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We investigate the existence and uniqueness of positive solutions for the following singular
fractional three-point boundary value problem Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) =
u′′(0) = 0, u′′(1) = βu′′(η), where 3 < α ≤ 4, Dα

0+ is the standard Riemann-Liouville derivative and
f : (0, 1] × [0,∞) → [0,∞) with limt→ 0+f(t, ·) = ∞ (i.e., f is singular at t = 0). Our analysis relies
on a fixed point theorem in partially ordered metric spaces.

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by the
intensive development of the theory of fractional calculus itself and by the applications (see,
e.g., [1–5]).

Recently, many papers have appeared dealing with the existence of solutions of
nonlinear fractional boundary value problems.

In [6], the authors studied the existence and multiplicity of positive solutions for the
boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)

where 1 < α ≤ 2 and f : [0, 1] × [0,∞) → [0,∞) is continuous, by using some fixed point
theorem on cones.
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In [7], the authors considered the following nonlinear fractional boundary value
problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
(1.2)

where 3 < α ≤ 4 and f : [0, 1] × [0,∞) → [0,∞) is continuous. They obtained their results by
using lower and upper solution method and fixed point theorems.

In [8] the authors investigated the existence and uniqueness of positive and
nondecreasing solutions for a class of singular fractional boundary value problems by using
a fixed point theorem in partially ordered metric spaces.

Very recently, in [9] the authors studied the existence of solutions of the following
three-point boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′(η
)
,

(1.3)

where 3 < α ≤ 4, 0 < η < 1, 0 < βηα−3 < 1 and f : [0, 1] × [0,∞) → [0,∞) is continuous.
Motivated by [8, 9], in this paper we discuss the existence and uniqueness of positive

solutions for Problem (1.3) assuming that f : (0, 1] × [0,∞) → [0,∞) is such that
limt→ 0+f(t, ·) = ∞ (i.e., f is singular at t = 0). Our main tool is a fixed point theorem in
partially ordered metric spaces which appears in [10].

2. Preliminaries and Basic Facts

For the convenience of the reader, we present some notations and lemmas which will be used
in the proof of our results.

Definition 2.1 (see [5]). The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,∞) and where Γ(α) denotes the
classical gamma function.

Definition 2.2 (see [2]). The Riemann-Liouville fractional derivative of order α > 0 of a
function f : (0,∞) → R is defined as

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

f(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of α.
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The following two lemmas can be found in [2] and they are crucial in finding an
integral representation of the boundary value problem (1.3).

Lemma 2.3 (see [2]). Assume that u ∈ C(0, 1) ∩ L1(0, 1) and α > 0.
Then the fractional differential equation

Dα
0+u(t) = 0 (2.3)

has

u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, (2.4)

where ci ∈ R, i = 1, 2, . . . , n and n = [α] + 1, as unique solution.

Lemma 2.4 (see [2]). Assume that u ∈ C(0, 1) ∩ L1(0, 1) with fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n, (2.5)

for some ci ∈ R, i = 1, 2, . . . , n and n = [α] + 1.

By using Lemma 2.4, in [9] the authors proved the following result.

Lemma 2.5 (see [9]). Let 0 < η < 1 and β /= 1/ηα−3 and h ∈ C[0, 1].
Then the boundary value problem

Dα
0+u(t) + h(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′(η
)
,

(2.6)

where 3 < α ≤ 4, has as unique solution

u(t) =
∫1

0
G(t, s)h(s)ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
h(s)ds, (2.7)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα−1(1 − s)α−3 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−3

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

H(t, s) =
∂2G(t, s)

∂t2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)(α − 2)
Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]
, 0 ≤ s ≤ t ≤ 1,

(α − 1)(α − 2)
Γ(α)

tα−3(1 − s)α−3, 0 ≤ t ≤ s ≤ 1.

