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A generalized Möbius transform is presented. It is based on Dirichlet characters. A general
algorithm is developed to compute the inverseZ transform on the unit circle, and an error estimate
is given for the truncated series representation.

1. Introduction

We consider a causal, linear, time-invariant system with an infinite impulse response {cj}∞j=1.
The system is assumed to be stable and the Z transform X(z) =

∑∞
j=1 cjz

−j is convergent for
|z| > r, where r < 1. The frequency response of the system is obtained by evaluating the Z
transform on the unit circle.

The arithmetic Fourier transform (AFT) offers a convenient method, based on the
construction of weighted averages, to calculate the Fourier coefficients of a periodic function.
It was discovered by Bruns [1] at the beginning of the last century. Similar algorithms were
studied by Wintner [2] and Sadasiv [3] for the calculation of the Fourier coefficients of even
periodic functions. This method was extended in [4] to calculate the Fourier coefficients
of both the even and odd components of a periodic function. The Bruns approach was
incorporated in [5] resulting in a more computationally balanced algorithm. In [6, 7],
Knockaert presented the theory of the generalized Möbius transform and gave a general
formulation.

In [8], Schiff et al. applied Wintner’s algorithm for the computation of the inverse Z-
transform of an infinite causal sequence. Hsu et al. [9] applied two special Möbius inversion
formulae to the inverse Z-transform.
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The transform pairs play a central part in the arithmetic Fourier transform and inverse
Z-transform. In this paper, based on Dirichlet characters, we presented a generalized Möbius
transform of which all the transform pairs used in the mentioned papers are the special cases.
A general algorithm was developed in Section 2 to compute the inverse Z transform on
the unit circle. The algorithm computes each term cj of the infinite impulse response from
sampled values of the Z transform taken at a countable set of points on the unit circle.
An error estimate is given in Section 3 for the truncated series representation. A numerical
example is given in Section 4. Number theory and Dirichlet characters [10] play an important
role in the paper.

2. The Algorithm

According to the Möbius inversion formula for finite series [4], if n is a positive integer and
f(n), g(n) are two number-theoretic functions, then

g(n) =
[N/n]∑

k=1

f(kn) iff f(n) =
[N/n]∑

m=1

μ(m)g(mn), (2.1)

where [y] denotes the integer part of real number y and μ(n) is the Möbius function:

μ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n = 1,
(−1)r if n includes r distinct prime factors,
0, otherwise.

(2.2)

Knockaert [6] extended the Möbius inversion formula and proved the following proposition.

Proposition 2.1. Let f1, f2, . . . be a sequence of real numbers and α(n), β(n) two arithmetical
functions. For the transform pair

sn =
∞∑

k=1

α(k)fkn, fn =
∞∑

k=1

β(k)skn (2.3)

to be valid for all sequences fn, it is necessary and sufficient that

∑

kl=m

α(k)β(l) =
∑

k|m
α(k)β

(
m

k

)

= δ1m =

{
1, m = 1,
0, m/= 1.

(2.4)

Let G be the group of reduced residue classes modulo q. Corresponding to each
character f of G, we define an arithmetical function χ = χf as follows:

χ(n) = f(n̂) if
(
n, q

)
= 1, χ(n) = 0 if

(
n, q

)
> 1, (2.5)

where n̂ = {x : x ≡ n(mod q)} and (a, b) denotes the greatest common divisor of a and b.
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The function χ is called a Dirichlet character modulo q. The principal character χ1 is
that which has the properties

χ1(n) =

{
1 if

(
n, q

)
= 1,

0 if
(
n, q

)
> 1.

(2.6)

If q ≥ 1, the Euler’s totient φ(q) is defined to be the number of positive integers not
exceeding q that are relatively prime to q. There are φ(q) distinct Dirichlet characters modulo
q, each of which is completely multiplicative and periodic with period q. That is, we have

χ(mn) = χ(m)χ(n) ∀m,n, (2.7)

χ
(
n + q

)
= χ(n) ∀n. (2.8)

Conversely, if χ is completely multiplicative and periodic with period q, and if χ(n) = 0 if
(n, q) > 1, then χ is one of the Dirichlet characters modulo q.

