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In this paper, we present the existence of extremal solutions of set-valued differential equations
with feedback control on semilinear Hausdorff space under Hukuhara derivative which is devel-
oped under the form DHX(t) = F(t, X(t),H(t, X(t))), X(0) = X0, for all t ∈ [0, T] with the mono-
tone iterative technique and we will verify that monotone sequence of approximate solutions con-
verging uniformly to the solution of the problem, that is useful for optimization problems.

1. Introduction

Recently, the study of set differential equations was initiated in a metric space and some basic
results of interest were obtained. Some interesting results in this direction have been obtained
in a series of works of Professor V. Lakshmikantham and other authors (see [1–5]). Professor
V. Lakshmikantham and the other authors considered set differential equations (SDEs) and
had some important results on existence, comparison, and stability criteria for SDEs:

DHX(t) = F(t, X(t)), (1.1)

where X(t0) = X0, X(t) ∈ KCC(Rn), and t ∈ [t0, T] = I ⊂ R+.
Based on these results, the authors gave the concept of set-valued control differential

equation and studied existence and comparison of its solutions (see [6]). In this paper, we
investigate an existence result of Peano’s type and then consider the existence of extremal
solution of set-valued control differential equations. For this purpose, one needs to introduce
a partial order in (Kc(Rn), D), prove the required comparison result for strict inequalities,
and then, utilizing it, discuss the existence of extremal solutions.

This paper is organized as follows: in Section 2, we recall some basic concepts and
notations which are useful in next sections. In Section 3, we present on the existence of



2 Abstract and Applied Analysis

extremal solutions for SSDEs on semilinear Hausdorff space with the monotone iterative
technique and we will verify that monotone sequence of approximate solutions converging
uniformly to the solution of the problem.

2. Preliminaries

We recall some notations and concepts presented in detail in recent series works of Professor
V. Lakshmikantham et al. (see [1]). Let KCC(Rn) denote the collection of all nonempty
compact convex subsets of Rn. Given A,B ∈ KCC(Rn), the Hausdorff distance between A
and B is defined by

D[A,B] = max

{
sup
a∈A

inf
b∈B

‖a − b‖Rn , sup
b∈B

inf
a∈A

‖b − a‖Rn

}
, (2.1)

where ‖ · ‖Rn denotes the Euclidean norm in Rn and {θn}—the zero points set inKCC(Rn). It is
known that (KCC(Rn), D) is a complete metric space andKCC(Rn) is a complete and separable
with respect to metric D.

We define the magnitude of a nonempty subset of A:

D[A, θn] = ‖A‖ = sup{‖a‖Rn , a ∈ A}, (2.2)

where θn is the zero element of Rn which is regarded as a one point set. ‖A‖ = D[A, θn]-norm
in KCC(Rn) is finite when the supremum in (2.2) is attained with A ∈ KCC(Rn).

The Hausdorff metric (1.1) satisfies the properties below:

D[A + C,B + C] = D[A,B], D[A,B] = D[B,A],

D[λA, λB] = λD[A,B],

D[A,B] ≤ D[A,C] +D[C,B],

D
[
A +A′, B + B′] ≤ D[A,B] +D

[
A′, B′]

(2.3)

for all A,B,C,A′, B′ ∈ KCC(Rn) and λ ∈ R+. If α, β ∈ R, and A,B ∈ KCC(Rn), then

α(A + B) = αA + αB, α
(
βA

)
=
(
αβ

)
A, 1 ·A = A. (2.4)

It is known that (KCC(Rn), D) is a complete metric space and if the spaceKCC(Rn) is equipped
with the natural algebraic operations of addition and nonnegative scalar multiplication, then
KCC(Rn) becomes a semilinear metric space which can be embedded as a complete cone into
a corresponding Banach space.

