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A two-step difference scheme for the numerical solution of the initial-boundary value problem
for stochastic hyperbolic equations is presented. The convergence estimate for the solution of the
difference scheme is established. In applications, the convergence estimates for the solution of
the difference scheme are obtained for different initialboundary value problems. The theoretical
statements for the solution of this difference scheme are supported by numerical examples.

1. Introduction

Stochastic partial differential equations have been studied extensively by many researchers.
For example, the method of operators as a tool for investigation of the solution to stochastic
equations in Hilbert and Banach spaces have been used systematically by several authors
(see, [1–7] and the references therein). Numerical methods and theory of solutions of initial
boundary value problem for stochastic partial differential equations have been studied in [8–
16]. Moreover, the authors of [17] presented a two-step difference scheme for the numerical
solution of the following initial value problem:

dv̇(t) = −Av(t)dt + f(t)dwt, 0 < t < T,

v(0) = 0, v̇(0) = 0,
(1.1)

for stochastic hyperbolic differential equations. We have the following.
(i) wt is a standard Wiener process given on the probability space (Ω, F, P).
(ii) For any z ∈ [0, T], f(z) is an element of the space M2

w([0, T],H1), where H1 is a
subspace ofH.
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Here, M2
w([0, T],H) [18] denote the space of H-valued measurable processes which

satisfy

(a) φ(t) is Ft measurable, a.e. in t,

(b) E
∫T
0 ‖φ(t)‖Hdt <∞.

The convergence estimates for the solution of the difference scheme are established.
In the present work, we consider the following initial value problem:

dv̇(t) +Av(t)dt = f(t)dwt, 0 < t < T,

v(0) = ϕ, v̇(0) = ψ,
(1.2)

for stochastic hyperbolic equation in a Hilbert space H with a self-adjoint positive definite
operator Awith A ≥ δI, where δ > δ0 > 0. In addition to (i) and (ii), we put the following.

(iii) ϕ and ψ are elements of the space M2
w([0, T],H2) of H2-valued measurable

processes, whereH2 is a subspace ofH.
By the solutions provided in [19] (page 423, (0.4)) and in [20] (page 1005, (2.9)), under

the assumptions (i), (ii), and (iii), the initial value problem (1.2) has a unique mild solution
given by the following formula:

v(t) = c(t)ϕ + s(t)ψ +
∫ t

0
s(t − z)f(z)dwz. (1.3)

For the theory of cosine and sine operator-function we refer to [21, 22].
Our interest in this study is to construct and investigate the difference scheme for

the initial value problem (1.2). The convergence estimate for the solution of the difference
scheme is proved. In applications, the theorems on convergence estimates for the solution
of difference schemes for the numerical solution of initial-boundary value problems for
hyperbolic equations are established. The theoretical statements for the solution of this
difference scheme are supported by the result of the numerical experiments.

2. The Exact Difference Scheme

We consider the following uniform grid space:

[0, T]τ = {tk = kτ, k = 0, 1, . . . ,N, Nτ = T}, (2.1)

with step τ > 0. Here,N is a fixed positive integer.
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Theorem 2.1. Let v(tk) be the solution of the initial value problem (1.2) at the grid points t = tk.
Then, {v(tk)}N0 is the solution of the initial value problem for the following difference equation:

1
τ2

(v(tk+1) − 2v(tk) + v(tk−1)) +
2
τ2

(I − c(τ))v(tk) = 1
τ

(
f1,k+1 + s(τ)f2,k − c(τ)f1,k

)
,

f1,k =
1
τ

∫ tk

tk−1
s(tk − z)f(z)dwz, f2,k =

1
τ

∫ tk

tk−1
c(tk − z)f(z)dwz, 1 ≤ k ≤N − 1,

v(0) = ϕ, v(τ) = c(τ)ϕ + s(τ)ψ + τf1,1.

(2.2)

Proof. Putting t = tk into the formula (1.3), we can write

v(tk) = c(tk)ϕ + s(tk)ψ +
∫ tk

0
s(tk − z)f(z)dwz. (2.3)

Using (2.3), the definition of the sine and cosine operator function, we obtain

v(tk) = c(tk)ϕ + s(tk)ψ +
k∑

j=1

∫ tj

tj−1
s
(
tk − tj + tj − z

)
f(z)dwz

= c(tk)ϕ + s(tk)ψ + τ
k∑

j=1

(
s
(
tk − tj

)
f2,j + c

(
tk − tj

)
f1,j
)
.

(2.4)

It follows that

v(tk+1) + v(tk−1) = [c(tk+1) + c(tk−1)]ϕ + [s(tk+1) + s(tk−1)]ψ

+ 2c(τ)τ
k∑

j=1

(
s
(
tk − tj

)
f2,j + c

(
tk − tj

)
f1,j
)

+ τ
(
f1,k+1 + s(τ)f2,k − c(τ)f1,k

)
.

