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We study the permanence of a classof single species system with distributed time delay and
feedback controls. General criteria on permanence are established in this paper. A very important
fact is found in our results; that is, the feedback control is harmless to the permanence of species.

1. Introduction

Ecosystems in the real world are continuously disturbed by unpredictable forces which can
result in changes in the biological parameters such as survival rates. Of practical interest in
ecology is the question of whether or not an ecosystem can withstand those unpredictable
disturbances which persist for a finite period of time. In the language of control variables, we
call the disturbance functions as control variables. During the last decade, many scholars
did works on the feedback control ecosystems. Motivated by those work especially [1],
we consider the following single species system with distributed time delay and feedback
control:

x′(t) = x(t)

{
a(t) − b(t)x(t − τ(t)) − c(t)

∫0

−∞
H(s)x(t + s)ds − h(t)u(t) − r(t)u(t − λ(t))

}
,

u′(t) = −d(t)u(t) + e(t)
∫0

−∞
H(s)x2(t + s)ds,

(1.1)

where x(t) is the density of the species at time t, u(t) is the control variable; a(t), b(t), c(t),
d(t), e(t), h(t), r(t), τ(t) and λ(t) are defined on R+ = [0,+∞) and are bounded and
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continuous functions; b(t), c(t), d(t), e(t), h(t), r(t), τ(t), and λ(t) are nonnegative for all
t ∈ R+. Further, we assume that the delay kernels H(s) are nonnegative integral functions
defined on R− = (−∞, 0] such that

∫0
−∞H(s)ds = 1 and σ =

∫0
−∞ sH(s)ds < +∞.

We denote by BC+ the space of all bounded continuous functions φ : R− → R+ with
norm |φ| = sups∈R−

|φ(s)|. In this paper, we always assume that all solutions of system (1.1)
satisfy the following initial condition:

x(s) = φ(s), u(s) = ψ(s) ∀s ∈ R−, (1.2)

where φ(s) ∈ BC+ and ψ(s) ∈ BC+.
Let (x(t), u(t)) be the solution of system (1.1) satisfying initial condition (1.2). We

easily prove x(t) > 0 and u(t) > 0 in maximal interval of the existence of the solution. For
the sake of convenience, the solution of system (1.1) with initial condition (1.2) is said to be
positive.

In addition, for a function g(t) defined on set I ⊂ R, we denote

g0 = sup
t∈I

g(t), g = inf
t∈I

g(t). (1.3)

In the theory of mathematical biology, systems such as (1.1) are very important in
a single species system in time-fluctuating environments, the effect of time delays and
feedback controls. We see that there has been a series of articles which deal with the
dynamical behaviors of the autonomous, periodic, and general nonautonomous population
growth systems with feedback controls, for example [1–12] and reference cited therein. In
[1] the authors proposed the following single species model with feedback regulation and
distributed time delay of the form:

x′(t) = x(t)
{
a(t) − b(t)

∫∞

0
H(s)x(t − s)ds − c(t)u(t)

}
,

u′(t) = −d(t)u(t) + e(t)
∫∞

0
H(s)x2(t − s)ds.

(1.4)

By using the continuation theorem of coincidence theory, a criterion which guarantees the
existence of positive periodic solution of system (1.4) is obtained. In [2], the authors obtain
sufficient condition which guarantees the global attractivity of the positive solution of system
(1.4) by constructing a suitable Lyapunov functional. The aim of this paper is to establish
new sufficient conditions on the permanence for all positive solutions of system (1.1) by
improving the method given in [13–15].

2. Preliminaries

Throughout this paper, we will introduce the following assumptions:

(H1) there exists a constant ω > 0, such that

lim inf
t→∞

∫ t+ω
t

a(s)ds > 0; (2.1)
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(H2) there exists a constant β > 0, such that

lim inf
t→∞

∫ t+β
t

b(s)ds > 0; (2.2)

(H3) there exists a constant γ > 0 such that

lim inf
t→∞

∫ t+γ
t

c(s)ds > 0; (2.3)

(H4) there exists a constant λ > 0 such that

lim inf
t→∞

∫ t+λ
t

d(s)ds > 0; (2.4)

(H5) there exists a constant ζ > 0 such that

lim inf
t→∞

∫ t+ζ
t

e(s)ds > 0. (2.5)

First, we consider the following nonautonomous logistic equation

x′(t) = x(t)(a(t) − b(t)x(t)), (2.6)

where functions a(t), b(t) are bounded and continuous on R+. Furthermore, b(t) ≥ 0 for all
t ≥ 0. We have the following result which is given in [15] by Teng and Li.