Let A,B ∈ KCC(Rn). The set C ∈ KCC(Rn) satisfying A = B + C is called the Hausdorff
difference (the geometric difference) of the sets A and B and is denoted by the symbol A −B.
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Given an interval I in R+. We say that the set mapping F : I → KCC(Rn) has a Hukuhara
derivative DHF(t0) at a point t0 ∈ I, if

lim
h→ 0+

h−1[F(t0 + h) − F(t0)], lim
h→ 0+

h−1[F(t0) − F(t0 − h)] (2.5)

exist in the topology of KCC(Rn) and are equal to DHF(t0).
By embedding KCC(Rn) as a complete cone in a corresponding Banach space and

taking into account result on the differentiation of Bochner integral, we find that if

F(t) = X0 +
∫ t

t0

Φ(s)ds, X0 ∈ KCC(Rn), (2.6)

where Φ : I → KCC(Rn) is integrable in the sense of Bochner, then DHF(t) exists and the
equality DHF(t) = Φ(t) a.e on I holds.

The Hukuhara integral of F is given by

∫
I

F(s)ds = cl
[∫

I

f(s)ds : f is a continuous selector of F
]

(2.7)

for any compact set I ⊂ R+.
Some properties of the Hukuhara integral are in [1]. If F : I → KCC(Rn) is integrable,

one has

∫ t2

t0

F(s)ds =
∫ t1

t0

F(s)ds +
∫ t2

t1

F(s)ds, t0 ≥ t1 ≥ t2,

∫ t

t0

λF(s)ds = λ

∫ t

t0

F(s)ds, λ ∈ R.

(2.8)

If F,G : I → KCC(Rn) are integrable, then D[F(·), G(·)] : I → R is integrable and

D

[∫ t

t0

F(s)ds,
∫ t

t0

G(s)ds

]
≤
∫ t

t0

D[F(s), G(s)]ds. (2.9)

3. Main Results

We consider the set-valued differential equations (SSDEs) with feedback control under the
form

DHX(t) = F(t, X(t),H(t, X(t))), X(0) = X0, ∀t ∈ [0, T], (3.1)

where F : [0, T] ×KCC(Rn) ×KCC(Rd) → KCC(Rn) andH : [0, T] ×KCC(Rn) → KCC(Rd) is a
feedback control, state set X0, X(t) ∈ KCC(Rn).
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Definition 3.1. The mapping set X : [0, T] → KCC(Rn) is called to be a solution of (3.1) on
[0, T] if and only if the following conditions are satisfied:

(i) X(t) ∈ C1[[0, T], KCC(Rn)]with Hukuhara derivative DH by t;

(ii) X(0) = X0;

(iii) F(t, X(t),H(t, X(t)) is integrable on [0, T];

(iv) for all t ∈ [0, T],

X(t) = X0 +
∫ t

0
F(S,X(s),H(s,X(s)))ds (3.2)

the integral in (3.2) is Hukuhara integral.
In this section, we will use the monotone iterative technique to solve the minimal and

maximal solutions of (3.1). To construct the set monotone sequence, we first introduce the
following definition.

Definition 3.2. We denote

(i) byK+(K0,+) the subfamily ofKCC(Rn) consisting of setsX ∈ KCC(Rn) such that any
x ∈ X is a nonnegative (positive) vector of n components satisfying xi ≥ 0(xi > 0)
for i = 1, 2, . . . , n,

(ii) byK−(K0,−) the subfamily ofKCC(Rn) consisting of setsX ∈ KCC(Rn) such that any
x ∈ X is a nonpostive (negative) vector of n components satisfying xi ≤ 0(xi < 0)
for i = 1, 2, . . . , n.

By Definition 3.2, we notice that K+ is a positive cone in KCC(Rn) and K0,+ is the nonempty
interior of K+. K− is a negative cone in KCC(Rn) and K0,− is the nonempty interior of K−. We
can therefore induce a partial odering in KCC(Rn). Thus, if X ∈ K+(K0,+) is X ≥ θn(X > θn),
that is, with any x ∈ X is satisfying xi ≥ 0(xi > 0) for i = 1, 2, . . . , n and X ∈ K−(K0,−) is
X ≤ θn(X < θn), that is, with any x ∈ X is satisfying xi ≤ 0(xi < 0) for i = 1, 2, . . . , n. Now we
define the ordering in KCC(Rn).

Definition 3.3. For any X,Y ∈ KCC(Rn), if there exists a Z ∈ KCC(Rn) such that Z ∈ K+(K0,+)
and X = Y + Z, then we write X ≥ Y (X > Y ). Similarly, if there exists a Z ∈ KCC(Rn) such
that Z ∈ K−(K0,−) and X = Y + Z, then we write X ≤ Y (X < Y ).