(2.5)

Hence, we get the relation between v(tk) and v(tk±1) as

v(tk+1) + v(tk−1) − 2c(τ)v(tk) = τ
(
f1,k+1 + s(τ)f2,k − c(τ)f1,k

)
. (2.6)

This relation and equality (2.2) are equivalent. Theorem 2.1 is proved.
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3. Convergence of the Difference Scheme

For the approximate solution of problem (1.2), we need to approximate the following expres-
sions:

f1,k =
1
τ

∫ tk

tk−1
s(tk − z)f(z)dwz, f2,k =

1
τ

∫ tk

tk−1
c(tk − z)f(z)dwz,

exp
(
±iτA1/2

)
.

(3.1)

Using Taylor’s formula and Pade approximation of the function exp(−z) at z = 0, we get

exp
(
±iτA1/2

)
≈
(

I ± iτA1/2

2

)(

I ∓ iτA1/2

2

)−1
= R
(
±iτA1/2

)
,

f1,k ≈ − 1
τ

∫ tk

tk−1
(z − tk)f(z)dwz = f̃1,k, f2,k ≈ 1

τ

∫ tk

tk−1
f(z)dwz = f̃2,k.

(3.2)

Applying the difference scheme (2.2) and formula (3.2), we can construct the following
difference scheme:

1
τ2

(uk+1 − 2uk + uk−1) +
2
τ2

(I − cτ(τ))uk =
1
τ

(
f̃1,k+1 + sτ(τ)f̃2,k − cτ(τ)f̃1,k

)
, (3.3)

cτ(τ) =
R
(
iτA1/2) + R

(−iτA1/2)

2
,

sτ(τ) = A−1/2R
(
iτA1/2) − R(−iτA1/2)

2i
, 1 ≤ k ≤N − 1,

u0 = ϕ, u1 = cτ(τ)ϕ + sτ(τ)ψ + τf̃1,1,

(3.4)

for the approximate solution of the initial value problem (1.2). Using the definition of cτ(τ)
and sτ(τ), we can write (3.3) in the following equivalent form:

1
τ2

(uk+1 − 2uk + uk−1) +
1
2
Auk +

1
4
Auk+1 +Auk−1

=
1
τ

((
I +

1
4
τ2A

)
f̃1,k+1 + τf̃2,k −

(
I − 1

4
τ2A

)
f̃1,k

)
,

tk = kτ, 1 ≤ k ≤N − 1,

u0 = ϕ, u1 = cτ(τ)ϕ + sτ(τ)ψ + τf̃1,1.

(3.5)

Now, let us give the lemma we need in the sequel from papers [23, 24].
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Lemma 3.1. The following estimates hold:

‖c(t)‖H→H ≤ 1,
∥
∥
∥A1/2s(t)

∥
∥
∥
H→H

≤ 1 (t ≥ 0), (3.6)

‖cτ(kτ)‖H→H ≤ 1,
∥
∥
∥A1/2sτ(kτ)

∥
∥
∥
H→H

≤ 1 (k ≥ 0), (3.7)

∥
∥
∥A−(1+α)(cτ(kτ) − c(tk))

∥
∥
∥
H→H

≤ Cτ (3/2+α), 0 ≤ α ≤ 1
2
, (3.8)

∥
∥
∥A−(1/2+α)(sτ(kτ) − s(tk))

∥
∥
∥
H→H

≤ Cτ (3/2+α), (k ≥ 0), (3.9)

where

cτ(kτ) =
Rk
(
iτA1/2) + Rk

(−iτA1/2)

2
,

sτ(kτ) = A−1/2R
k
(
iτA1/2) − Rk

(−iτA1/2)

2i
.

(3.10)

The following Theorem on convergence of difference scheme (3.5) is established.

Theorem 3.2. Assume that

E
(∥∥Aϕ

∥∥2
H

)
≤ C, E

(∥∥∥
(
A1/2ψ

)∥∥∥
2

H

)
≤ C, E

∫T

0

∥∥Af(t)
∥∥2
Hdt ≤ C, (3.11)

then the estimate of convergence

(
N∑

k=1

E‖v(tk) − uk‖2H
)1/2

≤ C1(δ)τ (3.12)

holds. Here, C1(δ) does not depend on τ .