Let f(n) be an arithmetical function. Series of the form
∑∞

n=1 f(n)/n
s are called

Dirichlet series with coefficients f(n). If f(n) = χ(n), then the series are called Dirichlet L-
functions. For any Dirichlet character χ mod q, the sum

G
(
n, χ

)
=

q∑

m=1

χ(m) e2πimn/q (2.9)

is called the Gauss sums associated with χ. If χ = χ1, then the Gauss sums reduce to
Ramanujan’s sum

G
(
n, χ1

)
=

q∑

m=1
(m,q)=1

e2πimn/q = cq(n). (2.10)

See [10].
Let χ be a Dirichlet character modulo q. We have

∑

k|m
χ(k)μ

(
m

k

)

χ

(
m

k

)

= χ(m)
∑

k|m
μ

(
m

k

)

= δ1m. (2.11)

In this way, we have defined a generalized Möbius transform pair.

Lemma 2.2. Let χ be a Dirichlet character modulo q; then transform pair

sn =
∞∑

k=1

χ(k)fkn, fn =
∞∑

k=1

μ(k)χ(k)skn (2.12)

is valid for all q.
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Remarks 1. The transform pairs play a central part in the arithmetic Fourier transform and
inverse Z-transform. It is not hard to show that all the transform pairs used in the mentioned
papers are the special cases of our generalized Möbius transform. In fact,

(a) let q = 1 in Lemma 2.2; we have

sn =
[N/n]∑

k=1

fkn, fn =
[N/n]∑

k=1

μ(k)skn, (2.13)

which is Theorem 3 in [4] and Lemma 1 in [8];

(b) let q = 2α and χ = χ1 in Lemma 2.2, where α ≥ 1 is a positive integer; we have

sn =
[N/n]∑

k=1,3,5,...

fkn, fn =
[N/n]∑

k=1,3,5,...

μ(k)skn, (2.14)

which is Case 1 of Lemma 1 in [9];

(c) let q = 2α, α ≥ 2, and

χ2(k) =

{
(−1)(k−1)/2 if

(
k, q

)
= 1,

0 if
(
k, q

)
> 1

(2.15)

in Lemma 2.2, then χ2 is one of the Dirichlet characters modulo q since χ2(k) is
completely multiplicative and periodic with period q. We have

sn =
[N/n]∑

k=1,3,5,...

fkn(−1)(k−1)/2, fn =
[N/n]∑

k=1,3,5,...

μ(k)skn(−1)(k−1)/2, (2.16)

which is Case 2 of Lemma 1 in [9];

(d) let χ = χ1 in Lemma 2.2; we have

sn =
∑

(k,q)=1
fkn, fn =

∑

(k,q)=1
μ(k)skn, (2.17)

which is transform pair I of Theorem 4 in [7];

(e) let q = 4, pα or 2pα, and χ3(k) = (k/q) in Lemma 2.2, where p is an odd prime,
α ≥ 1, and (k/q) is the Legendre’s symbol defined as follows:

(
k

q

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1 if
(
k, q

)
= 1 and n is a quadratic residue mod q,

−1 if
(
k, q

)
= 1 and n is not a quadratic residue mod q,

0 if
(
k, q

)
> 1.

(2.18)
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From [10], we know that q admits a primitive root and (k/q) = (−1)ind(k). We have

sn =
∑

(k,q)=1
(−1)ind(k)fkn, fn =

∑

(k,q)=1
μ(k)(−1)ind(k)skn, (2.19)

which is transform pair II of Theorem 4 in [7].
From these facts, we claim that Lemma 2.2 is actually an important extension on the

Möbius inversion formula. In practice, we can choose the best possible transform pair.

We do not discuss the convergence of the transform pair since in practice it is used
only on a truncated series. Next we establish our main theorem.

Theorem 2.3. Let X(z) =
∑∞

j=1 cjz
−j be convergent for |z| > r, where r < 1. For any fixed q ≥ 1 and

Dirichlet character χ modulo q, the coefficients are given by

cn =
1
qn

∞∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ

) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
. (2.20)

Proof. On |z| = 1, let us write X(θ) = X(eiθ) =
∑∞

j=1 cje
−ijθ.

Define

sn =
1
q

q∑

r=1

G
(
r, χ

)
[
1
n

n∑

l=1

X
(
e(2πi/n)(l+r/q)

)
]

. (2.21)

Note that for a positive integer k

1
n

n∑

m=1

e2πikm/n =

{
1 if n divides k,

0 if n does not divide k,
(2.22)

we have

sn =
1
q

q∑

r=1

G
(
r, χ

)
[
1
n

n∑

l=1

X
(
e(2πi/n)(l+r/q)

)
]

=
1
q

q∑

r=1

G
(
r, χ

)
⎡

⎣
1
n

n∑

l=1

∞∑

j=1

cje
−2πij(l+r/q)/n

⎤

⎦

=
1
q

q∑

r=1

G
(
r, χ

)
⎡

⎣
1
n

∞∑

j=1

cj
n∑

l=1

e−2πijl/ne−2πijr/nq

⎤

⎦ =
1
q

q∑

r=1

G
(
r, χ

) ∞∑

l=1

clne
−2πilr/q.