Theorem 3.4. Assume the following:

(H1) F(·, X(·), U(·)) ∈ C[[0, T], KCC(Rn)] is monotone nondecreasing in (X,U) ∈
KCC(Rn) × KCC(Rd) for every t ∈ [0, T], that is, for fixed t ∈ [0, T], F(t, X1, U1)) ≥
F(t, X2, U2) wherever X1 ≥ X2, U1 ≥ U2 and H(·, X(·)) ∈ C[[0, T], KCC(Rn)] is
monotone nondecreasing in X ∈ KCC(Rn) for every t ∈ [0, T], that is, for fixed t ∈ [0, T],
H(t, X1) ≥ H(t, X2) wherever X1 ≥ X2;

(H2) there exist V, W ∈ C1[I,KCC(Rn)] such that DHV (t) ≤ F(t, V (t),H(t, V (t))) and

DHW(t) ≥ F(t,W(t),H(t,W(t))); (3.3)
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(H3) for any X1, X2 ∈ KCC(Rn) with X1 ≥ X2 and some positive number real L > 0 such that

F(t, X1,H(t, X1)) ≤ F(t, X2,H(t, X2)) + L(X1 −X2); (3.4)

then V (t) ≤ W(t) for t ∈ I provided V (0) ≤ W(0).

Proof. For any η = (η1, η2, . . . , ηn) > θn, we define Wη(t) = W(t) + ηe2Lt and we note that
V (0) ≤ W(0) ≤ Wη(0). By using (2.5), we infer DHWη(t) = DHW(t) + 2Lηe2Lt. Let tδ be the
supremum of all positive number δ such that V (0) < Wη(0) implies V (t) < Wη(t) on [0, δ].
Thus tδ > 0 and V (tδ) < Wη(tδ). Using (H1)–(H3), we get

DHV (tδ) ≤ F(tδ, V (tδ),H(tδ, V (tδ))) ≤ F
(
tδ,Wη(tδ),H

(
tδ,Wη(tδ)

))
≤ F(tδ,W(tδ),H(tδ,W(tδ))) + L · (Wη(tδ) −W(tδ)

)
≤ F(tδ,W(tδ),H(tδ,W(tδ))) + Lηe2Ltδ

≤ DHW(tδ) + 2Lηe2Ltδ = DHWη(tδ).
(3.5)

Equation (2.5), together with (3.5), implies that there exists an h > 0 such that

Wη(tδ) − V (tδ) < Wη(t) − V (t), tδ < t < tδ + h. (3.6)

This contradicts that tδ > 0 is the supremum in view of the continuity of function involved
and consequently that the inequality V (t) < Wη(t) holds for t ∈ I. Taking the limit η → 0
yields the desired result. This proof is complete.

Corollary 3.5. Let V,W ∈ C1[I,KCC(Rn)] such thatDHV (t) ≤ DHW(t) for all t ∈ I, then V (0) ≤
W(0) implies that V (t) ≤ W(t) for all t ∈ I.

Proof. It is clear from the proof of Theorem 3.4.

Definition 3.6. V,W ∈ C1[I,KCC(Rn)] are said to be the lower solution and upper solution of
(3.1) respectively if

DHV (t) ≤ F(t, V (t),H(t, V (t))), V (0) ≤ X(0),

DHW(t) ≥ F(t,W(t),H(t,W(t))), W(0) ≥ X(0).
(3.7)

Theorem 3.7 (existence of solution). Assume V,W ∈ C1[I,KCC(Rn)] are lower solution and up-
per solution of (3.1), respectively, and assumptions (H1), (H3) are satisfied, then there exists solution
X(t) of (3.1).
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Proof. For any η = (η1, η2, . . . , ηn) > θn, we defineWη(t) = W(t)+ηe2Lt and Vη(t)+ηe2Lt = V (t).
Let tδ be the supremum of all positive number δ such that V (0) < Wη(0) implies V (t) < Wη(t)
on [0, η]. Thus tδ > 0 and V (tδ) < Wη(tδ), by putting the above we infer that

Wη(tδ) = W(tδ) + ηe2L(tδ) > W(tδ), Wη(0) = W(0) + η > W(0). (3.8)