Proof. Using the formula for the solution of second order difference equation and the
definition of cτ(kτ) and sτ(kτ), we can write

uk = cτ(kτ)ϕ + sτ(kτ)ψ + τ
k∑

j=1

(
sτ
((
k − j)τ)f̃2,j + cτ

((
k − j)τ)f̃1,j

)
, 1 ≤ k ≤N. (3.13)
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Using (2.4) and (3.13), we obtain

v(tk) − uk = [c(kτ) − cτ(kτ)]ϕ + [s(kτ) − sτ(kτ)]ψ

+ τ
k∑

j=1

(
s
(
tk − tj

)
f2,j + c

(
tk − tj

)
f1,j
)

− τ
k∑

j=1

(
sτ
((
k − j)τ)f̃2,j + cτ

((
k − j)τ)f̃1,j

)

= [c(kτ) − cτ(kτ)]ϕ + [s(kτ) − sτ(kτ)]ψ

+ τ
k−1∑

j=1

sτ
((
k − j)τ)

(
f2,j − f̃2,j

)

+ τ
k−1∑

j=1

(
s
(
tk − tj

) − sτ
((
k − j)τ))f2,j

+ τ
k∑

j=1

cτ
((
k − j)τ)

(
f1,j − f̃1,j

)

+ τ
k∑

j=1

(
c
(
tk − tj

) − cτ
((
k − j)τ))f1,j

= J1,k + J2,k + J3,k + J4,k + J5,k + J6,k, 1 ≤ k ≤N,

(3.14)

where

J1,k = [c(kτ) − cτ(kτ)]ϕ, J2,k = [s(kτ) − sτ(kτ)]ψ,

J3,k = τ
k−1∑

j=1

sτ
((
k − j)τ)

(
f2,j − f̃2,j

)
,

J4,k = τ
k−1∑

j=1

(
s
(
tk − tj

) − sτ
((
k − j)τ))f2,j ,

J5,k = τ
k∑

j=1

cτ
((
k − j)τ)

(
f1,j − f̃1,j

)
,

J6,k = τ
k∑

j=1

(
c
(
tk − tj

) − cτ
((
k − j)τ))f1,j .

(3.15)
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Let us estimate the expected value of Jm,k for all m = 1, . . . , 6, separately. We start with J1,k
and J2,k. Using (3.6), (3.7), and (3.8), we obtain

(
N∑

k=1

E‖J1,k‖2H
)1/2

=

(
N∑

k=1

E
∥
∥
∥A−1[c(kτ) − cτ(kτ)]Aϕ

∥
∥
∥
2

H

)1/2

≤ C
(

N∑

k=1

τ3E
∥
∥Aϕ

∥
∥2
H

)1/2

≤ τC
(
E
∥
∥Aϕ

∥
∥2
H

)1/2
,

(
N∑

k=1

E‖J2,k‖2H
)1/2

=

(
N∑

k=1

E
∥
∥
∥A−1/2[s(kτ) − sτ(kτ)]A1/2ψ

∥
∥
∥
2

H

)1/2

≤ C
(

N∑

k=1

τ3E
∥
∥
∥A1/2ψ

∥
∥
∥
2

H

)1/2

≤ τC
(
E
∥
∥
∥A1/2ψ

∥
∥
∥
2

H

)1/2

.

(3.16)

Estimates for the expected value of Jm,k for all m = 3, . . . , 6, separately, were also used in
paper [17]. Combining these estimates, we obtain (3.12). Theorem 3.2 is proved.

4. Applications

First, letΛ be the unit open cube in the n-dimensional Euclidean space R
n = {x = (x1, . . . , xn) :

0 < xi < 1, i = 1, . . . , n} with boundary S, Λ = Λ ∪ S. In [0, T] ×Λ, the initial-boundary value
problem for the following multidimensional hyperbolic equation:

du̇(t, x) −
n∑

r=1

(ar(x)uxr )xrdt = f(t, x)dwt, 0 < t < T, x = (x1, . . . , xn) ∈ Λ,

u(0, x) = ϕ(x), u̇(0, x) = ψ(x), x ∈ Λ; u(t, x) = 0, x ∈ S, 0 ≤ t ≤ T
(4.1)

with the Dirichlet condition is considered. Here, ar(x), (x ∈ Λ), δ ≥ 0 and f(t, x) (t ∈
(0, 1), x ∈ Λ) are given smooth functions with respect to x and ar(x) ≥ a > 0.

The discretization of (4.1) is carried out in two steps. In the first step, define the grid
space Λ̃h = {x = xm = (h1m1, . . . , hnmn);m = (m1, . . . , mn), 0 ≤ mr ≤ Nr, hrNr = 1, r =
1, . . . , n}, Λh = Λ̃h ∩Λ, Sh = Λ̃h ∩ S.

