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We consider the systems of (−1)mu(2m) = λu + λv + uf(t, u, v), t ∈ (0, 1), u(2i)(0) = u(2i)(1) = 0, and
0 ≤ i ≤ m − 1, (−1)mv(2m) = μu + μv + vg(t, u, v), t ∈ (0, 1), v(2i)(0) = v(2i)(1) = 0, 0 ≤ i ≤ m − 1,
where λ, μ ∈ R are real parameters. f, g : [0, 1] × R2 → R are Ck, k ≥ 3 functions and f(t, 0, 0) =
g(t, 0, 0) = 0, t ∈ [0, 1]. It will be shown that if the functions, f and g are “generic” then the solution
set of the systems consists of a countable collection of 2-dimensional, Ck manifolds.

1. Introduction

Many scientific and technological problems that are modeled mathematically by systems of
ODEs, for example, mathematical models of series circuits and mechanical systems involving
several springs attached in series can lead to a system of differential equations. Furthermore,
such systems are often encountered in chemical, ecological, biological, and engineering appli-
cations, thereby attracting constant interest of researchers in recent years, on several aspects
of the problems; we focus on one aspect here, namely, the existence of solutions, from the
point of view of bifurcations.

In [1], Rynne considered the global bifurcation in generic systems of coupled nonlinear
Sturm-Liouville boundary value problem:

L1u := −
(
p1u

′)′ + q1u = μu + uf(x, u, v), x ∈ (0, 1),

a10u(0) + b10u′(0) = 0, a11u(1) + b11u′(1) = 0,

L2v := −
(
p2v

′)′ + q2v = νv + vg(x, u, v), x ∈ (0, 1),

a20v(0) + b20v′(0) = 0, a21v(1) + b21v′(1) = 0,

(1.1)
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where pi ∈ C1[0, 1], qi ∈ C[0, 1], i = 1, 2, and qi are positive on [0, 1]; μ, ν ∈ R are parameter;
f, g : [0, 1]×R2 → R are Ck, k ≥ 3 functions. The interesting results are that if the functions f
and g are “generic” then for all integers m,n ≥ 0, there are smooth 2-dimensional manifolds
S1
m, S2

n, of semitrivial solutions of the system which bifurcate from the eigenvalues λ0m, μ
0
n,

of L1, L2, respectively. Furthermore, there are smooth curves B1
mn ⊂ S1

m, B2
mn ⊂ S2

n, along
which secondary bifurcations take place, giving rise to smooth, 2-dimensional manifolds of
nontrivial solutions. It is shown that there is a single such manifold, Nmn, which “links” the
curves B1

mn,B2
mn. Nodal properties of solutions onNmn and global properties ofNmn are also

discussed.
Inspired by [1], in this paper, we consider the 2m-order systems of coupled nonlinear

boundary value problems:

(−1)mu(2m) = λu + λv + uf(t, u, v), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, 0 ≤ i ≤ m − 1,

(−1)mv(2m) = μu + μv + vg(t, u, v), t ∈ (0, 1),

v(2i)(0) = v(2i)(1) = 0, 0 ≤ i ≤ m − 1,

(1.2)

where λ, μ ∈ R are real parameters. f, g : [0, 1] × R2 → R are Ck, k ≥ 3 functions and
f(t, 0, 0) = g(t, 0, 0) = 0, t ∈ [0, 1]. It will be shown that if the functions f and g are “generic”
then the solution set of the systems consists of a countable collection of 2-dimensional, Ck

manifolds. The paper is organized as follows. In Section 2, by computing algebraic multi-
plicity of eigenvalue (λ, μ), we get the set of bifurcation points of problem (1.2) and obtain
the existence of nontrivial solution. In Section 3, we get some genericity result.

Note that problem (1.2) is different from the problem (1.1). In [1], the manifolds of
nontrivial solution come from the secondary bifurcations which take place along the smooth
curves in the manifolds of semitrivial solutions. In this paper, by computing algebraic multi-
plicity of eigenvalue (λ, μ), we get the existence of nontrivial solution by first bifurcation.