Similarly, Vη(tδ) < V (tδ) and Wη(0) < V (0). By using Theorem 3.4, we have Vη(tδ) < V (tδ) <
W(tδ) < Wη(tδ). Since V, W are lower and upper solutions of (3.1), we have that

Vη(0) < V (0) < X(0) < W(0) < Wη(0), Vη(tδ) < X(tδ) < Wη(tδ), (3.9)

where X(tδ) is solution of (3.1). Now, we wish to show that Vη(t) < X(t) < Wη(t) on I. If it
is not true, then there exists a t1 ∈ I such that X(t1) = Wη(t1) and Vη(t) < X(t) < Wη(t) on
I \ {t1}. This implies that X(t1) = Wη(t1) > W(t1) and DHX(t1) > DHW(t1). Equation (2.5),
together with DHX(t1) > DHW(t1), implies that there exists an h > 0 such that

X(t1) −W(t1) < X(t) −W(t), tδ < t1 < tδ + h. (3.10)

This contradicts that X(t1) > W(t1), hence we have that X(t) < Wη(t). Similarly, we can show
that Vη(t) < X(t) and hence relation Vη(t) < X(t) < Wη(t) holds for all t ∈ I. Now as η → 0,
we conclude that V (t) ≤ X(t) ≤ W(t). The proof is complete.

Definition 3.8. Let M(t), M(t) are said to be minimal and maximal solutions of (3.1), respec-
tively, if they both are solution of (3.1) and satisfyM(t) ≤ X(t) ≤ M(t) for every solutionX(t)
of (3.1) with V (t) ≤ X(t) ≤ W(t) for all t ∈ I, where V,W are the lower and upper solutions
of (3.1) respectively with V (t) ≤ W(t) for all t ∈ I.

Theorem 3.9. Assume that

(M1) equation (3.1) has the lower solution V and upper solution W with V,W ∈
C1[I,KCC(Rn)] and V (t) ≤ W(t) for all t ∈ I;

(M2) hypotheses (H1), (H3) satisfy;

(M3) F is map bounded sets into bounded sets inKCC(Rn).

Then there exists monotone sequence {Wn(t)} and {V n(t)} in KCC(Rn) such that V n(t) → M(t),
Wn(t) → M(t) as n → ∞ inKCC(Rn), whereM(t),M(t) are the minimal and maximal solutions
of (3.1), respectively.

Proof. Let us construct the set of integrodifferential sequences by

V n+1(t) = X0 +
∫ t

0
F(s, V n(s),H(s, V n(s)))(0.1),

Wn+1(t) = X0 +
∫ t

0
F(s,Wn(s),H(s,Wn(s)))ds(0.2)

(3.11)
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for n = 0, 1, 2, . . ., we prescribe V 0(t) = V (t) and W0(t) = W(t), for all t ∈ I. From (2.5), (3.1)
and using Definition 3.1 we get

DHVn+1(t) = F(t, V n(t),H(t, V n(t))), V n+1(0) = X0(0.4),

DHWn+1(t) = F(t,Wn(t),H(t,Wn(t))), Wn+1(0) = X0(0.5).
(3.12)

First, we claim that the iterations are such that

V 0 ≤ V 1 ≤ · · · ≤ V n ≤ Wn ≤ · · · ≤ W1 ≤ W0. (3.13)

Now we show that V 0(t) ≤ V 1(t) ≤ W1(t) ≤ W0(t). Consequently, we have to show that (i)
V 0(t) ≤ V 1(t), (ii) W1(t) ≤ W0(t) and (iii) V 1(t) ≤ W1(t). By using Definition 3.6 and (3.11),
(3.12), then (i) is proved. Indeed, by V 0(t) = V (t) is a lower solution of (3.1) and following
Definition 3.6 we get V 0(0) ≤ X0 = V 1(0), addition

DHV 1(t) = F
(
t, V 0(t),H

(
t, V 0(t)

))
, DHV 0(t) ≤ F

(
t, V 0(t),H

(
t, V 0(t)

))
. (3.14)

Hence DHV 1(t) ≥ DHV 0(t) and using Corollary 3.5 we infer V 0(t) ≤ V 1(t) for all t ∈ I. Simi-
larly, we use Definition 3.6 and (3.11), (3.12), then (ii) is proved. Using (M1), we get