Lemma 2.1. Suppose that assumptions (H1)-(H2) hold. Then,

(a) there exist positive constantsm andM such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M (2.7)

for any positive solution x(t) of (2.6);

(b) limt→∞(x(1)(t) − x(2)(t)) = 0 for any two positive solutions x(1)(t) and x(2)(t) of (2.6).

Further, we consider the following nonautonomous linear equation

u′(t) = r(t) − d(t)u(t), (2.8)

where functions r(t) and d(t) are bounded continuous defined on R+, and r(t) ≥ 0 for all
t ≥ 0. We have the following result.
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Lemma 2.2. Suppose that assumptions (H4) hold. Then,

(a) there exists a positive constant U such that lim supt→∞u(t) ≤ U for any positive solution
u(t) of (2.8);

(b) limt→∞(u(1)(t) − u(2)(t)) = 0 for any two positive solutions u(1)(t) and u(2)(t) of (2.8).

The proof of Lemma 2.2 is very simple, we hence omit it here.

Lemma 2.3. Suppose that assumption (H4) holds. Then for any constants ε > 0 and M > 0 there
exist constants δ = δ(ε) > 0 and T = T(M) > 0 such that for any t0 ∈ R+ and u0 ∈ R with |u0| ≤M,
when |r(t)| < δ for all t ≥ t0, one has

|u(t, t0, u0)| < ε ∀t ≥ t0 + T, (2.9)

where u(t, t0, u0) is the solution of (2.8) with initial condition u(t0) = u0.

The proof of Lemma 2.3 can be found as Lemma 2.4 in [16] by Wang et al.

Lemma 2.4. Let x(t) : R → R be a nonnegative and bounded continuous function, and let H(s) :
R− → R+ be an integral function satisfying

∫0
−∞H(s)ds = 1. Then one has

lim inf
t→∞

x(t) ≤ lim inf
t→∞

∫0

−∞
H(s)x(t + s)ds

≤ lim sup
t→∞

∫0

−∞
H(s)x(t + s)ds

≤ lim sup
t→∞

x(t).

(2.10)

Lemma 2.4 is given in [17] by Montes de Oca and Vivas.

3. Main Results

Theorem 3.1. Suppose that assumption (H1) holds and (H2) or (H3) holds. Then there exists a positive
constantM > 0 such that

lim sup
t→∞

x(t) < M, lim sup
t→∞

u(t) < M, (3.1)

for any positive solution ((x(t), u(t)) of system (1.1).

Proof. Let x(t) be a positive solution of the first equation system (1.1). Since

dx(t)
dt

≤ a(t)x(t) (3.2)
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for all t > 0 as long as the solution exists and the function a(t) is bounded and continuous on
R+. We can obtain that the solution exists for all t ∈ R+. For any t ≥ 0, s ≤ 0, and t + s ≥ 0, by
integrating (3.2) from t + s to t, we have

x(t + s) ≥ x(t) exp
∫ t+s
t

a(u)du. (3.3)

For any t > τ0, where τ0 = max{supt∈R+
τ(t) ≥ 0, supt∈R+

λ(t) ≥ 0}, by (3.3) we can directly
from the first equation of (1.1)

dx(t)
dt

≤ x(t)
(
a(t) − b(t)x(t) exp

∫ t−τ(t)
t

a(u)du − c(t)
(∫0

−t
H(s) exp

∫ t+s
t

a(u)duds

)
x(t)

)

= x(t)(a(t) − θ(t)x(t)),
(3.4)

where θ(t) = b(t) exp
∫ t−τ(t)
t a(u)du + c(t)

∫0
−t H(s) exp

∫ t+s
t a(u)duds. Since for any t ≥ τ0 and

s ∈ R−

∫ t−τ(t)
t

a(u)du ≥ −τ0a0,
∫ t+s
t

a(u)du ≥ sa0. (3.5)

We have

d(t) ≥ b(t) exp
(
−τ0a0

)
+ c(t)

∫0

−t
H(s) exp

(
a0s
)
ds. (3.6)

Let

f(t) = b(t) exp
(
−τ0a0

)
+ c(t)

∫0

−t
H(s) exp

(
a0s
)
ds,

g(t) = b(t) exp
(
−τ0a0

)
+ c(t)

∫0

−∞
H(s) exp

(
a0s
)
ds.