(2.8)
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Remark 2.6. In [9] it is proved that G is a continuous function on [0, 1] × [0, 1], G(t, s) ≥ 0,
G(t, 1) = 0 and

sup
0≤t≤1

∫1

0
G(t, s)ds =

2
(α − 2)Γ(α + 1)

,

∫1

0
H
(
η, s
)
ds =

ηα−3(α − 1)
(
1 − η

)

Γ(α)
. (2.9)

In the sequel, we present the fixed point theorem which we will use later. Previously,
we present the following class of functions.

By S we denote the class of functions β : [0,∞) → [0, 1) satisfying the following
condition:

β(tn) −→ 1 implies tn −→ 0. (2.10)

Examples of functions belonging to S are β(t) = kt with 0 ≤ k < 1 and β(t) = 1/(1 + t).
The fixed point theorem which we will use later appears in [10].

Theorem 2.7 (see [10]). Let (X,≤) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such
that there exists an element x0 ∈ X with x0 ≤ Tx0. Suppose that there exists β ∈ S such that

d
(
Tx, Ty

) ≤ β
(
d
(
x, y
))
d
(
x, y
)

for x, y ∈ X with x ≥ y. (2.11)

Assume that either T is continuous or X is such that

if (xn) is a nondecreasing sequence in X such that xn −→ x then xn ≤ x ∀n ∈ N. (2.12)

Besides, if

for all x, y ∈ X there exists z ∈ X which is comparable to x, y, (2.13)

then T has a unique fixed point.

In our considerations, we will work in the Banach space C[0, 1] = {x : [0, 1] →
R, x is continuous}with the classical metric given by d(x, y) = sup0≤t≤1|x(t) − y(t)|.

Notice that this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for any t ∈ [0, 1]. (2.14)

In [11] it is proved that (C[0, 1],≤) satisfies condition (2.12) of Theorem 2.7. Moreover, for
x, y ∈ C[0, 1], as the function max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.13).

3. Main Result

Our starting point of this section is the following lemma.
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Lemma 3.1. Suppose that 0 < σ < 1, 3 < α ≤ 4, and F : (0, 1] → R is a continuous function with
limt→ 0+F(t) = ∞. If tσF(t) is a continuous function on [0, 1] then the function defined by

L(t) =
∫1

0
G(t, s)F(s)ds (3.1)

is continuous on [0, 1], where G(t, s) is the Green’s function appearing in Lemma 2.5.

Proof. We divide the proof into three cases.
Case 1 (t0 = 0). It is clear that L(0) = 0.
Since tσF(t) is a continuous function on [0, 1], we can find a constant M > 0 such that

|tσF(t)| ≤ M for any t ∈ [0, 1].
Then, we get

|L(t) − L(0)| = |L(t)| =
∣
∣∣∣∣

∫1

0
G(t, s)F(s)ds

∣
∣∣∣∣
=

∣
∣∣∣∣

∫1

0
G(t, s)s−σsσF(s)ds

∣
∣∣∣∣

=

∣∣∣∣∣

∫ t

0

tα−1(1 − s)α−3 − (t − s)α−1

Γ(α)
s−σsσF(s)ds +

∫1

t

tα−1(1 − s)α−3

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

tα−1(1 − s)α−3

Γ(α)
s−σsσF(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

≤
∣∣∣∣∣

∫1

0

tα−1(1 − s)α−3

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣
+

∣∣∣∣∣

∫ t

0

(t − s)α−1

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

≤ Mtα−1

Γ(α)

∫1

0
(1 − s)α−3s−αds +

M

Γ(α)

∫ t

0
(t − s)α−1s−αds

=
Mtα−1

Γ(α)

∫1

0
(1 − s)α−3s−αds +

Mtα−1

Γ(α)

∫ t

0

(
1 − s

t

)α−1
s−αds

=
Mtα−1

Γ(α)
β(1 − σ, α − 2) +

Mtα−1

Γ(α)

∫ t

0

(
1 − s

t

)α−1
s−αds.