Let L2h denote the Hilbert space as

L2h = L2

(
Λ̃h

)
=

⎧
⎪⎨

⎪⎩
ϕh(x) :

⎛

⎝
∑

x∈Λ̃h

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hn

⎞

⎠

1/2

<∞

⎫
⎪⎬

⎪⎭
. (4.2)

The differential operator A in (4.1) is replaced with

Ax
hu

h(x) = −
n∑

r=1

(
ar(x)uhxr

)

xr ,jr
+ δuh(x), (4.3)



8 Abstract and Applied Analysis

where the difference operator Ax
h is defined on these grid functions uh(x) = 0, for all x ∈ Sh.

As it is proved in [25], Ax
h
is a self-adjoint positive definite operator in L2h. Using (4.1) and

(4.3), we get

du̇h(t, x) +Ax
hu

h(t, x)dt = fh(t, x)dwt, 0 < t < T, x ∈ Λh,

uh(0, x) = ϕh(x), u̇h(0, x) = ψh(x), x ∈ Λ̃h.
(4.4)

In the second step, we replace (4.4) with the difference scheme (3.5) as

1
τ2

(
uhk+1(x) − 2uhk(x) + u

h
k−1(x)

)
+
1
2
Ax
hu

h
k(x)

+
1
4

(
Ax
hu

h
k+1(x) +A

x
hu

h
k−1(x)

)
= ϕhk(x),

ϕhk(x) =
1
τ

[(
I +

1
4
τ2Ax

h

)
ϕh1,k+1(x) + τϕ

h
2,k(x) −

(
I − 1

4
τ2Ax

h

)
ϕh1,k(x)

]
,

ϕh1,k(x) = − 1
τ

∫ tk

tk−1
(z − tk)fh(z, x)dwz, ϕh2,k(x) =

1
τ

∫ tk

tk−1
fh(z, x)dwz,

tk = kτ, 1 ≤ k ≤N − 1, Nτ = T, x ∈ Λh,

uh1(x) = cτ(τ)ϕ
h(x) + sτ(τ)ψh(x) −

∫ τ

0
(z − τ)fh(z, x)dwz, x ∈ Λh,

uh0(x) = ϕ
h(x).

(4.5)

Theorem 4.1. Let τ and |h| =
√
h21 + · · · + h2n be sufficiently small numbers. Then, the solution of

difference scheme (4.5) satisfies the convergence estimate as

(
N∑

k=1

E
∥∥∥uh(tk) − uhk

∥∥∥
2

L2h

)1/2

≤ C(δ)
(
τ + |h|2

)
, (4.6)

where C(δ) does not depend on τ and |h|.

The proof of Theorem 4.1 is based on the abstract Theorem 3.2 and the symmetry
properties of the difference operator Ax

h
defined by (4.3).

Second, in [0, T] × Λ, the initial-boundary value problem for the following multidi-
mensional hyperbolic equation:

du̇(t, x) −
n∑

r=1

(ar(x)uxr )xrdt + δu(t, x)dt = f(t, x)dwt,

0 < t < T, x = (x1, . . . , xn) ∈ Λ,

u(0, x) = ϕ(x), u̇(0, x) = ψ(x), x ∈ Λ,
∂u(t, x)
∂	n

= 0, x ∈ S, 0 ≤ t ≤ T

(4.7)
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with the Neumann condition is considered. Here, 	n is the normal vector to Λ, δ > 0, ar(x),
(x ∈ Λ), and f(t, x) (t ∈ (0, 1), x ∈ Λ) are given smooth functions with respect to x and
ar(x) ≥ a > 0.

The discretization of (4.7) is carried out in two steps. In the first step, the differential
operator A in (4.7) is replaced with

Ax
hu

h(x) = −
n∑

r=1

(
ar(x)uhxr

)

xr ,jr
+ δuh(x), (4.8)

where the difference operator Ax
h is defined on those grid functions Dhuh(x) = 0, for all

x ∈ Sh, where Dhuh(x) = 0 is the second order of approximation of ∂u(t, x)/∂	n. As it is
proved in [25], Ax

h
is a self-adjoint positive definite operator in L2h. Using (4.7) and (4.8), we

get

du̇h(t, x) +Ax
hu

h(t, x)dt = fh(t, x)dwt, 0 < t < T, x ∈ Λh,

uh(0, x) = ϕh(x), u̇h(0, x) = ψh(x), x ∈ Λ̃h.
(4.9)

In the second step, we replace (4.9) with the difference scheme (3.5) as

1
τ2

(
uhk+1(x) − 2uhk(x) + u

h
k−1(x)

)
+
1
2
Ax
hu

h
k(x) +

1
4

(
Ax
hu

h
k+1(x) +A

x
hu

h
k−1(x)

)
= ϕhk(x),

ϕhk(x) =
1
τ

((
I +

1
4
τ2Ax

h

)
ϕh1,k+1(x) + τϕ

h
2,k(x) −

(
I − 1

4
τ2Ax

h

)
ϕh1,k(x)

)
,

ϕh1,k(x) = − 1
τ

∫ tk

tk−1
(z − tk)fh(z, x)dwz, ϕh2,k(x) =

1
τ

∫ tk

tk−1
fh(z, x)dwz,

tk = kτ, 1 ≤ k ≤N − 1, Nτ = T, x ∈ Λh,

uh1(x) = cτ(τ)ϕ
h(x) + sτ(τ)ψh(x) −

∫ τ

0
(z − τ)fh(z, x)dwz,

uh0(x) = ϕ
h(x), x ∈ Λh.