2. Existence of Nontrivial Solution

Let X = {w ∈ C2m[0, 1] : w(2i)(0) = w(2i)(1) = 0, 0 ≤ i ≤ m − 1}, X0 = X \ {0}, Y = {w ∈
C2m−1[0, 1] : w(2i)(0) = w(2i)(1) = 0, 0 ≤ i ≤ m − 1}, Z = C[0, 1]; these spaces are endowed
with their usual supnorms. We also use the space E = R2 × X2 with norm ‖(λ, μ, u, v)‖2 =
|λ|2 + |μ|2 + ‖u‖2 + ‖v‖2. For u, v ∈ C[0, 1], let 〈u, v〉 =

∫1
0 uv.

Define L : X → Z by

Lu := (−1)mu(2m), u ∈ X, (2.1)

then L is invertible and 〈Lu, v〉 = 〈u, Lv〉.
Let Gm(t, s) be the Green’s function of the problem

(−1)mw(2m)(t) = 0, t ∈ (0, 1),

w(2i)(0) = w(2i)(1) = 0, 0 ≤ i ≤ m − 1,
(2.2)
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then

Gi(t, s) =
∫1

0
G(t, ξ)Gi−1(ξ, s)dξ, 2 ≤ i ≤ m, (2.3)

where

G1(t, s) = G(t, s) =

{
t(1 − s), 0 ≤ t ≤ s ≤ 1,
s(1 − t), 0 ≤ s ≤ t ≤ 1.

(2.4)

So problem (1.2) is equivalent to

u(t) = λ
∫1

0
Gm(t, s)u(s)ds + λ

∫1

0
Gm(t, s)v(s)ds +

∫1

0
Gm(t, s)u(s)f(s, u(s), v(s))ds,

v(t) = μ
∫1

0
Gm(t, s)u(s)ds + μ

∫1

0
Gm(t, s)v(s)ds +

∫1

0
Gm(t, s)v(s)g(s, u(s), v(s))ds.

(2.5)

In fact, problem (2.5) can be expressed in the form

(
u
v

)
= λ
(
A A
0 0

)(
u
v

)
+ μ
(

0 0
A A

)(
u
v

)
+
(
N(u, v)
M(u, v)

)
, (2.6)

where A : Y → Y is given by

Ax(t) =
∫1

0
Gm(t, s)x(s)ds,

N(u, v)(t) :=
∫1

0
Gm(t, s)u(s)f(s, u(s), v(s))ds,

M(u, v)(t) :=
∫1

0
Gm(t, s)v(s)g(s, u(s), v(s))ds,

(2.7)

note thatN(u, v)/‖(u, v)‖ → 0,M(u, v)/‖(u, v)‖ → 0 for (u, v) near (0, 0) in Y 2.
We discuss the bifurcation phenomena for problem (2.6).
From [2] we know that the set {(λ, μ) ∈ R2: (λ, μ, 0, 0) is a bifurcation point for (2.6)}

that is contained in the set

ΣA

{
(
λ, μ
)
∈R2 :

(
u
v

)
=
[
λ

(
A A
0 0

)
+μ
(

0 0
A A

)(
u
v

)
has a nontrivial solution

(
u
v

)
in Y 2

]}
.

(2.8)
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Note that the equation defining ΣA is equivalent to the system

Lu = λ(u + v),

Lv = μ(u + v).
(2.9)

If (2.9) has a nontrivial solution ( uv ), then u and v can be shown to solve

L
(
L −
(
λ + μ

))
x = 0. (2.10)

It is known in [3] that L has a discrete sequence of simple eigenvalues

0 < λ1 < λ2 < · · · < λn −→ +∞. (2.11)

It can thus be shown that ΣA = {(λ, μ) : λ + μ = λn, n = 1, 2, . . .}.
Theorem 2.1 of [2] guarantees that elements of ΣA of odd algebraic multiplicity are

bifurcation points. Suppose (λ, μ) satisfies λ + μ = λn, and Lxn = λnxn. It is easy to show that
(λ, μ) has geometric multiplicity 1. In fact, since u and v solve (2.10), it must be the case that
u = αxn, v = βxn. Then (2.9) yields

(
λn 0
0 λn

)(
α
β

)
xn =

(
λ λ
μ μ

)(
α
β

)
xn. (2.12)

Then (2.12) has a nontrivial solution with β = (μ/λ)α if λ/= 0; α = 0 if (λ, μ) = (0, λn). So (λ, μ)
has geometric multiplicity 1. We will shown that the algebraic multiplicity at (λ, μ) is also 1.

