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Let T be a time scale and a, b ∈ T, a < ρ2(b). We study the nonlinear fourth-order eigenvalue
problem on T, uΔ4(t) = λh(t)f(u(t), uΔ2(t)), t ∈ [a, ρ2(b)]

T
, u(a) = uΔ(σ(b)) = uΔ2(a) =

uΔ3(ρ(b)) = 0 and obtain the existence and nonexistence of positive solutions when 0 < λ ≤ λ∗

and λ > λ∗, respectively, for some λ∗. The main tools to prove the existence results are the Schauder
fixed point theorem and the upper and lower solution method.

1. Introduction

The deformation of an elastic beamwith one end fixed and the other end free can be described
by the nonlinear fourth-order dynamic eigenvalue problem on T

uΔ4
(t) = λh(t)f

(
u(t), uΔ2

(t)
)
, t ∈ [

a, ρ2(b)
]

T
,

u(a) = uΔ(σ(b)) = uΔ2
(a) = uΔ3(

ρ(b)
)
= 0,

(1.1)

where T is a time scale, λ > 0 is a parameter, a, b ∈ T, and a < ρ2(b).
Nonlinear dynamic eigenvalue problems of the above type have been studied by

some authors, but most of them study only second-order dynamic equations. In 2000,
Chyan and Henderson [1] obtained the existence of at least one positive solution for
some λ to second-order case of the dynamic equation in problem (1.1) under conjugate
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boundary value condition and right focal boundary value condition, respectively. Anderson
[2] discussed the same second-order dynamic equation under the Sturm-Liouville boundary
value condition and directly generalized the result of [1]. Erbe et al. [3] then studied the
general second-order Sturm-Liouville dynamic boundary value problem and obtained the
existence, nonexistence, and multiplicity results of positive solutions. In 2005, Li and Liu
[4] further studied the dependence of positive solutions on the parameter λ > 0 for the
second-order dynamic equation under the right focal boundary value condition. Luo and
Ma [5] in 2006 were concerned with the existence and multiplicity of nodal solutions and
obtained eigenvalue intervals of the nonlinear second-order dynamic eigenvalue problem
under conjugate boundary value condition by using bifurcation methods. In 2007, Sun et
al. [6] obtained some sufficient conditions for the nonexistence and existence of at least one
or two positive solutions for the p-Laplacian three-point dynamic eigenvalue problem with
mixed derivatives by using the Krasnosel’skii’s fixed point theorem in a cone. In 2009, Luo [7]
derived the eigenvalue intervals in which there exist positive solutions of a singular second-
order multipoint dynamic eigenvalue problem with mixed derivatives by making use of the
fixed point index theory.

As for the nonlinear higher-order dynamic eigenvalue problems, few papers can
be found in the literature to the best of our knowledge. L. Kong and Q. Kong [8], and
Boey and Wong [9] discussed the even-order dynamic eigenvalue problem and the right
focal eigenvalue problem, respectively, but their problems do not contain (1.1). Particularly
for fourth-order problems and special case λ ≡ 1, Wang and Sun [10] studied the
existence of positive solutions for dynamic equations under nonhomogeneous boundary-
value conditions describing an elastic beam that is simply supported at its two ends. And
both Karaca [11] and Pang and Bai [12] obtained the existence of a solution for two classes of
fourth-order four-point problems on time scales by the Leray-Schauder fixed point theorem
and the upper and lower solution method, respectively, but the problems they studied are
different to (1.1).

This paper studies the relationship between the existence and nonexistence of positive
solutions and the value of parameter λ > 0. We find the existence of a λ∗ such that problem
(1.1) has positive solutions for 0 < λ ≤ λ∗ and no positive solutions for λ > λ∗.

The rest of this paper is organized as follows: in Section 2, we firstly introduce the
time scales concepts and notations and present some basic properties on time scales which
are needed later. Next, Section 3 gives some preliminary results relevant to our discussion,
and Section 4 is devoted to establish our main theorems.

2. Introduction to Time Scales

The calculus theory on time scales, which unifies continuous and discrete analysis, is now
still an active area of research. We refer the reader to [13–16] and the references therein
for introduction on this theory. For the convenience of readers, we present some necessary
definitions and results here.