DHV 1(t) = F
(
t, V 0(t),H

(
t, V 0(t)

))
≤ F

(
t,W0(t),H

(
t,W0(t)

))
= DHW1(t), (3.15)

addition V 1(0) = X0 = W1(0) and Corollary 3.5, then (iii) is proved.
By using inductive method, we assume V 0 ≤ V n−1 ≤ V n ≤ Wn ≤ Wn−1 ≤ W0 on I, then

we have to claim that V n ≤ V n+1 ≤ Wn+1 ≤ Wn, by means of the monotone property of F,G
we obtain

DHVn(t) = F
(
t, V n−1(t),H

(
t, V n−1(t)

))
≤ F(t, V n(t),H(t, V n(t))) = DHVn+1(t),

DHWn(t) = F
(
t,Wn−1(t),H

(
t,Wn−1(t)

))
≥ F(t,Wn(t),H(t,Wn(t))) = DHWn+1(t).

(3.16)

From V n(0) = V n+1(0) = Wn+1(0) = Wn(0) = X0, and by virtue of Corollary 3.5 we get
V n ≤ V n+1 and Wn+1 ≤ Wn for all t ∈ I. Again, by means of the monotone property of F,G
and our assumption, we have

DHVn+1(t) = F(t, V n(t),H(t, V n(t))) ≤ F(t,Wn(t),H(t,Wn(t))) = DHWn+1(t), (3.17)

for all t ∈ I. Using again Corollary 3.5, we get V n+1 ≤ Wn+1. Consequently,

V 0 ≤ V 1 ≤ · · · ≤ V n ≤ Wn ≤ · · · ≤ W1 ≤ W0. (3.18)

Combining (3.11) and F is continuous multiplication, it follows that V n, Wn are continuous
for n = 0, 1, 2, . . ..
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Now using the corresponding of (3.11) and the properties of the Hausdorffmetric and
the Hukuhara integral, together with the assumption (M3), we prove the equicontinuity of
the sequences {V n} and {Wn} below. Consider for any t < th, t, th ∈ I, we have

D[V n(th), V n(t)] ≤ D

[∫ th

t

F(s, V n(s),H(t, V n(t)))ds, θn

]
≤ M(th − t). (3.19)

Hence {V n} and {Wn} are uniformly bounded and equicontinuity on I. On using Ascoli-
Arzela theorem (see [1]) in this setup, we obtain a subsequence {V nk} which converges uni-
formly to M(t) ∈ KCC(Rn) on I. Arguing in a similarly to the {V n}, we conclude that {Wn}
converges uniformly toM(t) on I. Next, we again consider (3.12), (3.18), respectively, and by
using the convergence properties we infer that

DHM(t) = F
(
t,M(t),H

(
t,M(t)

))
, M(0) = X0,

DHM(t) = F
(
t,M(t),H

(
t,M(t)

))
, M(0) = X0.

(3.20)

Moreover, by means of (3.18) we easily get V 0(t) ≤ M(t) ≤ M(t) ≤ W0(t) on I.
Finally, we show that M(t) and M(t) are the minimal and maximal solutions of (3.1),

respectively. Let X(t) be any solution of (3.1) such that V 0(t) ≤ X(t) ≤ W0(t) for all t ∈ I and
V 0(0) ≤ X0 ≤ W0(0) and we need to prove that V 0(t) ≤ M(t) ≤ X(t) ≤ M(t) ≤ W0(t) on I.
Suppose that for some n, V n ≤ X(t) ≤ Wn on I. By using monotone nondecreasing of F, G,
we get

DHX(t) = F(t, X(t),H(t, X(t))) ≥ F(t, V n(t),H(t, V n(t))) = DHVn+1(t), (3.21)

where X0 = V n+1(0). Applying Corollary 3.5, then we get X(t) ≤ V n+1(t) on I for all n.
Similarly, we get V n+1 ≤ X(t) for all n. By using assumption V 0(t) ≤ X(t) ≤ W0(t) from
the principle of mathematical induction, we infer that V n ≤ X(t) ≤ Wn for all n. Taking limit
as n → ∞, then we obtain M(t) ≤ X(t) ≤ M(t). The proof is complete.