(3.2)

If in the integral
∫ t
0 (1 − (s/t))α−1s−σds we use the change of variables u = s/t then we have

∫ t

0

(
1 − s

t

)α−1
s−σds = t1−σ

∫1

0
(1 − u)α−1u−σdu = t1−σβ(1 − σ, α). (3.3)

This and (3.2) give us

|L(t)| ≤ Mtα−1

Γ(α)
β(1 − σ, α − 2) +

Mtα−σ

Γ(α)
β(1 − σ, α) (3.4)

and letting t → 0, we see that |L(t)| → 0.
This proves the continuity of L at t0 = 0.
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Case 2 (t0 ∈ (0, 1)). We take tn → t0 and we have to prove that L(tn) → L(t0).
Without loss of generality, we can take tn > t0 (the same argument works for

tn < t0).
In fact,

|L(tn) − L(t0)| =
∣
∣
∣
∣
∣

∫ tn

0

tα−1n (1 − s)α−3 − (tn − s)α−1

Γ(α)
s−σsσF(s)ds

+
∫1

tn

tα−1n (1 − s)α−3

Γ(α)
s−σsσF(s)ds

−
∫ t0

0

tα−10 (1 − s)α−3 − (t0 − s)α−1

Γ(α)
s−σsσF(s)ds

−
∫1

t0

tα−10 (1 − s)α−3

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

tα−1n (1 − s)α−3

Γ(α)
s−σsσF(s)ds −

∫ tn

0

(tn − s)α−1

Γ(α)
s−σsσF(s)ds

−
∫1

0

tα−10 (1 − s)α−3

Γ(α)
s−σsσF(s)ds +

∫ t0

0

(t0 − s)α−1

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

(
tα−1n − tα−10

)
(1 − s)α−3

Γ(α)
s−σsσF(s)ds

−
∫ t0

0

(tn − s)α−1 − (t0 − s)α−1

Γ(α)
s−σsσF(s)ds

−
∫ tn

t0

(tn − s)α−1

Γ(α)
s−σsσF(s)ds

∣∣∣∣∣

≤ M
(
tα−1n − tα−10

)

Γ(α)

∫1

0
(1 − s)α−3s−σds

+
M

Γ(α)

∫ t0

0

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σds

+
M

Γ(α)

∫ tn

t0

(tn − s)α−1s−σds

≤ M
(
tα−1n − tα−10

)

Γ(α)
β(1 − σ, α − 2) +

M

Γ(α)
I1n +

M

Γ(α)
I2n,

(3.5)
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where

I1n =
∫ t0

0

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σds,

I2n =
∫ tn

t0

(tn − s)α−1s−σds.

(3.6)

In the sequel, we will prove that I1n → 0 when n → ∞.
In fact, as tn → t0, then

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σ −→ 0 when n −→ ∞. (3.7)

Moreover,

∣∣∣
(
(tn − s)α−1 − (t0 − s)α−1

)
s−σ
∣∣∣ ≤
(
|tn − s|α−1 + |t0 − s|α−1

)
s−σ ≤ 2s−σ (3.8)

and, as

∫1

0
2s−σds = 2

[
s−σ+1

−σ + 1

]1

0

=
2

1 − σ
< ∞, (3.9)

we have that the sequence ((tn−s)α−1−(t0−s)α−1)s−σ converges pointwise to the zero function
and |((tn − s)α−1 − (t0 − s)α−1)s−σ | is bounded by a function belonging to L1[0, 1], then by
Lebesgue’s dominated convergence theorem

I1n −→ 0 when n −→ ∞. (3.10)

Now, we will prove that I2n → 0 when n → ∞.
In fact, as

I2n =
∫ tn

t0

(tn − s)α−1s−σds ≤
∫ tn

t0

s−σds =
1

1 − σ

(
t1−σn − t1−σ0

)
(3.11)

and letting n → ∞ and, taking into account that tn → t0, from the last expression we get

I2n −→ 0 when n −→ ∞. (3.12)

Finally, from (3.5), (3.10), and (3.12)we get

|L(tn) − L(t0)| −→ 0 when n −→ ∞. (3.13)

This proves the continuity of L at t0.
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Case 3 (t0 = 1). It is easily checked that L(1) = 0.
Now, following the same lines that in the proof of Case 1, we can demonstrate the

continuity of L at t0 = 1.
This finishes the proof.