(3.7)

Since 0 < a0, we have

0 <
∫0

−∞
H(s) exp

(
a0s
)
ds <

∫0

−∞
H(s)ds <∞,

lim
t→∞
(
g(t) − f(t)) = lim

t→∞
c(t)
∫−t

−∞
H(s) exp

(
a0s
)
ds = 0.

(3.8)
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Hence, assumption (H2) or (H3) implies

lim inf
t→∞

∫ t+σ
t

f(s)ds = lim inf
t→∞

[∫ t+σ
t

g(s)ds +
∫ t+σ
t

(
f(s) − g(s))ds

]

= lim inf
t→∞

∫ t+σ
t

g(s)ds > 0,

(3.9)

where the constant σ = β or γ . Since θ(t) ≥ f(t) for all t ≥ τ0, we finally obtain

lim inf
t→∞

∫ t+δ
t

θ(s)ds ≥ lim inf
t→∞

∫ t+δ
t

f(s)ds > 0. (3.10)

We consider the following auxiliary equation:

dy(t)
dt

≤ y(t)(a(t) − θ(t)y(t)), (3.11)

then by conclusion (a) of Lemma 2.1 and inequality (3.10)we obtain that there exist a constant
M1 such that lim supt→∞ y(t) ≤M1 for any solution of (3.11) with initial condition y(0) > 0.
Let y∗(t) be the solution of (3.11)with initial condition y∗(τ0) = x(τ0), then by the comparison
theorem, we have from (3.4) that

x(t) < y∗(t), ∀t > τ0. (3.12)

Thus, we finally obtain that

lim sup
t→∞

x(t) < M1. (3.13)

Moreover, by Lemma 2.4, for any positive constant ε > 0, there exists a constant T > 0
such that

∫0

−∞
H(s)x2(t + s)ds < M2

1 + ε, ∀t > T. (3.14)

Considering the second equation of the system (1.1), we have

du(t)
dt

≤ −d(t)u(t) + e(t)
(
M2

1 + ε
)
. (3.15)

We consider the following auxiliary equations:

dv(t)
dt

= −d(t)v(t) + e(t)
(
M2

1 + ε
)
, (3.16)
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then, by assumption (H4) and conclusion (a) of the Lemma 2.2, we obtain that there is a
constant M2 such that lim supt→∞v(t) ≤ M2 for any solution of (3.16) with initial condition
v(0) > 0. Let v∗(t) be the solution of (3.16) with initial condition v∗(T ′) = u(T ′) and T ′ > T ,
then, by comparison theorem, we have from (3.15) that

u(t) ≤ v∗(t), ∀t > T ′. (3.17)

Thus, we finally obtain that

lim sup
t→∞

v(t) < M2. (3.18)

Choose the constantM = max{M1,M2}, then we finally obtain

lim sup
t→∞

x(t) < M, lim sup
t→∞

u(t) < M. (3.19)

This completes the proof.

Theorem 3.2. Suppose that assumptions (H1)–(H5) hold. Then there exists a constant ηx > 0 which
is independent of the solution of system (1.1) such that

lim inf
t→∞

x(t) ≥ ηx, (3.20)

for any positive solutions (x(t), u(t)) of system (1.1).

Proof. Let (x(t), u(t)) be a solution of system (1.1); from Theorem 3.1 there exists a T0 such
that for all t > T0 we have x(t) ≤ M,u(t) ≤ M. According to the assumption (H1) we can
choose positive constants ε > 0 and T0 > 0 such that, for all t ≥ T0, we have

∫ t+δ
t

(a(s) − b(s)ε − 2c(s)ε − h(s)ε − r(s)ε)ds ≥ ε. (3.21)

Consider the following equation:

dv(t)
dt

= −d(t)v(t) + e(t)
(
α0 + α20

)
, (3.22)

where α0 > 0 is a parameter. By Lemma 2.3, for given in above ε > 0 and positive constantM
(Theorem 3.1), there exist constants δ0 = δ0(ε) and T̃0 = T̃0(M) > 0 such that for any t0 ∈ R+

and 0 ≤ v0 ≤M, when e(t)(α0 + α20) < δ0, for all t ≥ t0, we have

0 ≤ v(t, t0, u0) < ε ∀t ≥ t0 + T̃0, (3.23)
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where v(t, t0, u0) is the solution of (3.22) with initial condition v(t0) = v0. Hence, we can
choose a positive constant α0 ≤ min{ε, δ0/2(e0 + 1)} such that, for all t ≥ T0,