Corollary 3.10. If addition to the assumptions of Theorem 3.7 assume that F satisfies

F(t, X1,H(t, X1)) + L1(X1 −X2) ≥ F(t, X2,H(t, X2)) (3.22)

for X1 ≥ X2 ∈ KCC(Rn) and L1 > 0, thenM(t) = X(t) = M(t) is the unique solution of (3.1).

Example 3.11. We consider set-valued differential equation with feedback control in KCC(R):

DHX(t) = 3X(t) + sin(t)X(t), X(0) = [1, 2], t ∈
[
0,

π

2

]
, (3.23)

where F(t, X(t), U(t)) = 3X(t) + sin(t)X(t) with H(t, X(t)) = sin(t)X(t) is a contraction feed-
back.
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We see that F(t, X(t),H(t, X(t))) satisfies (M1)–(M3). Now, we show that (3.23) exits
as extremal solutions on [0, π/2]. We prescribe V (t) = X0e

3t − ε, W(t) = X0e
4t + ε are lower

and upper solutions of (3.23) for all ε > 0. We note that DHV (t) ≤ 3V (t) + sin(t)V (t) and
DHW(t) ≥ 3W(t) + sin(t)W(t). Next, let us construct the set sequences by

DHVn+1(t) = 3V n(t) − ε

n
, V n+1(0) = X0 − ε

n
,

DHWn+1(t) = 4Wn(t) +
ε

n
, Wn+1(0) = X0 +

ε

n
,

(3.24)

for all n = 0, 1, 2, . . . we verify that monotone sequences of constructions above such that

(a) {V n(t)} n→∞−−−−−→ M(t) and M(t) is a minimal of (3.23);

(b) {Wn(t)} n→∞−−−−−→ M(t) and M(t) is a maximal of (3.23).

First, we prove (a). Indeed, let 0 < ε2 < ε1 ≤ ε, then for each positive integer n, we consider

DHWn+1(t) = 4Wn(t) +
ε

n
, Wn+1(0) = X0 +

ε

n
,

W(t) = X0e
4t + ε.

(3.25)

Because Wn+1(0, ε2) ≤ Wn+1(0, ε1) and DHWn+1(t, ε2) ≤ 4Wn(t) + ε2/n, otherwise
DHWn+1(t, ε1) ≥ 4Wn(t)+ε2/n, henceDHWn+1(t, ε1) ≥ DHWn+1(t, ε2). By using Corollary 3.5,
to get Wn+1(t, ε2) ≤ Wn+1(t, ε1) for all t ∈ [0, π/2] and ε2 < ε1. On the other hand Wn+1(t) ≤
Wn(t) with ε fixed.

Since the family of functions {Wn+1(t, ε)} is equicontinuous and uniformly bounded
on [0, π/2], it follows Ascoli-Arzela theorem (see [4]) that there exists a decreasing

sequence {ε/(n + 1)k} k→∞−−−−−→ 0 and uniform limit M(t) = limk→∞W
(n+1)k(t, ε) exits

on [0, π/2]. Obviously M(t) = X0 · e4t, the uniform continuity of F implies that
F(t,W (n+1)k(t, ε),H(t,W (n+1)k(t, ε))) tends uniformly to F(t,M(t),H(t,M(t)))as k → ∞, and
thus

W (n+1)k(t, ε) = X0 +
ε

nk
+
∫π/2

0

(
4W (n+1)k(s, ε)

)
ds (3.26)

which in turn yields that the limit M(t) is a solution of (3.23) on [0, π/2].
Next we will show that M(t) is a required maximal solution of (3.23) on [0, π/2]. For

this purpose, we observe that X(0) = X0 < X0 + ε/n = Wn+1(0, ε) and F is nondecreasing,
hence we get

DHX(t) < 3X(t) + sin(t)X(t) +
ε

n
≤ 3Wn(t, ε) + sin(t)Wn(t, ε) +

ε

n
≤ DHWn+1(t, ε). (3.27)



10 Abstract and Applied Analysis

0 0.5 1 1.5
0

100

200

300

400

500

600

700

800

900

t

X
(t
)

The maximal solution (red), the minimal solution (blue), and
the solution of (3.23) (black)

Figure 1: The minimal and maximal solutions of (3.23).