Lemma 3.2. Suppose that 0 < σ < 1, 3 < α ≤ 4, 0 < βηα−3 < 1, and F : (0, 1] → R is a continuous
function with limt→ 0+F(t) = ∞.

If tσF(t) is a continuous function on [0, 1] then the function defined by

N(t) =
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
F(s)ds (3.14)

is continuous on [0, 1], whereH(t, s) is the function appearing in Lemma 2.5.

Proof. Since tσF(t) is continuous on [0, 1], there exists a constantM > 0 such that |tσF(t)| ≤ M
for any t ∈ [0, 1].

Taking into account that

|H(t, s)| ≤ 2(α − 1)(α − 2)
Γ(α)

(3.15)

we have
∣∣∣∣∣

∫1

0
H
(
η, s
)
F(s)ds

∣∣∣∣∣
=

∣∣∣∣∣

∫1

0
H
(
η, s
)
s−σsσF(s)ds

∣∣∣∣∣

≤ 2M(α − 1)(α − 2)
Γ(α)

∫1

0
s−σ ds =

2M(α − 1)(α − 2)
Γ(α)(1 − α)

< ∞,

(3.16)

and, consequently, the function N is continuous at any point t ∈ [0, 1].

Remark 3.3. Notice that the function H(t, s) appearing in Lemma 2.5 which is defined as

H(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)(α − 2)
Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]
, 0 ≤ s ≤ t ≤ 1,

(α − 1)(α − 2)
Γ(α)

tα−3(1 − s)α−3, 0 ≤ t ≤ s ≤ 1,
(3.17)

is continuous function on [0, 1] × [0, 1] and, moreover, H(t, s) ≥ 0.
In fact, for 0 ≤ t ≤ s ≤ 1 it is clear that H(t, s) ≥ 0.
In the case, 0 ≤ s ≤ t ≤ 1, we have

H(t, s) =
(α − 1)(α − 2)

Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]

=
(α − 1)(α − 2)

Γ(α)

[
(t − ts)α−3 − (t − s)α−3

]
≥ 0.

(3.18)

This proves the nonnegative character of the function H on [0, 1] × [0, 1].
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Lemma 3.4. Suppose that 0 < σ < 1. Then

sup
0≤t≤1

∫1

0
G(t, s)s−σds =

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α)

)
, (3.19)

where G(t, s) is the function appearing in Lemma 2.5.

Proof. By definition of G(t, s), we have

∫1

0
G(t, s)s−σds =

∫ t

0
G(t, s)s−σds +

∫1

t

G(t, s)s−σds

=
∫ t

0

tα−1(1 − s)α−3 − (t − s)α−1

Γ(α)
s−σds +

∫1

t

tα−1(1 − s)α−3

Γ(α)
s−σds

=
∫1

0

tα−1(1 − s)α−3

Γ(α)
s−σds −

∫ t

0

(t − s)α−1

Γ(α)
s−αds

=
tα−1

Γ(α)

∫1

0
(1 − s)α−3s−σds − 1

Γ(α)

∫ t

0
(t − s)α−1s−σds.

(3.20)

As we saw in Case 1 of Lemma 3.1.