(2.23)

Let l = qk + s; then

sn =
1
q

q∑

r=1

G
(
r, χ

) ∞∑

k=0

q∑

s=1

cn(qk+s)e
−2πisr/q =

1
q

∞∑

k=0

q∑

s=1

cn(qk+s)

q∑

m=1

χ(m)
q∑

r=1

e2πir(m−s)/q. (2.24)
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Note that 1 ≤ m, s ≤ q, so q | (m − s) if and only if m = s; therefore,

sn =
∞∑

k=0

q∑

s=1

χ(s)cn(qk+s) =
∞∑

t=1

χ(t)cnt. (2.25)

By Lemma 2.2, we have

cn =
∞∑

k=1

μ(k)χ(k)snk =
1
qn

∞∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ

) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
. (2.26)

This completes the proof of Theorem 2.3.

Remarks 2. Let q = 1 in Theorem 2.3; we have

cn =
∞∑

k=1

μ(k)
kn

kn∑

l=1

X
(
e(2πi/kn)(l+1)

)
, (2.27)

which is the theorem in [8].
Let q = 2 in Theorem 2.3 or q = 4 and χ = χ1 in Theorem 2.3; we easily have

cn =
∞∑

k=1,3,5,...

μ(k)
2kn

[
kn∑

l=1

X
(
e(2πi/kn)(l+1)

)
−

kn∑

l=1

X
(
e(2πi/kn)(l+1/2)

)
]

. (2.28)

Let q = 4 and χ = χ2 in Theorem 2.3; we have

cn =
∞∑

k=1,3,5,...

μ(k)(−1)(k−1)/2i
2kn

[
kn∑

l=1

X
(
e(2πi/kn)(l+1/4)

)
−

kn∑

l=1

X
(
e(2πi/kn)(l+3/4)

)
]

. (2.29)

In practice, a large number of coefficients cn may be calculated. We suppose that a
truncation is employed. Next we estimate the error due to the truncation of the series.

3. Error Estimate

In order to estimate the error due to truncation of the series representation of the coefficients
cn, we require the following lemma.

Lemma 3.1. If f is a function of period 2π , with f ′ ∈ Lip1([0, 2π]), then

∣
∣
∣
∣
∣

∫2π

0
f(θ)dθ − 1

n

n∑

m=1

f

(

θ +
2πm
n

)∣
∣
∣
∣
∣
≤ C

n2
, (3.1)

uniformly in θ, where C is the Lipschitz constant.
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Proof. This is Lemma 3 of [8].

Taking X(z) as in Theorem 2.3, we maintain the following theorem.

Theorem 3.2. The truncation error satisfies

∣
∣
∣
∣
∣
cn − 1

qn

N∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ

) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
∣
∣
∣
∣
∣
≤ Cφ

(
q
)

n2N
, (3.2)

where C is the Lipschitz constant.

Proof. Note that we have

0 = c0 =
1
2π

∫2π

0
X
(
eiϕ

)
dϕ. (3.3)

Moreover, X′ ∈ Lip1([0, 2π]) by the analyticity of X. By Theorem 2.3 and Lemma 3.1,
we have

∣
∣
∣
∣
∣
cn − 1

qn

N∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ

) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
qn

∞∑

k=N+1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ

) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1
q

∞∑

k=N+1

μ(k)χ(k)
q∑

r=1

G
(
r, χ

) C

n2k2

∣
∣
∣
∣
∣
≤ Cφ

(
q
)

n2

∞∑

k=N+1

1
k2

≤ Cφ
(
q
)

n2N
.