∫ t+δ
t

(a(s) − b(s)α0 − 2c(s)α0 − h(s)ε − r(s)ε)ds ≥ α0. (3.24)

We first prove that

lim sup
t→∞

x(t) ≥ α0. (3.25)

In fact, if (3.25) is not true, then there exists a constant T1 ≥ T0 such that x(t) < α0 for all t ≥ T1.
Choose constants τ1 > τ0, τ2 > τ1, such that

∫−τ1

−∞
H(s)ds <

α0

M2
0

,

∫−τ2

−∞
H(s)ds <

α0
M0

, (3.26)

where M0 = sup{x(t + s) : t ∈ R+, S ∈ R−}, then for t ≥ T1 + τ1 we have

u′(t) = −d(t)u(t) + e(t)
(∫−τ1

−∞
+
∫0

−τ1

)
H(s)x2(t + s)ds

≤ −d(t)u(t) + e(t)
(

α0

M2
0

M2
0 + α

2
0

)

≤ −d(t)u(t) + e(t)
(
α0 + α20

)
.

(3.27)

Let v(t) be the solution of (3.22) with initial condition v(T1 + τ1) = u(T1 + τ1), then by
the comparison theorem we have

u(t) ≤ v(t), ∀t ≥ T1 + τ1. (3.28)

In (3.23), we choose t0 = T1 + τ1 and v0 = u(T1 + τ1), since (α0 + α20)e(t) < δ0 for all t ≥ T1 + τ1,
we have

v(t) = v(t, T1 + τ1, v(T1 + τ1)) < ε ∀t ≥ T1 + τ1 + T̃0. (3.29)

Hence, we further have

u(t) < ε ∀t ≥ T1 + τ1 + T̃0. (3.30)
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For any t ≥ T1 + τ1 + T̃0 + τ2, from the first equation of (1.1)we have

x′(t) =x(t)

{
a(t)− b(t)x(t− τ(t))− c(t)

(∫−τ2

−∞
+
∫0

−τ2

)
H(s)x(t+s)ds−h(t)u(t)− r(t)u(t− λ(t))

}

≥ x(t)(a(s) − b(s)α0 − 2c(s)α0 − h(s)ε − r(s)ε).
(3.31)

Integrating (3.31) from T1 + τ1 + T̃0 + τ2 to t ≥ T1 + τ1 + T̃0 + τ2 we obtain

x(t) ≥ x
(
T1 + τ1 + T̃0 + τ2

)
exp

{∫ t
T1+τ1+T̃0+τ2

(a(s) − b(s)α0 − 2c(s)α0 − h(s)ε − r(s)ε)ds
}
.

(3.32)

Obviously, inequality (3.24) implies that x(t) → ∞ as t → ∞, which leads to a contradiction.
Now, we prove the conclusion of Theorem 3.2 to hold. Assume that it is not true, then

there exists a sequence {Z(m)} = {(ϕ(m), ψ(m))} of initial functions of system (1.1) such that

lim inf
t→∞

x
(
t, Z(m)

)
<

α0

(m + 1)2
∀m = 1, 2, . . . , (3.33)

where (x(t, Z(m)), u(t, Z(m))) is the solution of system (1.1) with initial condition

x(s) = ϕ(m)(s), u(s) = ψ(m)(s) ∀s ∈ R−. (3.34)

From (3.25) and (3.33), we obtain that for every m there are two time sequences {s(m)
q } and

{t(m)
q }, satisfying

0 < s(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s(m)

q < t
(m)
q < · · · , (3.35)

s
(m)
q −→ ∞, t

(m)
q −→ ∞ as q −→ ∞, (3.36)

x
(
s
(m)
q , φ(m), ψ(m)

)
=

α0
m + 1

, x
(
t
(m)
q , φ(m), ψ(m)

)
=

α0

(m + 1)2
, (3.37)

α0

(m + 1)2
≤ x
(
t, φ(m), ψ(m)

)
≤ α0
m + 1

∀t ∈
(
s
(m)
q , t

(m)
q

)
. (3.38)

Let Mm = sup{x(t + s, φ(m), ψ(m)) : t ∈ R+, S ∈ R−}. For each m = 1, 2, . . . we can choose a
constant τ (m)