∫ t

0
(t − s)α−1s−σds =

tα−σ

Γ(α)
β(1 − σ, α) (3.21)

and, therefore,

∫ t

0
G(t, s)s−σds =

tα−1

Γ(α)
β(1 − σ, α − 2) − tα−σ

Γ(α)
β(1 − σ, α). (3.22)

Now, using elemental calculus it is easily seen that the function

ϕ(t) =
β(1 − σ, α − 2)

Γ(α)
tα−1 − β(1 − σ, α)

Γ(α)
tα−σ (3.23)

is increasing on the interval [0, 1] and, therefore,

sup
0≤t≤1

∫1

0
G(t, s)s−σds = sup

0≤t≤1
ϕ(t) = ϕ(1) =

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α)

)
. (3.24)

Lemma 3.5. Suppose that 0 < σ < 1 then

∫1

0
H
(
η, s
)
s−σds =

(α − 1)(α − 2)
Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2), (3.25)
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whereH(t, s) is the function appearing in Lemma 2.5.

Proof. By definition of H(t, s), we have

∫1

0
H
(
η, s
)
s−σds =

∫η

0
H
(
η, s
)
s−σds +

∫1

η

H
(
η, s
)
s−σds

=
∫η

0

(α − 1)(α − 2)
Γ(α)

[
ηα−3(1 − s)α−3 − (η − s

)α−3]
s−σds

+
∫1

η

(α − 1)(α − 2)
Γ(α)

ηα−3(1 − s)α−3s−σds

=
∫1

0

(α − 1)(α − 2)
Γ(α)

ηα−3(1 − s)α−3s−σds −
∫η

0

(α − 1)(α − 2)
Γ(α)

(
η − s

)α−3
s−σds

=
(α − 1)(α − 2)

Γ(α)
ηα−3

∫1

0
(1 − s)α−3s−σds − (α − 1)(α − 2)

Γ(α)

∫η

0

(
η − s

)α−3
s−σds

=
(α − 1)(α − 2)

Γ(α)
ηα−3β(1 − σ, α − 2) − (α − 1)(α − 2)

Γ(α)

∫η

0

(
η − s

)α−3
s−σds.

(3.26)

By a similar argument that the one used in the Case 1 of Lemma 3.1, we have

∫1

0
H
(
η, s
)
s−σds =

(α − 1)(α − 2)
Γ(α)

ηα−3β(1 − σ, α − 2) − (α − 1)(α − 2)
Γ(α)

ηα−σ−2β(1 − σ, α − 2)

=
(α − 1)(α − 2)

Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2).

(3.27)

This finishes the proof.

By commodity, we denote by K the constant given by

K =
1

Γ(α)

[(

1 +
β
(
ηα−3 − ηα−σ−2)

1 − βηα−3

)

β(1 − σ, α − 2) − β(1 − σ, α)

]

. (3.28)

Moreover, we introduce the following class of functions which will be used in the main
result of the paper. By A we denote the class of functions φ : [0,∞) → [0,∞) satisfying
the following:

(i) φ is nondecreasing.

(ii) φ(x) < x for any x > 0.

(iii) β(x) = φ(x)/x ∈ S, where S is the class of functions introduced in Remark 2.6.
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Theorem 3.6. Let 0 < σ < 1, 3 < α ≤ 4, 0 < η < 1, 0 < βηα−3 < 1, and f : (0, 1] × [0,∞) → [0,∞)
is a continuous function with limt→ 0+f(t, ·) = ∞ and such that tσf(t, y) is a continuous function on
[0, 1] × [0,∞). Assume that there exists 0 < λ ≤ 1/K such that for x, y ∈ [0,∞) with y ≥ x and
t ∈ [0, 1]

0 ≤ tσ
(
f
(
t, y
) − f(t, x)

) ≤ λφ
(
y − x

)
, (3.29)

where φ ∈ A.
Then Problem (1.3) has a unique positive solution (this means that x(t) > 0 for t ∈ (0, 1)).

Proof. Consider the cone:

P = {u ∈ C[0, 1] : u(t) ≥ 0}. (3.30)

Since P is a closed set of C[0, 1], P is a complete metric space with the distance given by
d(u, v) = sup0≤t≤1|u(t) − v(t)|, for u, v ∈ P .