(4.10)

Theorem 4.2. Let τ and |h| =
√
h21 + · · · + h2n be sufficiently small numbers. Then, the solution of

difference scheme (4.10) satisfies the convergence estimate as

(
N∑

k=1

E
∥∥∥uh(tk) − uhk

∥∥∥
2

L2h

)1/2

≤ C(δ)
(
τ + |h|2

)
, (4.11)

where C(δ) does not depend on τ and |h|.

The proof of Theorem 4.2 is based on the abstract Theorem 3.2 and the symmetry
properties of the difference operator Ax

h
defined by (4.8).
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Third, in [0, T] ×Λ, the mixed boundary value problem for the following multidimen-
sional hyperbolic equation:

du̇(t, x) −
n∑

r=1

(ar(x)uxr )xrdt + δu(t, x)dt = f(t, x)dwt,

0 < t < T, x = (x1, . . . , xn) ∈ Λ,

u(0, x) = ϕ(x), u̇(0, x) = ψ(x), x ∈ Λ,

∂u(t, x)
∂	n

= 0, x ∈ S2, 0 ≤ t ≤ T, S1 ∪ S2 = S,

u(t, x) = 0, x ∈ S1

(4.12)

with the Dirichlet-Neumann condition is considered. Here, 	n is the normal vector to Λ, δ >
0, ar(x), (x ∈ Λ), and f(t, x) (t ∈ (0, 1), x ∈ Λ) are given smooth functions with respect to x
and ar(x) ≥ a > 0.

The discretization of (4.12) is carried out in two steps. In the first step, the differential
operator A in (4.12) is replaced with

Ax
hu

h(x) = −
n∑

r=1

(
ar(x)uhxr

)

xr ,jr
+ δuh(x), (4.13)

where the difference operator Ax
h
is defined on those grid functions uh(x) = 0, for all x ∈ S1

h

and Dhuh(x) = 0, for all x ∈ S2
h, S

1
h ∪ S2

h = Sh, where Dhuh(x) = 0 is the second order
of approximation of ∂u(t, x)/∂	n. By [25], we can conclude that Ax

h is a self-adjoint positive
definite operator in L2h. Using (4.12) and (4.13), we get

du̇h(t, x) +Ax
hu

h(t, x)dt = fh(t, x)dwt, 0 < t < T, x ∈ Λh,

uh(0, x) = ϕ(x), u̇h(0, x) = ψ(x), x ∈ Λ̃h.
(4.14)

In the second step, we replace (4.14)with the difference scheme (3.5) as

1
τ2

(
uhk+1(x) − 2uhk(x) + u

h
k−1(x)

)
+
1
2
Ax
hu

h
k(x) +

1
4

(
Ax
hu

h
k+1(x) +A

x
hu

h
k−1(x)

)
= ϕhk(x),

ϕhk(x) =
1
τ

((
I +

1
4
τ2Ax

h

)
ϕh1,k+1(x) + τϕ

h
2,k(x) −

(
I − 1

4
τ2Ax

h

)
ϕh1,k(x)

)
,
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ϕh1,k(x) = − 1
τ

∫ tk

tk−1
(z − tk)fh(z, x)dwz, ϕ

h
2,k(x) =

1
τ

∫ tk

tk−1
fh(z, x)dwz,

tk = kτ, 1 ≤ k ≤N − 1, Nτ = T, x ∈ Λh,

uh1(x) = cτ(τ)ϕ
h(x) + sτ(τ)ψh(x) −

∫ τ

0
(z − τ)fh(z, x)dwz,

uh0(x) = ϕ
h(x), x ∈ Λh.

(4.15)

Theorem 4.3. Let τ and |h| =
√
h21 + · · · + h2n be sufficiently small positive numbers. Then, the

solution of difference scheme (4.15) satisfies the convergence estimate as

(
N∑

k=1

E
∥∥∥uh(tk) − uhk

∥∥∥
2

L2h

)1/2

≤ C(δ)
(
τ + |h|2

)
, (4.16)

where C(δ) does not depend on τ and |h|.

