϕ.
Step 2. We prove that for any bounded set U ⊂ Hα (1/2 ≤ α < 1) there exists C > 0

such that

∥∥u
(
t, ϕ

)∥∥
Hα

≤ C, ∀t ≥ 0, ϕ ∈ U, α < 1. (3.16)
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ByH1/2 ↪→ L2p(Ω), we have

∥∥g(u)
∥∥2
H =

∫

Ω

∣∣g(u)
∣∣2dx =

∫

Ω

∣∣∣∣∣

p∑

k=1

aku
k

∣∣∣∣∣

2

dx ≤
∫

Ω

[
ap|u|p +

p−1∑

k=1

|ak|
(
ε|u|p + ε−k/(p−k)

)]2

dx

≤ C

(∫

Ω
|u|2pdx + 1

)
≤ C

(
‖u‖2pH1/2

+ 1
)
,

(3.17)

which implies that g : H1/2 → H is bounded.
Hence, it follows from (2.9) and (3.5) that

∥∥u
(
t, ϕ

)∥∥
Hα

=

∥∥∥∥∥e
tLϕ +

∫ t

0
e(t−τ)Lg(u)dτ

∥∥∥∥∥
Hα

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)Lg(u)
∥∥∥
H
dτ

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)L
∥∥∥
∥∥g(u)

∥∥
Hdτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0

∥∥∥Lαe(t−τ)L
∥∥∥
(
‖u‖2pH1/2

+ 1
)
dτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0
τβe−δtdτ ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

(3.18)

where β = α (0 < β < 1). Hence, (3.16) holds.
Step 3. We prove that for any bounded set U ⊂ Hα (1 ≤ α < 3/2) there exists C > 0

such that

∥∥u
(
t, ϕ

)∥∥
Hα

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, α <
3
2
. (3.19)

In fact, by the embedding theorems of fractional order spaces [25]:

Hα ↪→ C0(Ω) ∩H1(Ω), α ≥ 3
4
, (3.20)

we have

∥∥g(u)
∥∥2
H1/2

=
∫

Ω

∣∣∇g(u)
∣∣2dx =

∫

Ω

∣∣∣∣∣∇
(

p∑

k=1

aku
k

)∣∣∣∣∣

2

dx ≤
∫

Ω

∣∣∣∣∣

p∑

k=1

kaku
(k−1)∇u

∣∣∣∣∣

2

dx

≤
∫

Ω

[
pap|u|p−1 +

p−1∑

k=1

k|ak|
(
ε|u|p−1 + ε−(k−1)/(p−k)

)]2

|∇u|2dx
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≤ C

∫

Ω

(
|u|2p−2 + 1

)
|∇u|2dx

≤ C

∫

Ω

(
sup
x∈Ω

|u|2p−2 + 1

)
|∇u|2dx

≤ C
(
‖u‖2p−2Hα

+ 1
)
‖u‖2H1/2

≤ C
(
‖u‖2p−2Hα

+ 1
)
‖u‖2Hα

,

(3.21)

which implies

g : Hα −→ H1/2 is bounded for α ≥ 3
4
. (3.22)

Therefore, it follows from (3.16) and (3.22) that

∥∥g(u)
∥∥
H1/2

< C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,
3
4
≤ α < 1. (3.23)

Then, by using same method as that in Step 2, we get from (3.23) that

∥∥u
(
t, ϕ

)∥∥
Hα

=

∥∥∥∥∥e
tLϕ +

∫ t

0
e(t−τ)Lg(u)dτ

∥∥∥∥∥
Hα

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)Lg(u)
∥∥∥
H
dτ

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)L
∥∥∥
∥∥g(u)

∥∥
Hdτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0

∥∥∥Lα−(1/2)e(t−τ)L
∥∥∥
∥∥g(u)

∥∥
H1/2

dτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0
τ−βe−δtdτ ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

(3.24)

where β = α − 1/2 (0 < β < 1). Hence, (3.19) holds.
Step 4. We prove that for any bounded set U ⊂ Hα (3/2 ≤ α < 2) there exists C > 0

such that

∥∥u
(
t, ϕ

)∥∥
Hα

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, α < 2. (3.25)