It is easily checked that P satisfies conditions (2.12) and (2.13) of Theorem 2.7.
Now, for u ∈ P we define the operator T by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, u(s))ds. (3.31)

By Lemmas 3.1 and 3.2, for u ∈ P we have Tu ∈ C[0, 1].
Moreover, in view of the nonnegative character ofG(t, s),H(η, s), and f(s, x), we have

that Tu ∈ P for u ∈ P .
In what follows, we check that assumptions in Theorem 2.7 are satisfied.
Firstly, we will prove that T is nondecreasing.
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In fact, by (3.29), for u ≥ v we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, u(s))ds

=
∫1

0
G(t, s)s−σsσf(s, u(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσf(s, u(s))ds

≥
∫1

0
G(t, s)s−σsσf(s, v(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσf(s, v(s))ds

=
∫1

0
G(t, s)f(s, v(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, v(s))ds = (Tv)(t).

(3.32)

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and u/=v, we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t) − (Tv)(t)| = sup
0≤t≤1

((Tu)(t) − (Tv)(t))

= sup
0≤t≤1

[∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s))

)
ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)(
f(s, u(s)) − f(s, v(s))

)
ds

]

≤ sup
0≤t≤1

∫1

0
G(t, s)s−σsσ

(
f(s, u(s)) − f(s, v(s))

)
ds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσ

(
f(s, u(s)) − f(s, v(s))

)
ds

≤ sup
0≤t≤1

∫1

0
G(t, s)s−σλ

(
φ(u(s) − v(s))

)
ds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σλ

(
φ(u(s) − v(s))

)
ds.

(3.33)
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Since φ is nondecreasing, the last inequality implies

d(Tu, Tv) ≤ λφ(d(u, v))sup
0≤t≤0

∫1

0
G(t, s)s−σds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)λφ(d(u, v))

∫1

0
H
(
η, s
)
s−σds

= λφ(d(u, v))

[

sup
0≤t≤0

∫1

0
G(t, s)s−σ ds +

β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σds

]

.

(3.34)

Now, from Lemmas 3.4 and 3.5 it follows:

d(Tu, Tv) ≤ λφ(d(u, v))

[
1

Γ(α)
(
β(1 − σ, α − 2) − β(1 − σ, α)

)
+

β

(α − 1)(α − 2)
(
1 − βηα−3)

× (α − 1)(α − 2)
Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2)

]

= λφ(d(u, v))
[

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α)

)

+
β
(
ηα−3 − ηα−σ−2)

(
1 − βηα−3)Γ(α)

β(1 − σ, α − 2)

]

= λφ(d(u, v))

[
1

Γ(α)

[(

1 +
β
(
ηα−3 − ηα−σ−2)

1 − βηα−3

)

β(1 − σ, α − 2) − β(1 − σ, α)

]]

= λφ(d(u, v))K.

(3.35)

Since 0 < λ ≤ 1/K, from the last inequality we obtain

d(Tu, Tv) ≤ λφ(d(u, v))K ≤ φ(d(u, v)), (3.36)

and, since u/=v,

d(Tu, Tv) ≤ φ(d(u, v))
d(u, v)

d(u, v) = β(d(u, v))d(u, v). (3.37)

Since this inequality is obviously satisfied for u = v, we have

d(Tu, Tv) ≤ β(d(u, v))d(u, v) for any u, v ∈ P with u ≥ v. (3.38)
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Finally, since the zero function satisfies 0 ≤ T0, Theorem 2.7 says us that the operator T has a
unique fixed point in P , or, equivalently, Problem (1.3) has a unique nonnegative solution x
in C[0, 1].

Now, we will prove that x is a positive solution.
In contrary case, we can find 0 < t∗ < 1 such that x(t∗) = 0.
Taking into account that the nonnegative solution x of Problem (1.3) is a fixed point of

the operator, we have

x(t) =
∫1

0
G(t, s)f(s, x(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, x(s))ds (3.39)

and, particularly,

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds +

βt∗α−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, x(s))ds = 0.