The proof of Theorem 4.3 is based on the abstract Theorem 3.2 and the symmetry
properties of the difference operator Ax

h
defined by (4.13).

5. Numerical Examples

In this section, we apply finite difference scheme (2.2) to four examples which are stochastic
hyperbolic equation with Neumann, Dirichlet, Dirichlet-Neumann, and Neumann-Dirichlet
conditions.

Example 5.1. The following initial-boundary value problem:

du̇(t, x) − ∂2u(t, x)
∂x2

dt + u(t, x)dt = f(t, x)dwt,

f(t, x) =
√
2 cosx, wt =

√
tξ, 0 < t < 1, 0 < x < π,

u(0, x) = cosx, u̇(0, x) = 0, 0 ≤ x ≤ π,
ux(t, 0) = ux(t, π) = 0, 0 ≤ t ≤ 1

(5.1)

for a stochastic hyperbolic equation is considered. The exact solution of this problem is

u(t, x) =
∫ t

0
sin
(√

2(t − s)
)
cosxdws + cos

(√
2t
)
cosx. (5.2)
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For the approximate solution of the (5.1), we apply the finite difference scheme (2.2) and we
get

uk+1n − 2ukn + u
k−1
n

τ
+
τ

2

[

−u
k
n+1 − 2ukn + u

k
n−1

h2
+ ukn

]

+
τ

4

[

−u
k+1
n+1 − 2uk+1n + uk+1n−1

h2
+ uk+1n − uk−1n+1 − 2uk−1n + uk−1n−1

h2
+ uk−1n

]

= fkn ,

fkn =
√
2ξ cosxn

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3
k+1 −

√
t3
k
−
√
t3
k−1

)]]

,

Nτ = 1, xn = nh, 1 ≤ n ≤M − 1, Mh = π, 1 ≤ k ≤N − 1, tk = kτ,

u0n = cosxn, u1n − u0n =
4 + τ2

6

√
2τ3ξ cosxn, 1 ≤ n ≤M − 1,

uk0 = uk1 , ukM = ukM−1, 1 ≤ k ≤N.

(5.3)

The system can be written in the following matrix form:

Aun+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤M − 1,

u0 = u1, uM = uM−1.
(5.4)

Here,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 · · · 0 0 0 0
a 2a a 0 · · · 0 0 0 0
0 a 2a a · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · a 2a a 0
0 0 0 0 · · · 0 a 2a a
sa −sa 0 0 · · · 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(N+1)×(N+1)

,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 · · · 0 0 0 0
b c b 0 · · · 0 0 0 0
0 b c b · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · b c b 0
0 0 0 0 · · · 0 b c b
sb −sb 0 0 · · · 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(N+1)×(N+1)

,

(5.5)
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the matrix is C = A,

a =
−τ
4h2

, b =
1
τ
+

τ

2h2
+
τ

4
, c =

−2
τ

+
τ

h2
+
τ

2
,

sa =
τ2

4h2
, sb = 1 +

τ2

2h2
+
τ2

4
,

(5.6)

fn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0
n

f1
n

f2
n
...
fNn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×1

,

fkn =
√
2ξ cosxn

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
, 1 ≤ k ≤N − 1,

f0
n = cosxn, 0 ≤ n ≤M,

fNn =
4 + τ2

6

√
2τ3ξ cosxn, 0 ≤ n ≤M,

(5.7)

and D = IN+1 is the identity matrix,

Us =

⎡

⎢⎢⎢⎢⎢⎢
⎣

u0s
u1s
u2s
...

uNs

⎤

⎥⎥⎥⎥⎥⎥
⎦

(N+1)×1

, s = n − 1, n, n + 1. (5.8)

This type of system was used by [26] for difference equations. For the solution of matrix
equation (5.4), we will use modified Gauss elimination method. We seek a solution of the
matrix equation by the following form:

un = αn+1un+1 + βn+1, n =M − 1, . . . , 2, 1, (5.9)

where uM = (I − αM)−1βM, αj (j = 1, . . . ,M − 1) are (N + 1) × (N + 1) square matrices,
βj (j = 1, . . . ,M − 1) are (N + 1) × 1 column matrices α1 is an identity and β1 is a zero
matrices, and

αn+1 = −(B + Cαn)−1A,

βn+1 = (B + Cαn)−1
(
Dϕn − Cβn

)
, n = 1, 2, 3, . . . ,M − 1.