Assume for the moment that λ = 0, μ = λn. In this case, the equation

(
L − λ − λ
−μ L − μ

)2(
u
v

)
=
(
0
0

)
(2.13)

implies

(
L − λ − λ
−μ L − μ

)(
u
v

)
=
(

0
βxn

)
, (2.14)

where β ∈ R. We have u = 0 from Lu = 0, so Lv = μv+βxn = λnv+βxn; then 〈Lv, xn〉 = 〈λnv+
βxn, xn〉, so β = 0. It follows that the algebraic multiplicity at (0, λn) is 1. By the homotopy
invariance of Leray-Schauder degree, the algebraic multiplicity at (λ, μ) is odd for each (λ, μ)
such that λ + μ = λn.

We have established the following result.

Theorem 2.1. If λn is an eigenvalue of L, then the points belonging to the set {(λ, μ) : λ + μ = λn}
are all bifurcation points.
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From Theorem 3.3 of [2] one has the following.

Theorem 2.2. Suppose that (λ0, μ0) ∈ ΣA. Then there is a two-dimensional continuum Cn emerging
inR2×Y 2 from (λ0, μ0, 0, 0). If (λ0, μ0)/= (0, λn) or (λn, 0), then at least locally, all nontrivial solutions
(λ, μ, u, v) in Cn are such that u and v have n − 1 simple zeros in (0, 1).

3. Genericity Result

We begin by stating the basic transversality theorems as given in [4] (see Theorems 1.1, 1.2
and Remark A1.1 in the appendix of [4]). Let X,Y,Z be real, separable Banach spaces. Let
V ⊂ X, W ⊂ Y be open sets, and let F : V ×W → Z be a Ck, k ≥ 1 mapping such that for
everyw0 ∈W , F(·, w0) is a Fredholm mapping of index l < k, that is, for all (v0, w0) ∈ V ×W ;
the linear operatorDvF(v0, w0) is Fredholm with index l < k (whereDF : X ×Y → Z, DvF :
X → Z, DwF : Y → Z, will denote, resp., the Fréchet derivative of F). We say that 0 is a
regular value of F if the operatorDF(v0, w0) is onto every point (v0, w0) such that F(v0, w0) =
0. Also, a subset of a topological space is said to be residual if it contains the intersection of a
countable collection of open dense sets. Note that the intersection of a countable collection of
residual sets is also residual.

Theorem 3.1 (see [4]). If 0 is a regular value of F, then the set

Θ =
{
w0 ∈W : 0 is a regular value of F

(
·, w0

)}
(3.1)

is a residual subset ofW . For every w0 ∈ Θ, the set

{
v ∈ V : F

(
v,w0

)
= 0
}

(3.2)

is the disjoint union of a finite, or countable, collection of connected Ck submanifolds of X of dimen-
sion l.

A property of the elements of a topological space is said to be generic if it holds for all
elements in a residual subset of the space. Since we wish to discuss properties of the systems
(1.2) which hold for “generic” functions f and g, we need an appropriate space of functions
and a topology on this space. Let F be the set of all real valued Ck functions defined on
[0, 1] ×R2. We define a topology on F as follows. For any f ∈ F and any continuous, positive
function ε : R2 → R+, we define an ε-neighbourhood of f by

Uε

(
f
)
=

⎧
⎨

⎩
h ∈ F :

∑

|α|≤k

∣∣Dαf
(
t, η, ζ

)
−Dαh

(
t, η, ζ

)∣∣ < ε
(
η, ζ
)
,
(
t, η, ζ

)
∈ [0, 1] × R2

⎫
⎬

⎭
(3.3)

(here Dα is the usual multi-index notation for partial derivatives); a subset E ⊂ F is defined
to be open if and only if for every f ∈ E there is a function ε such that the Uε(f) of f lies
in E.
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Let F1 ⊂ F denote the set of functions such that f(·, 0, 0) = 0. Let N(f, g) denote the
set of nontrivial solutions of (1.2), we get the following result.

Theorem 3.2. There is a residual set G ⊂ F2
1 such that if (f, g) ∈ G, then the set N consists of a

countable collection of 2-dimensional, Ck manifolds.