In fact, by the embedding theorems of fractional order spaces [25]:

H2 ↪→ W1,6 ↪→ W1,4, Hα ↪→ C0(Ω) ∩H2(Ω), α ≥ 1, (3.26)
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we have

∥∥g(u)
∥∥2
H1

=
∫

Ω

∣∣Δg(u)
∣∣2dx =

∫

Ω

∣∣∣∣∣Δ
(

p∑

k=1

aku
k

)∣∣∣∣∣

2

dx

=
∫

Ω

∣∣∣∣∣

p∑

k=2

[
k(k − 1)aku

(k−2)(∇u)2 + kaku
k−1Δu

]
+ a1Δu

∣∣∣∣∣

2

dx

≤
∫

Ω

{
p
(
p − 1

)
ap|u|p−2(∇u)2 + pap|u|p−1Δu

+
p−1∑

k=2

[
k(k − 1)ak

(
ε|u|p−2 + ε−(k−2)/(p−k)

)
(∇u)2

+kak

(
ε|u|p−1 + ε−(k−1)/(p−k)

)
Δu

]
+ a1|Δu|

}2
dx

≤ C

∫

Ω

(
|u|p−2|∇u|2 + |∇u|2 + |u|p−1|Δu| + |Δu|

)2
dx

≤ C

∫

Ω

(
|u|2p−4|∇u|4 + |∇u|4 + |u|2p−2|Δu|2 + |Δu|2

)
dx

≤ C

∫

Ω

(
sup
x∈Ω

|u|2p−4|∇u|4 + |∇u|4 + sup
x∈Ω

|u|2p−2|Δu|2 + |Δu|2
)
dx

≤ C
(
|u|2p−4Hα

‖u‖4W1,4 + ‖u‖4W1,4 + |u|2p−2Hα
‖u‖2H2 + ‖u‖2H2

)

≤ C
(
|u|2p−4Hα ‖u‖4H2 + ‖u‖4H2 + |u|2p−2Hα

‖u‖2Hα + ‖u‖2Hα

)

≤ C
(
|u|2pHα + ‖u‖4Hα + ‖u‖2Hα

)
,

(3.27)

which implies that

g : Hα −→ H1 is bounded for α ≥ 1. (3.28)

Therefore, it follows from (3.19) and (3.28) that

∥∥g(u)
∥∥
H1

< C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, 1 ≤ α <
3
2
. (3.29)
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Then, we get from (3.29) that

∥∥u
(
t, ϕ

)∥∥
Hα

=

∥∥∥∥∥e
tLϕ +

∫ t

0
e(t−τ)Lg(u)dτ

∥∥∥∥∥
Hα

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)Lg(u)
∥∥∥
H
dτ

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)L
∥∥∥
∥∥g(u)

∥∥
Hdτ

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lα−1e(t−τ)L
∥∥∥
∥∥g(u)

∥∥
H1
dτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0
τ−βe−δtdτ ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

(3.30)

where β = α − 1 (0 < β < 1). Hence, (3.25) holds.
Step 5. We prove that for any bounded set U ⊂ Hα (α ≤ 0) there exists C > 0 such that

∥∥u
(
t, ϕ

)∥∥
Hα

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, α ≥ 0. (3.31)

In fact, by the embedding theorems of fractional order spaces [25]:

H3 ↪→ W2,6 ↪→ W1,6, H3 ↪→ W2,6 ↪→ W2,4, Hα ↪→ C0(Ω) ∩H3(Ω), α ≥ 3
2
,

(3.32)

we have

∥∥g(u)
∥∥2
H3/2

=
∫

Ω

∣∣∇Δg(u)
∣∣2dx =

∫

Ω

∣∣∣∣∣∇Δ

(
p∑

k=1

aku
k

)∣∣∣∣∣

2

dx

=
∫

Ω

(
p∑

k=2

[
k(k − 1)(k − 2)ak|u|k−3|∇u|3 + 3k(k − 1)ak|u|k−2|∇u||Δu|

+kak|u|k−1|∇u|
]
+ a1|∇u||Δu|

)2

dx

≤
∫

Ω

{
p
(
p − 1

)(
p − 2

)
ap|u|p−3|∇u|3 + 3p

(
p − 1

)
ap|u|p−2|∇u||Δu| + pap|u|p−1|∇u|

+
p−1∑

k=3

[
k(k − 1)(k − 2)ak

(
ε|u|p−3 + ε−(k−3)/(p−k)