(5.10)
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Example 5.2. The following initial-boundary value problem:

du̇(t, x) − ∂2u(t, x)
∂x2

dt + u(t, x)dt = f(t, x)dwt,

f(t, x) =
√
2 sinx, wt =

√
tξ, 0 < t < 1, 0 < x < π,

u(0, x) = sinx, u̇(0, x) = 0, 0 ≤ x ≤ π,
u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1

(5.11)

for a stochastic hyperbolic equation is considered. We use the same procedure as in the first
example. The exact solution of this problem is

u(t, x) =
∫ t

0
sin
(√

2(t − s)
)
sinxdws + cos

(√
2t
)
sinx. (5.12)

For the approximate solution of the (5.11), we can construct the following difference scheme:

uk+1n − 2ukn + u
k−1
n

τ
+
τ

2

[

−u
k
n+1 − 2ukn + u

k
n−1

h2
+ ukn

]

× τ

4

[

−u
k+1
n+1 − 2uk+1n + uk+1n−1

h2
+ uk+1n − uk−1n+1 − 2uk−1n + uk−1n−1

h2
+ uk−1n

]

= fkn ,

fkn =
√
2ξ sinxn

[√
tk+1 −

√
tk−1

+
τ2 − 2
2τ

[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3
k+1 −

√
t3
k
−
√
t3
k−1

)]]

,

Nτ = 1, xn = nh, 1 ≤ n ≤M − 1, Mh = π, 1 ≤ k ≤N − 1, tk = kτ,

u0n = sinxn, u1n − u0n =
4 + τ2

6

√
2τ3ξ sinxn, 1 ≤ n ≤M − 1,

uk0 = ukM = 0, 1 ≤ k ≤N,

(5.13)

and it can be written in the following matrix form:

Aun+1 + Bun + Cun−1 = Dfn, 1 ≤ n ≤M − 1,

u0 = uM = 	0.
(5.14)
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Here, the matrices A, B, C, D are given in the previous example, and

fn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0
n

f1
n

f2
n
...
fNn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×1

,

fkn =
√
2ξ sinxn

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
, 1 ≤ k ≤N − 1,

f0
n = sinxn, 0 ≤ n ≤M,

fNn =
4 + τ2

6

√
2τ3ξ sinxn, 0 ≤ n ≤M.

(5.15)

For the solution of matrix equation (5.14), we will use modified Gauss elimination method.
We seek a solution of the matrix equation in the following form:

un = αn+1un+1 + βn+1, n =M − 1, . . . , 2, 1, (5.16)

where uM = 0, αj (j = 1, . . . ,M−1) are (N+1)×(N+1) square matrices, βj (j = 1, . . . ,M−1)
are (N + 1) × 1 column matrices. α1 and β1 are zero matrices, and

αn+1 = −(B + Cαn)−1A,

βn+1 = (B + Cαn)−1
(
Dϕn − Cβn

)
, n = 1, 2, 3, . . . ,M − 1.

(5.17)

Example 5.3. The following initial-boundary value problem:

du̇(t, x) − ∂2u(t, x)
∂x2

dt + u(t, x)dt = f(t, x)dwt,

f(t, x) =
√
5
2

sin
(x
2

)
, wt =

√
tξ, 0 < t < 1, 0 < x < π,

u(0, x) = sin
(x
2

)
, u̇(0, x) = 0, 0 ≤ x ≤ π,

u(t, 0) = ux(t, π) = 0, 0 ≤ t ≤ 1

(5.18)
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for a stochastic hyperbolic equation is considered. The exact solution of this problem is

u(t, x) =

[∫ t

0
sin

(√
5
2

(t − s)
)

dws + cos

(√
5
2
t

)]

sin
(x
2

)
. (5.19)

We get the following difference scheme:

uk+1n − 2ukn + u
k−1
n

τ
+
τ

2

[

−u
k
n+1 − 2ukn + u

k
n−1

h2
+ ukn

]
τ

4

[

−u
k+1
n+1 − 2uk+1n + uk+1n−1

h2

+ uk+1n − uk−1n+1 − 2uk−1n + uk−1n−1
h2

+ uk−1n

]

= fkn ,

fkn =
√
5
2
ξ sin

xn
2

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
,

Nτ = 1, xn = nh, 1 ≤ n ≤M − 1, Mh = π, 1 ≤ k ≤N − 1, tk = kτ,

u0n = sin
xn
2
, u1n − u0n =

4 + τ2

12

√
5τ3ξ sin

xn
2
, 1 ≤ n ≤M − 1,

uk0 = 0, ukM = ukM−1, 1 ≤ k ≤N,

(5.20)

for the approximate solutions of (5.18), and we obtain the following matrix equation:

Aun+1 + Bun + Cun−1 = Dfn, 1 ≤ n ≤M − 1,

uk0 = 0, ukM = ukM−1, 1 ≤ k ≤N.
(5.21)

Here, the matrices A, B, C, D are same as in the first example, and

fn =

⎡

⎢⎢⎢⎢⎢⎢
⎣

f0
n

f1
n

f2
n
...
fNn

⎤

⎥⎥⎥⎥⎥⎥
⎦

(N+1)×1

,

fkn =
√
5
2
ξ sin

xn
2

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
, 1 ≤ k ≤N − 1,
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f0
n = sin

xn
2
, 0 ≤ n ≤M,

fNn =
4 + τ2

12

√
5τ3ξ sin

xn
2
, 0 ≤ n ≤M.