(3.4)

This completes the proof of Theorem 3.2.
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Table 1: Calculation of the Z-transform coefficients of the function: X(z) = e1/z + 1/(z − 1/2) − 1, q = 1.

k c1 c2 c3

1 3.718281828 + 0.000000720i 1.209747301 + 0.000000338i 0.453772595 + 0.000000199i
2 2.508534526 + 0.000000381i 1.034722511 + 0.000000208i 0.420637706 + 0.000000128i
3 2.054761931 + 0.000000182i 1.001587622 + 0.000000138i 0.416721106 + 0.000000087i
4 2.054761931 + 0.000000182i 1.001587622 + 0.000000138i 0.416721106 + 0.000000087i
5 1.981912218 + 0.000000089i 0.999632365 + 0.000000100i 0.416660127 + 0.000000062i
6 2.015047107 + 0.000000160i 1.000120712 + 0.000000131i 0.416667696 + 0.000000082i
7 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
8 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
9 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
10 2.001055961 + 0.000000140i 1.000000538 + 0.000000123i 0.416666743 + 0.000000077i

Table 2: Calculation of theZ-transform coefficients of the function:X(z) = e1/z+1/(z−1/2)−1, q = 2, q =
4, or χ = χ1.

k c1 c2 c3

1 2.508534526 + 0.000000785i 1.034722484 + 0.000000226i 0.420637664 + 0.000000130i
3 2.087896862 + 0.000000654i 1.002075958 + 0.000000213i 0.416728633 + 0.000000129i
5 2.017002434 + 0.000000624i 1.000122546 + 0.000000212i 0.416667589 + 0.000000126i
7 2.001178059 + 0.000000618i 1.000000467 + 0.000000209i 0.416666630 + 0.000000121i
9 2.001178059 + 0.000000618i 1.000000467 + 0.000000209i 0.416666630 + 0.000000121i
11 2.000201462 + 0.000000617i 0.999999985 + 0.000000205i 0.416666627 + 0.000000117i
13 1.999957311 + 0.000000615i 0.999999950 + 0.000000200i 0.416666625 + 0.000000113i
15 2.000018355 + 0.000000618i 0.999999956 + 0.000000204i 0.416666626 + 0.000000117i
17 2.000003089 + 0.000000614i 0.999999953 + 0.000000200i 0.416666625 + 0.000000114i
19 1.999999268 + 0.000000610i 0.999999951 + 0.000000196i 0.416666624 + 0.000000111i

4. An Example

Consider the function

X(z) = e1/z +
1

z − 1/2
− 1, |z| > 1

2
. (4.1)

The few first coefficients are c1 = 2, c2 = 1, and c3 = 5/12. Employing formulae (2.27), (2.28),
and (2.29), we obtain the results given in Tables 1, 2, and 3. The results show that formulae
(2.28) and (2.29) is quite more accurate than formula (2.27). Choosing carefully the modulo
q and the Dirichlet character, we will greatly improve the algorithm.

5. Conclusion

A general algorithm offers a general way to compute the inverse Z transform. It is based
on generalized Möbius transform, Dirichlet characters, and Gauss sums. The algorithm
computes each term cj of the infinite impulse response from sampled values of the Z
transform taken at a countable set of points on the unit circle. An error estimate and a
numerical example are given for the truncated series representation. Choosing carefully the
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Table 3: Calculation of the Z-transform coefficients of the function: X(z) = e1/z + 1/(z − 1/2) − 1, q =
4, and χ = χ2.

k c1 c2 c3

1 1.641470945 + 0.000000164i 0.969199603 + 0.000000195i 0.412817735 + 0.000000128i
3 2.054288680 + 0.000000292i 1.001830856 + 0.000000204i 0.416726726 + 0.000000119i
5 1.983516336 + 0.000000263i 0.999877456 + 0.000000214i 0.416665686 + 0.000000128i
7 1.999338790 + 0.000000262i 0.999999531 + 0.000000205i 0.416666645 + 0.000000122i
9 1.999338790 + 0.000000262i 0.999999531 + 0.000000205i 0.416666645 + 0.000000122i
11 2.000315379 + 0.000000252i 1.000000013 + 0.000000200i 0.416666650 + 0.000000120i
13 2.000071234 + 0.000000261i 0.999999978 + 0.000000204i 0.416666646 + 0.000000122i
15 2.000010194 + 0.000000270i 0.999999971 + 0.000000207i 0.416666642 + 0.000000123i
17 1.999994930 + 0.000000277i 0.999999967 + 0.000000209i 0.416666639 + 0.000000124i
19 1.999998750 + 0.000000271i 0.999999971 + 0.000000208i 0.416666642 + 0.000000123i

modulo q and the Dirichlet character we will greatly improve the algorithm. But this is not
exhaustive. Dirichlet characters and Gauss sums play an important role in number theory,
and there are so many methods and results associated with them. Any development on the
Dirichlet character and Gauss sums may be applied to the inverse Z transform.
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