1 > τ0 such that

∫−τ (m)
1

−∞
H(s)x

(
t + s, φ(m), ψ(m)

)
ds ≤Mm

∫−τ (m)
1

−∞
H(s)ds < α0. (3.39)
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By Theorem 3.1, there exists a constantM such that for each m = 1, 2, . . . there exists a T (m)
1 >

T0 such that

x
(
t, φ(m), ψ(m)

)
≤M, u

(
t, φ(m), ψ(m)

)
≤M ∀t > T (m)

1 . (3.40)

Further, from (3.36) there is an integer K(m)
1 > 0 such that s(m)

q > T
(m)
1 + τ (m)

1 for all q ≥ K
(m)
1

for allm = 1, 2, . . . .Hence, for any t ∈ (s(m)
q , t

(m)
q ) and q ≥ K(m)

1 by (3.39) and (3.40) we have

dx
(
t, φ(m), ψ(m))

dt

≥ x
(
t, φ(m), ψ(m)

)⎧⎨
⎩a(t)−b(t)M−c(t)

⎛
⎝∫−τ (m)

1

−∞
+
∫0

−τ (m)
1

⎞
⎠H(s)x(t+s)ds−h(t)M−r(t)M

⎫⎬
⎭

≥ x
(
t, φ(m), ψ(m)

)
(a(t) − b(t)M − c(t)(α0 +M) − h(t)M − r(s)M)

≥ −γ1x
(
t, φ(m), ψ(m)

)
,

(3.41)

where γ1 = supt∈R+
{|a(t)| + b(t)M + c(t)(α0 +M0) + r(t)M + h(t)M} > 0. Therefore, for any

q ≥ K(m)
1 andm = 1, 2, . . . integrating the above inequality from s

(m)
q to t(m)

q , we further have

α0

(m + 1)2
= x
(
t
(m)
q , φ(m), ψ(m)

)
≥ x
(
s
(m)
q , φ(m), ψ(m)

)
exp
{
−γ1
(
t
(m)
q − s(m)

q

)}

=
α0

m + 1
exp
{
−γ1
(
t
(m)
q − s(m)

q

)}
.

(3.42)

Consequently,

t
(m)
q − s(m)

q ≥ ln(m + 1)
γ1

∀q ≥ K(m)
1 , m = 1, 2, . . . . (3.43)

For any q ≥ K(m)
1 and t > s(m)

q we can obtain

∫T (m)
1

−∞
H(θ − t)x

(
θ, φ(m), ψ(m)

)
dθ ≤Mm

∫T (m)
1 −t

−∞
H(s)ds,

∫T (m)
1

−∞
H(θ − t)x2

(
θ, φ(m), ψ(m)

)
dθ ≤M2

m

∫T (m)
1 −t

−∞
H(s)ds,



Abstract and Applied Analysis 11

∫s(m)
q

T
(m)
1

H(θ − t)x
(
θ, φ(m), ψ(m)

)
dθ ≤M

∫s(m)
q −t

−∞
H(s)ds,

∫s(m)
q

T
(m)
1

H(θ − t)x2
(
θ, φ(m), ψ(m)

)
dθ ≤M2

∫s(m)
q −t

−∞
H(s)ds.

(3.44)

For eachm = 1, 2, . . . by (3.36) there exists a K(m)
2 ≥ K(m)

1 and constant L > τ0 such that

Mm

∫T (m)
1 −s(m)

q

−∞
H(s)ds < M2

m

∫T (m)
1 −s(m)

q

−∞
H(s)ds ≤ α0

2
, ∀q ≥ K(m)

2 ,

M

∫−L

−∞
H(s)ds < M2

∫−L

−∞
H(s)ds ≤ α0

2
.

(3.45)

By (3.43) there exists a large enough m̂1 such that

t
(m)
q − s(m)

q ≥ L + δ + T̃0, ∀m ≥ m̂1, q ≥ K(m)
2 . (3.46)

Hence, for anym ≥ m̂1, q ≥ K(m)
2 and t ∈ [s(m)

q + L, t(m)
q ], by (3.38), (??), and (3.45)we have

du
(
t, Z(m))
dt

= −d(t)u
(
t, Z(m)

)
+ e(t)

⎛
⎝∫T (m)

1

−∞
+
∫ s(m)

q

T
(m)
1

+
∫ t
s
(m)
q

⎞
⎠H(θ − t)x2(θ)dθ

≤ −d(t)u
(
t, Z(m)

)
+ e(t)M2

m

∫T (m)
1 −t

−∞
H(θ)dθ + e(t)M

∫ s(m)
q −t

−∞
H(θ)dθ

+ e(t)
α20

(m + 1)2

∫ t
s
(m)
q

H(θ − t)dθ

≤ −d(t)u
(
t, Z(m)

)
+ e(t)

(
α0
2

+
α0
2

+
α20

(m + 1)2

)

≤ −d(t)u
(
t, Z(m)

)
+ e(t)

(
α0 + α20

)
.