(5.22)

For the solution of matrix equation (5.21), we use the same procedure as in the previous
examples. Moreover, uM = 	0, α1 is an identity and β1 is a zero matrices, and

αn+1 = −(B + Cαn)−1A, βn+1 = (B + Cαn)−1
(
Dϕn − Cβn

)
, n = 1, 2, 3, . . . ,M − 1.

(5.23)

Example 5.4. The following initial boundary value problem:

du̇(t, x) − ∂2u(t, x)
∂x2

dt + u(t, x)dt = f(t, x)dwt,

f(t, x) =
√
5
2

cos
(x
2

)
, wt =

√
tξ, 0 < t < 1, 0 < x < π,

u(0, x) = cos
(x
2

)
, u̇(0, x) = 0, 0 ≤ x ≤ π,

ux(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1

(5.24)

for a stochastic hyperbolic equation is considered. The exact solution of this problem is

u(t, x) =

[∫ t

0
sin

(√
5
2

(t − s)
)

dws + cos

(√
5
2
t

)]

cos
(x
2

)
. (5.25)

The following difference scheme:

uk+1n − 2ukn + u
k−1
n

τ
+
τ

2

[

−u
k
n+1 − 2ukn + u

k
n−1

h2
+ ukn

]
τ

4

[

−u
k+1
n+1 − 2uk+1n + uk+1n−1

h2

+ uk+1n − uk−1n+1 − 2uk−1n + uk−1n−1
h2

+ uk−1n

]

= fkn ,

fkn =
√
5
2
ξ cos

xn
2

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
,
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Nτ = 1, xn = nh, 1 ≤ n ≤M − 1, Mh = π, 1 ≤ k ≤N − 1, tk = kτ,

u0n = cos
xn
2
, u1n − u0n =

4 + τ2

12

√
5τ3ξ cos

xn
2
, 1 ≤ n ≤M − 1,

uk0 = uk1 , ukM = 0, 1 ≤ k ≤N
(5.26)

is obtained for the approximate solutions of (5.24), and we obtain the following matrix
equation:

Aun+1 + Bun + Cun−1 = Dfn, 1 ≤ n ≤M − 1,

u1 = u2, uM = 	0.
(5.27)

Here, the matrices A, B, C, D are same as in the first example, and

fn =

⎡

⎢⎢⎢⎢⎢⎢
⎣

f0
n

f1
n

f2
n
...
fNn

⎤

⎥⎥⎥⎥⎥⎥
⎦

(N+1)×1

,

fkn =
√
5
2
ξ cos

xn
2

[
√
tk+1 −

√
tk−1 +

τ2 − 2
2τ

×
[
τ
(√

tk+1 −
√
tk−1
)
− 2
3

(√
t3k+1 −

√
t3k −
√
t3k−1

)]]
, 1 ≤ k ≤N − 1,

f0
n = cos

xn
2
, 0 ≤ n ≤M,

fNn =
4 + τ2

12

√
5τ3ξ cos

xn
2
, 0 ≤ n ≤M.

(5.28)

Using (5.27) that we get α1 is an identity and β1 is a zero matrices and uM = (I − αM)−1βM.
The rest are the same as in Example 5.3.

For these examples, the errors of the numerical solution derived by difference scheme
(2.2) computed by

ENM = max
1≤k≤N−1,
1≤n≤M−1

(
N∑

k=1

∣∣∣u(tk, xn) − ukn
∣∣∣
2
)1/2

(5.29)

and the results are given in Table 1.

The numerical solutions are recorded for different values of N = M, where u(tk, xn)
represents the exact solution and ukn represents the numerical solution at (tk, xn). To obtain
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Table 1

N =M = 10 N =M = 20 N =M = 40
Example 5.1 (Neumann) 0.3028 0.1219 0.0554
Example 5.2 (Dirichlet) 0.4004 0.2137 0.1342
Example 5.3 (Dirichlet-Neumann) 0.3040 0.1145 0.0494
Example 5.4 (Neumann-Dirichlet) 0.3439 0.1844 0.0957

the results, we simulated the 1000 sample paths of Brownian motion for each level of discret-
ization.

Thus, results show that the error is stable and decreases in an exponential manner.
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