Proof . Let E0 = R2 ×X2
0 and, for any (f, g) ∈ F2

1, define a C
k function G(f, g) : E0 → Z2 by

G
(
f, g
)(
λ, μ, u, v

)
=
(
Lu − λu − λv − f(·, u, v)u,
Lv − μu − μv − g(·, u, v)v,

)
,
(
λ, μ, u, v

)
∈ E0. (3.4)

Clearly, N = G(f, g)−1(0). For any ρ > 1, let

Aρ =
{(
λ, μ, u, v

)
∈ E0 :

∥
∥(λ, μ, u, v

)∥∥ < ρ, ‖u‖ > ρ−1, ‖v‖ > ρ−1
}
, (3.5)

and let Aρ be the closure of Aρ. For any integer r ≥ 1, let Tr be the set of functions (f, g) ∈ F2
1

such that G(f, g) is transverse on Ar+δ for some sufficiently small δ > 0.

We first prove that each set Tr is open in F2
1. For any (f, g) ∈ F2

1, ρ > 1, the set
N(f, g)∩Aρ is compact. Thus (f, g) /∈ Tr if and only if there exists z ∈ N(f, g)∩Ar such that
the operator DG(f, g)(z) is not surjective (here the derivative is with respect to (λ, μ, u, v)).
Thus, in deciding whether (f, g) ∈ Tr , the values of f and g on |u| > r, |v| > r are irrelevant.
Therefore, it suffices to show that if (fi, gi) ∈ F2

1 \ Tr , i = 1, 2, . . ., is a sequence converging to
(f0, g0) ∈ F2

1 with respect to the Ck topology on [0, 1] × [−r, r]2, then (f0, g0) /∈ Tr . Now, for
each i, there exists zi ∈ N(fi, gi) ∩Ar such that DG(fi, gi)(zi) is not surjective. Furthermore,
it can be shown that the sequence zi converges (in E) to a point z0 (using standard Sobolev
embedding and regularity arguments; see for instance, the proof of Theorem 2.1 in [4] or the
proof of Theorem 3.a.1 in [5]). Then, by continuity, z0 ∈ N(f0, g0) ∩ Ar , and the operator
DG(f0, g0)(z0) = limi→∞DG(fi, gi)(zi) cannot be surjective since this would contradict
standard perturbation results for Fredholm operators (see for instance, Theorem 13.6 in [6]).
Thus (f0, g0) /∈ Tr , which completes the proof that Tr is open in F2

1.
We will now show that the sets Tr are dense in F2

1. Choose an arbitrary, fixed (f, g) ∈
F2

1 and r ≥ 1. Let θr : R → R be a decreasing C∞ function such that θr(s) = 1 if s ≤ r + 1
and θr(s) = 0 if s ≥ r + 2. For any set of functions γ = (γij)

2
i, j=1 ∈ Γ := Ck([0, 1])4 we define

fγ : [0, 1] × R2 → R by

fγ
(
t, η, ζ

)
= f
(
t, η, ζ

)
+ θr
((

η2 + ζ2
)1/2)(

γ11(x)η + γ12(x)ζ
)
, (3.6)

for (t, η, ζ) ∈ [0, 1]×R2; we define gγ : [0, 1]×R2 → R similarly, using γ21, γ22. Clearly, for any
given positive functions ε1, ε2 (see the definition of the topology on F) we have fγ ∈ Uε1(f),
gγ ∈ Uε2(g), for all sufficiently small γ ∈ Γ. We now define a functionH : Ar+1 × Γ → Z × Z
by

H
(
λ, μ, u, v, γ

)
= G
(
fγ , gγ

)(
λ, μ, u, v

)
,
(
λ, μ, u, v, γ

)
∈ Ar+1 × Γ. (3.7)
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Since Γ is a Banach space (with norm ‖γ‖2 =
∑2

i,j=1 ‖γi,j‖2k), we can differentiateH with respect
to γ and apply transversality results. Clearly,H is Ck.

Lemma 3.3. The derivative DH(z0) is surjective at any point z0 ∈ H−1(0).

Proof. We must show that for any ζ = (ζ1, ζ2) ∈ Z2, the following equation can be solved for
(λ, μ, u, v, γ) ∈ E × Γ:

H0
(u,v)(u, v) +H

0
(λ,μ)

(
λ, μ
)
+H0

γ γ = ζ, (3.8)

whereH0
(u,v),H

0
(λ,μ),H

0
γ denote the derivatives at z

0 = (λ0, μ0, u0, v0, γ0) with respect to (u, v),
(λ, μ) and γ , respectively; these operators have the form

H0
(u,v)(u, v) =

(
Lu
Lv

)
−
((

λ0 + f0 + u0f0
u

)
u +
(
λ0 + u0f0

v

)
v(

μ0 + g0 + v0g0
v

)
v +
(
μ0 + v0g0

u

)
u

)
,

H0
(λ,μ)