)
|∇u|3

+ 3k(k − 1)ak

(
ε|u|p−2 + ε−(k−2)/(p−k)

)
|∇u||Δu|

+kak

(
ε|u|p−1 + ε−(k−1)/(p−k)

)
|∇Δu|

]

+6a2|∇u||Δu| + 2a2|u||∇u| + a1|∇Δu|
}2

dx
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≤ C

∫

Ω

(
|u|p−3|∇u|3 + |∇u|3 + |u|p−2|∇u||Δu| + |∇u||Δu|

+|u|p−1|∇Δu| + |u||∇u| + |∇Δu|
)2
dx

≤ C

∫

Ω

(
|u|2p−6|∇u|6 + |∇u|6 + |u|2p−4|∇u|2|Δu|2 + |∇u|2|Δu|2

+|u|2p−2|∇Δu|2 + |u|2|∇u|2 + |∇Δu|2
)
dx

≤ C

∫

Ω

(
sup
x∈Ω

|u|2p−6|∇u|6 + |∇u|6 + sup
x∈Ω

|u|2p−4|∇u|2|Δu|2 + |∇u|2|Δu|2

+sup
x∈Ω

|u|2p−2|∇Δu|2 + |u|2|∇u|2 + |∇Δu|2
)
dx

≤ C
(
‖u‖2p−6Hα

‖u‖6W1,6 + ‖u‖6W1,6 + ‖u‖2p−4Hα
‖u‖2W1,2‖u‖2W2,2 + ‖u‖4W2,4

+‖u‖2p−2Hα
‖u‖2W3,2 + ‖u‖2‖u‖2W1,2 + ‖u‖2W3,2

)

≤ C
(
‖u‖2p−6Hα

‖u‖6Hα
+ ‖u‖2p−4Hα

‖u‖4W2,4 + ‖u‖2p−2Hα
|u|2H3 + ‖u‖6H3 + ‖u‖4W2,4 + ‖u‖2

H3

)

≤ C
(
‖u‖2pHα

+ ‖u‖2p−4Hα
‖u‖4Hα

+ ‖u‖2p−2Hα
‖u‖2Hα

+ ‖u‖6Hα
+ ‖u‖4Hα

+ ‖u‖2Hα

)

≤ C
(
‖u‖2pHα

+ ‖u‖6Hα
+ ‖u‖4Hα

+ ‖u‖2Hα

)
,

(3.33)

which implies that

g : Hα −→ H3/2 is bounded for α ≥ 3
2
. (3.34)

Therefore, it follows from (3.25) and (3.34) that

∥∥g(u)
∥∥
H3/2

< C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,
3
2
≤ α < 2. (3.35)

Then, we get from (3.35) that
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∥∥u
(
t, ϕ

)∥∥
Hα

=

∥∥∥∥∥e
tLϕ +

∫ t

0
e(t−τ)Lg(u)dτ

∥∥∥∥∥
Hα

≤ ∥∥ϕ
∥∥
Hα

+
∫ t

0

∥∥∥Lαe(t−τ)Lg(u)
∥∥∥
H
dτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0

∥∥∥Lα−(3/2)e(t−τ)L
∥∥∥
∥∥g(u)

∥∥
H3/2

dτ

≤ ∥∥ϕ
∥∥
Hα

+ C

∫ t

0
τ−βe−δtdτ ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

(3.36)

where β = α − 3/2 (0 < β < 1). Hence, (3.31) holds for 2 ≤ α < 5/2.
By doing the same procedures as Steps 1–4, we can prove that (3.31) holds for all α ≥ 0.
Step 6. We show that for any α ≥ 0, system (1.1) has a bounded absorbing set in Hα.