By using Corollary 3.5, then we get X(t) < Wn+1(t, ε) on [0, π/2]. The uniqueness of
maximal solutionM(t) show thatWn+1(t, ε) tends uniformly toM(t) is the maximal solution
of (3.23) with

M(t) = lim
k→∞

W (n+1)k(t, ε). (3.28)

Finally, we will prove (b). Similarly, let 0 < ε2 < ε1 ≤ ε, then for each positive integer n, we
consider

DHVn+1(t) = 3V n(t) − ε

n
, V n+1(0) = X0 − ε

n
,

V (t) = X0e
3t − ε.

(3.29)

Because V n+1(0, ε1) ≤ V n+1(0, ε2) andDHVn+1(t, ε2) ≤ 3V n(t)−ε2/n, otherwiseDHVn+1(t, ε1) ≤
3V n(t)−ε2/n, henceDHVn+1(t, ε1) ≤ DHVn+1(t, ε2). By using Corollary 3.5, to get V n+1(t, ε1) ≤
V n+1(t, ε2) for all t ∈ [0, π/2] and ε2 < ε1. On the other V n(t) ≤ V n+1(t)with ε fixed.

Since the family of functions {V n+1(t, ε)} is equicontinuous and uniformly bounded
on [0, π/2], it follow by Ascoli-Arzela theorem (see [4]) that there exists a decreasing

sequence {ε/(n + 1)k} k→∞−−−−−→ 0 and uniform limit M(t) = limk→∞V (n+1)k(t, ε) exits
on [0, π/2]. Obviously M(t) = X0 · e3t, the uniform continuity of F implies that
F(t, V (n+1)k(t, ε),H(t, V (n+1)k(t, ε))) tends uniformly to F(t,M(t),H(t,M(t))) as k → ∞, and
thus

V (n+1)k(t, ε) = X0 +
ε

nk
+
∫π/2

0

(
3V (n+1)k(s, ε)

)
ds (3.30)

which in turn yields that the limit M(t) is a solution of (1) on [0, π/2].
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Next we will show that M(t) is a required minimal solution of (3.23) on [0, π/2]. For
this purpose, we observe that X(0) = X0 > X0 − ε/n = V n+1(0, ε) and F is nondecreasing,
hence we get

DHX(t) > 3X(t) + sin(t)X(t) − ε

n
≥ 3V n(t, ε) + sin(t)V n(t, ε) − ε

n
≥ DHVn+1(t, ε). (3.31)

By using Corollary 3.5, then we get V n+1(t, ε) < X(t) on [0, π/2]. The uniqueness of
minimal solution M(t) show that V n+1(t, ε) tends uniformly to M(t) is the minimal solution
of (3.23) with

M(t) = lim
k→∞

V (n+1)k(t, ε). (3.32)

Based on (3.25) combining (3.28), (3.29) and (3.32), we will solve the minimal and
maximal solutions of (3.23). Its graphical representation can be seen in Figure 1.

Acknowledgments

The authors gratefully acknowledge the referees for their careful reading and many valuable
remarks which improved the presentation of the paper.

References

[1] V. Lakshmikantham, T. G. Bhaskar, and J. V. Devi, Theory of Set Differential Equations in Metric Spaces,
Cambridge Scientific Publishers, Cambridge, UK, 2006.

[2] B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, vol. 205 of North-Holland
Mathematics Studies, Elsevier, Oxford, UK, 2006.

[3] S. Hong, “Differentiability of multivalued functions on time scales and applications to multivalued
dynamic equations,” Nonlinear Analysis, Theory, Methods and Applications, vol. 71, no. 9, pp. 3622–3637,
2009.

[4] S. Hong and J. Liu, “Phase spaces and periodic solutions of set functional dynamic equations with
infinite delay,” Nonlinear Analysis, Theory, Methods and Applications, vol. 74, no. 9, pp. 2966–2984, 2011.

[5] J. V. Devi, “Generalized monotone iterative technique for set differential equations involving
causal operators with memory,” International Journal of Advances in Engineering Sciences and Applied
Mathematics, vol. 3, no. 1–4, pp. 74–83, 2011.

[6] N. D. Phu and T. T. Tung, “Some results on sheaf-solutions of sheaf set control problems,” Nonlinear
Analysis, Theory, Methods and Applications, vol. 67, no. 5, pp. 1309–1315, 2007.