(3.40)

Since both summands in the right hand are nonnegative (see Remarks 2.6 and 3.3) we have

∫1

0
G(t∗, s)f(s, x(s))ds = 0,

∫1

0
H
(
η, s
)
f(s, x(s))ds = 0.

(3.41)

Given the nonnegative character of G(t, s), H(η, s), and f(s, u), we have

G(t∗, s)f(s, x(s)) = 0 a.e. (s),

H
(
η, s
)
f(s, x(s)) = 0 a.e. (s).

(3.42)

Taking into account that limt→ 0+f(t, 0) = ∞, this means that for M > 0 we can find δ > 0
such that for s ∈ [0, 1] ∩ (0, δ) we have f(s, 0) > M. Notice that [0, 1] ∩ (0, δ) ⊂ {s ∈ [0, 1] :
f(s, x(s)) > M} and μ([0, 1] ∩ (0, δ)) > 0, where μ is the Lebesgue measure on [0, 1].

This and (3.42) give us that

G(t∗, s) = 0 a.e. (s),

H
(
η, s
)
= 0 a.e. (s),

(3.43)

and this is a contradiction since G(t∗, s) and H(η, s) are rational functions in the variable s.
Therefore, x(t) > 0 for t ∈ (0, 1).
This finishes the proof.

In order to present an example which illustrates our results, we need to prove some
properties about the hyperbolic tangent function.

Previously, we recalled some definitions.
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Definition 3.7. A function f : [0,∞) → [0,∞) is said to be subadditive if it satisfies

f
(
x + y

) ≤ f(x) + f
(
y
)

for any x, y ∈ [0,∞). (3.44)

An example of subadditive function is the square root function, that is, f(x) =
√
x.

Remark 3.8. Suppose that f : [0,∞) → [0,∞) is subadditive and y ≤ x then

f(x) − f
(
y
) ≤ f

(
x − y

)
. (3.45)

In fact, since

f(x) = f
(
x − y + y

) ≤ f
(
x − y

)
+ f
(
y
)

(3.46)

this inequality implies that

f(x) − f
(
y
) ≤ f

(
x − y

)
. (3.47)

Recall that a function f : [0,∞) → [0,∞) is concave if for any x, y ∈ [0,∞) and
λ ∈ [0, 1].

f
(
λx + (1 − λ)y

) ≥ λf(x) + (1 − λ)f
(
y
)
. (3.48)

Lemma 3.9. Let f : [0,∞) → [0,∞) be a concave function with f(0) = 0. Then f is subadditive.

Proof. We take x, y ∈ [0,∞).
Since f is concave and f(0) = 0, we get

f(x) = f

(
y

x + y
0 +

x

x + y

(
x + y

)
)

≥ y

x + y
f(0) +

x

x + y
f
(
x + y

)
=

x

x + y
f
(
x + y

)
,

f
(
y
)
= f

(
x

x + y
0 +

y

x + y

(
x + y

)
)

≥ x

x + y
f(0) +

y

x + y
f
(
x + y

)
=

y

x + y
f
(
x + y

)
.

(3.49)

Adding these inequalities, we have

f(x) + f
(
y
) ≥ x

x + y
f
(
x + y

)
+

y

x + y
f
(
x + y

)
= f
(
x + y

)
. (3.50)

This proves the lemma.

In what follows, we will prove that the function

f(x) = tanhx =
e2x − 1
e2x + 1

(3.51)

belongs to the class A previously defined.
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Lemma 3.10. The function f : [0,∞) → [0,∞) defined as

f(x) = tanhx =
e2x − 1
e2x + 1

(3.52)

satisfies:

(a) f ∈ A.

(b) f is subadditive.