We first consider the case of α = 1/2.
It is well known that the reaction-diffusion equation possesses a global attractor in H

space, and the global attractor of this equation consists of equilibria with their stable and
unstable manifolds. Thus, each trajectory has to converge to a critical point. From (3.31) and
(3.10), we deduce that for any ϕ ∈ H1/2 the solution u(t, ϕ) of system (1.1) converges to a
critical point of F. Hence, we only need to prove the following two properties:

(1) F(u) → ∞ ⇔ ‖u‖H1/2
→ ∞;

(2) the set S = {u ∈ H1/2 | DF(u) = 0} is bounded.

Property (1) is obviously true, we now prove property (2) in the following. It is easy
to check if DF(u) = 0, u is a solution of the following equation:

aΔu − g(u) = 0,

u|∂Ω = 0,
(3.37)

where g(u) is given by (1.2). Taking the scalar product of (3.37)with u, then we derive that

∫

Ω

(
|∇u|2 +

2m+1∑

k=1

aku
k+1

)
dx = 0. (3.38)

By (1.3) and (3.38), we have

∫

Ω

(
|∇u|2 + a2m+1u

2(m+1) −
2m∑

k=1

|ak||u|k+1
)
dx ≤ 0. (3.39)

Using Hölder inequality and the above inequality, we have

∫

Ω

(
|∇u|2 + u2(m+1)

)
dx ≤ C, (3.40)

where C > 0 is a constant. Thus, property (2) is proved.
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Now, we show that system (1.1) has a bounded absorbing set in Hα for any α ≥ 1/2,
that is, for any bounded set U ⊂ Hα there are T > 0 and a constant C > 0 independent of ϕ
such that

∥∥u
(
t, ϕ

)∥∥
Hα

≤ C, ∀t ≥ T, ϕ ∈ U. (3.41)

From the above discussion, we know that (3.41) holds as α = 1/2. By (3.5), we have

u
(
t, ϕ

)
= e(t−T)Lu

(
T, ϕ

) −
∫ t

0
e(t−τ)Lg(u)dτ. (3.42)

Let B ⊂ H1/2 be the bounded absorbing set of system (1.1), and T0 > 0 such that

u
(
t, ϕ

) ∈ B, ∀t ≥ T0, ϕ ∈ U ⊂ Hα

(
α ≥ 1

2

)
. (3.43)

It is well known that

∥∥∥etL
∥∥∥ ≤ Ce−tλ1 , (3.44)

where λ1 > 0 is the first eigenvalue of the equation:

aΔu − g(u) = 0,

u|∂Ω = 0.
(3.45)

Hence, for any given T > 0 and ϕ ∈ U ⊂ Hα (α ≥ 1/2), we have

∥∥∥e(t−τ)Lu
(
t, ϕ

)∥∥∥
Hα

=
∥∥∥Lαe(t−τ)Lu

(
t, ϕ

)∥∥∥
H

−→ 0, as t −→ ∞. (3.46)

From (3.42)-(3.43) and Lemma 2.4 for any 1/2 ≤ α < 1, we get that

∥∥u
(
t, ϕ

)∥∥
Hα

≤
∥∥∥e(t−T0)Lu

(
T0, ϕ

)∥∥∥
Hα

+
∫ t

T0

∥∥∥Lαe(t−τ)Lg(u)
∥∥∥dτ

≤
∥∥∥e(t−T0)Lu

(
T0, ϕ

)∥∥∥
Hα

+ C

∫ t−T0

0
τ−αe−λ1τdτ,

(3.47)

where C > 0 is a constant independent of ϕ.
Then, we infer from (3.46) and (3.47) that (3.41) holds for all 1/2 ≤ α < 1. By the

iteration method, we have that (3.41) holds for all α ≥ 1/2.
Finally, this theorem follows from (3.31)–(3.41) and Lemma 2.3. The proof is

completed.



Abstract and Applied Analysis 15

Acknowledgment

This work is funded by the National Natural Science Foundation of China (no. 11071177) and
the NSF of Sichuan Education Department of China (no. 11ZA1102).

References

[1] A. M. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society B,
vol. 237, pp. 37–72, 1952.