(
λ, μ
)
=

(
−λ
(
u0 + v0)

−μ
(
u0 + v0)

)

, H0
γ γ =

(
γ11u

0u0 + γ12u
0v0

γ21u
0v0 + γ22v

0v0

)
,

(3.9)

(where f0 denotes fγ
0
(·, u0, v0), etc.). From [4, Page 301] we know that the operatorH0

(u,v) is

Fredholm with index 0 and, if ξ = (ξ1, ξ2) ∈ R(H0
(u,v))

⊥ ⊂ Z2, then ξ is a solution of a homo-

geneous coupled pair of linear ordinary differential equations. Let d0 = dimR(H0
(u,v))

⊥. If
d0 = 0 there is nothing further to prove, so suppose that d0 ≥ 1 and let {ξi ∈ Z2 : i = 1, . . . , d0}
be a basis for R(H0

(u,v))
⊥. Since the functions u0, v0 and ξi, i = 1, . . . , d0 are all nonzero and can

be regarded as solutions of homogeneous linear ordinary differential equations (or systems),
it follows from the uniqueness of the solution of the initial value problem for such equations
that these functions cannot be identically zero on any open set. Thus there must exist an open
interval I0 ⊂ (0, 1) and a number δ > 0, such that for x ∈ I0 we have |u0(x)| > δ, |v0(x)| > δ,
and the functions ξi, i = 1, . . . , d0 are linearly independent on I0.

Now, since u0 and v0 are bounded away from 0 on I0, for any ψ = (ψ1, ψ2) ∈ C∞
0 (I0)2,

the equation H0
γ γ = ψ has a solution γ ∈ Ck

0 (I
0)4. Thus, we can choose γj ∈ Ck

0 (I
0)4, j =

1, . . . , d0 such that 〈H0
γ γ

j , ξi〉 = δij , i, j = 1, . . . , d0 (δij is the Kronecker delta); thus the set
{H0

γ γ
j : j = 1, . . . , d0} spans a complement of R(H0

(u,v))
⊥ in Z2, and so the operator (u, v, γ) →

H0
(u,v)(u, v) +H

0
γ γ ∈ Z2 is surjective. This proves Lemma 3.3.

It now follows from Lemma 3.3 and Theorem 3.1 (it can readily be verified that H
satisfies the necessary Fredholm conditions) that there exists a residual set Θ ⊂ Γ such that
if γ ∈ Θ then the mapping H(·, γ) : Ar+1 → Z2 is transverse, that is, (fγ , gγ) ∈ Tr . Since
(f, g) ∈ F2

1 was arbitrary, it follows from this that the set Tr is dense in F2
1. Now let G =⋂∞

r=1 Tr . By construction, G is a residual subset of F2
1 and, for any (f, g) ∈ G, the mapping

G(f, g) : E0 → Z2 is transverse. It follows fromH0
(u,v), and the results in [7], thatDG(f, g)(z)

is Fredholmwith index 2. So fromTheorem 3.1 the zero set of thismapping is a 2-dimensional,
Ck manifold. Thus we have proved Theorem 3.2.

Remark 3.4. For more information about generic result or nodal solutions, see [8–12].
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[5] P. Brunovský and P. Poláčik, “The Morse-Smale structure of a generic reaction-diffusion equation in
higher space dimension,” Journal of Differential Equations, vol. 135, no. 1, pp. 129–181, 1997.

[6] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, 2nd edition, 1980.
[7] B. P. Rynne, “The structure of Rabinowitz’ global bifurcating continua for generic quasilinear elliptic

equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 32, no. 2, pp. 167–181, 1998.
[8] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, 1986.
[9] X. L. Han and R. L. An, “A generic result for an eigenvalue problem with indefinite weight function,”

Acta Mathematica Sinica, vol. 53, no. 6, pp. 1111–1118, 2010.
[10] R. Ma and X. Han, “Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite

weight function,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 5-6, pp. 2119–2125,
2009.

[11] R.Ma and X. Han, “Existence andmultiplicity of positive solutions of a nonlinear eigenvalue problem
with indefinite weight function,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 1077–1083,
2009.

[12] J. Xu and X. Han, “Existence of nodal solutions for Lidstone eigenvalue problems,”Nonlinear Analysis:
Theory, Methods & Applications, vol. 67, no. 12, pp. 3350–3356, 2007.