(3.47)

Assume that v(t) is the solution of (3.22) satisfying initial condition v(s(m)
q + L) = u(s(m)

q + L),
then we have

u
(
t, Z(m)

)
≤ v(t), ∀t ∈

[
s
(m)
q + L, t(m)

q

]
, m ≥ m̂1, q ≥ K(m)

2 . (3.48)
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In (3.23), we choose t0 = s
(m)
q +L and v0 = u(s

(m)
q +L), since (α0+α20)e(t) < δ0 for all t ≥ s

(m)
q +L,

we have

v(t) = v
(
t, s

(m)
q + L, v

(
s
(m)
q + L

))
< ε ∀t ∈

[
s
(m)
q + L + T̃0, t

(m)
q

]
. (3.49)

Hence, we further have

u
(
t, Z(m)

)
< ε (3.50)

for all t ∈ [s(m)
q + L + T̃0, t

(m)
q ], q ≥ K(m)

2 andm ≥ m̂1.

For any q ≥ K(m)
2 , m ≥ m̂1, and t ∈ [s(m)

q + L + T̃0, t
(m)
q ], from (3.38)–(3.40), we have

dx
(
t, φ(m), ψ(m))

dt

≥ x
(
t, φ(m), ψ(m)

)⎧⎨
⎩a(t) − b(t)x(t − T(t))

−c(t)
⎛
⎝∫T (m)

1

−∞
+
∫s(m)

q

T
(m)
1

+
∫ t
s
(m)
q

⎞
⎠H(s)x(t + s)ds − h(t)α0 − r(t)α0

⎫⎬
⎭

> x(t)

⎛
⎝a(t) − b(t) α0

m + 1
− c(t)Mm

∫T (m)
1 −t

−∞
H(θ)ds − c(t)M

∫ s(m)
q −t

T
(m)
1

H(θ)ds

−c(t) α0
m + 1

∫ t
s
(m)
q

H(θ − t)ds − h(t)ε − r(t)ε
⎞
⎠

≥ x(t)(a(t) − b(t)α0 − 2c(t)α0 − h(t)ε − r(t)ε).
(3.51)

Integrating the above inequality from t
(m)
q − δ to t

(m)
q , then by (3.24), (3.37) and (3.38) we

obtain

α0

(m + 1)2
= x
(
t
(m)
q , Z(m)

)

≥ x
(
t
(m)
q − δ,Z(m)

)
exp
∫ t(m)

q

t
(m)
q −δ

(a(s) − b(s)α0 − 2c(s)α0 − h(s)ε − r(s)ε)ds

≥ α0

(m + 1)2
exp{α0} > α0

(m + 1)2

(3.52)
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which leads to a contradiction. Therefore, this contradiction shows that there exists constant
ηx > 0 such that

lim inf
t→∞

x(t) ≥ ηx, (3.53)

for any positive solutions (x(t), u(t)) of system (1.1). This completes the proof.

Applying Theorem 3.2 to system (1.4), we have the following corollary.

Corollary 3.3. Suppose that assumptions (H1)–(H5) hold, then system (1.4) is permanent.

Obviously, we will first consider system (1.1) which is more general than system
(1.4). Moreover, Corollary 3.3 is a very good improvement of Theorem 2.1 in [2]. From
Corollary 3.3, we find that it is established that a very weak sufficient condition for the
permanent of system (1.4).

Remark 3.4. From Theorem 3.2 we directly see that for system (1.1) the feedback control is
harmless to the permanence of system (1.1).

Remark 3.5. In this paper, the biological model about a single species is considered. However,
complex networks have attracted increasing attention from various fields of science and
engineering in recent years. Meanwhile, in some sense, the coupled species systems can be
treated as a typical complex networks. The real world biological systems have more complex
structures and relationships. Motivated by above work [18–21], our future work is that how
to apply the current complex networks theory to improve the current work.
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