[2] L. G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press, 1993.
[3] H. Meinhardt,Models of Biological Pattern Formation, Academic Press, 1982.
[4] J. D. Murray,Mathematical Biology, vol. 19 of Biomathematics, Springer, Berlin, Germany, 1989.
[5] P. De Kepper, V. Castets, E. Dulos, and J. Boissonade, “Turing-type chemical patterns in the chlorite-

iodide-malonic acid reaction,” Physica D, vol. 49, no. 1-2, pp. 161–169, 1991.
[6] K. R. Schneider, “A note on the existence of periodic travelling wave solutions with large periods in

generalized reaction-diffusion systems,” Journal of Applied Mathematics and Physics, vol. 34, no. 2, pp.
236–240, 1983.

[7] S. J. Ruuth, “Implicit-explicit methods for reaction-diffusion problems in pattern formation,” Journal
of Mathematical Biology, vol. 34, no. 2, pp. 148–176, 1995.

[8] Y. Liu, Z. Li, and Q. Ye, “The existence, uniqueness and stability of positive periodic solution for
periodic reaction-diffusion system,” Acta Mathematicae Applicatae Sinica, vol. 17, no. 1, pp. 1–13, 2001.

[9] T. Miura and P. K. Maini, “Speed of pattern appearance in reaction-diffusion models: implications in
the pattern formation of limb bud mesenchyme cells,” Bulletin of Mathematical Biology, vol. 66, no. 4,
pp. 627–649, 2004.

[10] M. Marion, “Approximate inertial manifolds for reaction-diffusion equations in high space
dimension,” Journal of Dynamics and Differential Equations, vol. 1, no. 3, pp. 245–267, 1989.

[11] J. Mallet-Paret and G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space
dimensions,” Journal of the American Mathematical Society, vol. 1, no. 4, pp. 805–866, 1988.

[12] J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs,
American Mathematical Society, Providence, RI, USA, 1988.

[13] S. Lu, H.Wu, and C. Zhong, “Attractors for nonautonomous 2DNavier-Stokes equations with normal
external forces,” Discrete and Continuous Dynamical Systems. Series A, vol. 13, no. 3, pp. 701–719, 2005.

[14] Q. Ma, S. Wang, and C. Zhong, “Necessary and sufficient conditions for the existence of global
attractors for semigroups and applications,” Indiana University Mathematics Journal, vol. 51, no. 6, pp.
1541–1559, 2002.

[15] C. Zhong, C. Sun, and M. Niu, “On the existence of global attractor for a class of infinite dimensional
dissipative nonlinear dynamical systems,” Chinese Annals of Mathematics. Series B, vol. 26, no. 3, pp.
393–400, 2005.

[16] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1997.

[17] C. K. Zhong, M.-H. Yang, and C.-Y. Sun, “The existence of global attractors for the norm-to-weak
continuous semigroup and application to the nonlinear reaction-diffusion equations,” Journal of
Differential Equations, vol. 223, no. 2, pp. 367–399, 2006.

[18] M. Marion, “Attractors for reaction-diffusion equations: existence and estimate of their dimension,”
Applicable Analysis, vol. 25, no. 1-2, pp. 101–147, 1987.

[19] M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion
systems,” SIAM Journal on Mathematical Analysis, vol. 20, no. 4, pp. 816–844, 1989.

[20] T. Ma and S. H. Wang, Bifurcation Theory and Applications, vol. 53 ofWorld Scientific Series on Nonlinear
Science, Series A, World Scientific, Singapore, 2005.

[21] T. Ma and S. H. Wang, Phase Transition Dynamics in Nonlinear Sciences, Springer, NewYork, NY, USA,
2012.

[22] T. Ma and S. H.Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Academic Press, China,
2006.

[23] B. Nicolaenko, B. Scheurer, and R. Temam, “Some global dynamical properties of a class of pattern
formation equations,” Communications in Partial Differential Equations, vol. 14, no. 2, pp. 245–297, 1989.



16 Abstract and Applied Analysis

[24] L. Song, Y. Zhang, and T. Ma, “Global attractor of the Cahn-Hilliard equation in Hk spaces,” Journal
of Mathematical Analysis and Applications, vol. 355, no. 1, pp. 53–62, 2009.

[25] A. Pazy, Semigroups of Linear Pperators and Applications to Partial Differential Equations, vol. 44 ofApplied
Mathematical Sciences, Springer, New York, NY, USA, 1983.