Proof. (a) Since f ′(x) = 4e2x/(e2x + 1)2 > 0 for x > 0, f is nondecreasing.
Moreover, the function

g(x) = x − tanhx = x − e2x − 1
e2x + 1

(3.53)

has as derivative

g ′(x) =

(
e2x − 1

)2

(e2x + 1)2
> 0 for x > 0 (3.54)

and, consequently, g is strictly nondecreasing on (0,∞).
Since g(0) = 0, we have 0 = g(0) < g(x) for x > 0 or, equivalently, f(x) = tanhx < x

for x > 0.
In order to prove that β(x) = tanhx/x ∈ S, notice that if β(tn) → 1 then the sequence

(tn) is a bounded sequence.
In fact, in contrary case tn → ∞ and we have

β(tn) =
tanh tn

tn
−→ 0 (3.55)

which contradicts the fact that β(tn) → 1.
Now, we suppose that β(tn) → 1 and tn � 0.
Then, we can find ε > 0 such that for each n ∈ N there exists �n ≥ n with t�n ≥ ε.
Since (tn) is a bounded sequence (because β(tn) → 1) we can find a subsequence of

(t�n), which we will denote of the same way, such that t�n → a.
As β(tn) → 1, it follows that

β
(
t�n
)
=

tanh t�n
t�n

−→ tanha
a

= 1 (3.56)

and, as the unique solution of the equation tanhx = x on [0,∞) is x0 = 0, we deduce that
a = 0.

Therefore, t�n → 0 and this implies that there exists n0 ∈ N such that t�n < ε for n ≥ n0.
This contradicts the fact that t�n ≥ ε for any n ∈ N.
Therefore, tn → 0.
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This proves that β(x) = tanhx/x ∈ S.
Therefore, f ∈ A.
(b) Since tanh 0 = 0 and

(tanhx)′′ =
8e2x

(
1 − e2x

)

(e2x + 1)3
< 0 for x > 0, (3.57)

this means that f(x) = tanhx is a concave function with tanh 0 = 0 and, by Lemma 3.9,
f(x) = tanhx is subadditive.

Remark 3.11. By Remark 3.8 and by (b) of Lemma 3.9, for x, y ∈ [0,∞) with y ≤ x

tanhx − tanhy ≤ tanh
(
x − y

)
. (3.58)

Now, we present an example which illustrates our result.

Example 3.12. Consider the following singular fractional boundary value problem

D7/2
0+ u(t) +

λ
(
t2 + 1

)
tanhu(t)

t1/2
= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = u′′
(
1
4

)
.

(3.59)

In this case, σ = 1/2, η = 1/4, β = 1 and α = 7/2.
Moreover, in this case f(t, u) = λ(t2 + 1) tanhu/t1/2 for (t, u) ∈ (0, 1] × [0,∞).
Notice that f is continuous in (0, 1] × [0,∞) and limt→ 0+f(t, ·) = ∞.
Now, we check that f(t, u) satisfies assumptions appearing in Theorem 3.6.
It is clear that t1/2f(t, u) = λ(t2 + 1) tanhu is a continuous function on [0, 1] × [0,∞).
Moreover, by Lemma 3.10 and Remark 3.11, for u ≥ v and t ∈ [0, 1] we have

0 ≤ t1/2
(
f(t, u) − f(t, v)

)

= λ
(
t2 + 1

)
(tanhu − tanhv)

≤ λ
(
t2 + 1

)
tanh(u − v) ≤ 2λ tanh(u − v),

(3.60)

where f(x) = tanhx is a function belonging toA (see, Lemma 3.10).
Finally, Theorem 3.6 says us that Problem (3.59) has a unique positive solution for

2λ ≤ 1
K

=
Γ(7/2)

(
1 +
(
(1/4)1/2 − 1/4

)
/
(
1 − (1/4)1/2

))
β(1/2, 3/2) − β(1/2, 7/2)

=
30

7
√
π
.

(3.61)

Or, equivalently, for λ ≤ 15/7
√
π .
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