A time scale T is a nonempty closed subset of R, assuming that T has the topology that
it inherits from the standard topology onR. Define the forward and backward jump operators
σ, ρ : T → T by

σ(t) = inf{τ > t | τ ∈ T}, ρ(t) = sup{τ < t | τ ∈ T}. (2.1)
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Here we put inf ∅ = supT, sup ∅ = infT. Let μ(t) = σ(t) − t, t ∈ T be the graininess function.
And T

k which are derived from the time scale T is

T
k :=

{
t ∈ T : t is nonmaximal or ρ(t) = t

}
, (2.2)

and T
kn

:= (Tkn−1
)k, n > 1, n ∈ N. Define interval I on T by IT = I ∩ T.

Definition 2.1. If u : T → R is a function and t ∈ T
k, then the Δ-derivative of u at the point t

is defined to be the number uΔ(t) (provided it exists) with the property that for each ε > 0,
there is a neighborhood U of t such that

∣∣∣u(σ(t)) − u(s) − uΔ(t)(σ(t) − s)
∣∣∣ � ε|σ(t) − s| (2.3)

for all s ∈ U. The function u is called Δ-differentiable on T if uΔ(t) exists for all t ∈ T
k.

The second Δ-derivative of u at t ∈ T
k2
, if it exists, is defined to be uΔ2

(t) = uΔΔ(t) :=
(uΔ)Δ(t). Similarly,

uΔi

(t) :=
(
uΔi−1)Δ

(t), i > 2, i ∈ N (2.4)

is called the ith Δ-derivative of u at t ∈ T
ki
. We also define the function uσ := u ◦ σ.

Definition 2.2. IfUΔ = u holds on T
k, we define the Cauchy Δ-integral by

∫ t

s

u(τ)Δτ = U(t) −U(s), s, t ∈ T
k. (2.5)

Lemma 2.3. If a, b ∈ T, a < ρ(b), h : [a, b]
T

→ [0,+∞) is continuous and h(t)/≡ 0 on [a, b)
T
,

then

∫b

a

h(t)Δt > 0. (2.6)

Proof. From [15, Theorems 1.28 (Viii) and 1.29], it is clear.

Lemma 2.4 (See [14, Theorem 1.16]). If the Δ-derivative of u exists at t ∈ T
k, then

u(σ(t)) = u(t) + μ(t)uΔ(t). (2.7)

Define the Banach space C(T) to be the set of continuous functions u : T → R with
the norm

‖u‖∞ = max{|u(t)| | t ∈ T}. (2.8)
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For i ∈ N, we define the Banach space Ci
Δ(T) to be the set of the ith Δ-differential functions

u : T → R for which uΔi ∈ C(Tki
)with the norm

‖u‖i = max
{
‖u‖∞,

∥∥∥uΔ
∥∥∥
∞
, . . . ,

∥∥∥uΔi
∥∥∥
∞

}
, (2.9)

where

∥∥∥uΔj
∥∥∥
∞
= max

{∣∣∣uΔj

(t)
∣∣∣ | t ∈ T

kj
}
, j = 0, 1, . . . , i. (2.10)

3. Preliminaries

Throughout this paper, we assume that both

ξ = min

{
t ∈ T | t ≥ σ2(b) + 3a

4

}
, ω = max

{
t ∈ T | t ≤ 3σ2(b) + a

4

}
(3.1)

exist and a < ξ < ρ(ω) ≤ ω ≤ ρ(b). So there exists a number m > 0 such that

ω − ξ ≥ m. (3.2)

We also make the following assumptions:

(H1) h : [a, σ(b)]
T
→ [0,+∞) is continuous and h(t)/≡ 0 on [ξ, ω)

T
;

(H2) f : [0,+∞) × (−∞, 0] → [0,+∞) is continuous. f(u,w) is nondecreasing in u,
nonincreasing in w and f(0, 0) > 0.

Set v(t) = uΔ2
(t), t ∈ [a, b]

T
. Then problem (1.1) is equivalent to the system

uΔ2
(t) = v(t), t ∈ [a, b]

T
,

vΔ2
(t) = λh(t)f(u(t), v(t)), t ∈

[
a, ρ2(b)

]
T

,

u(a) = uΔ(σ(b)) = 0,

v(a) = vΔ(ρ(b)) = 0.

(3.3)

According to [14, Corollary 4.84 and Theorem 4.70], the Green’s function of problems

uΔ2
(t) = 0, t ∈ [a, b]

T
,

u(a) = uΔ(σ(b)) = 0,

vΔ2
(t) = 0, t ∈

[
a, ρ2(b)

]
T

,

v(a) = vΔ(ρ(b)) = 0,

(3.4)
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is of the same form

G(t, s) =

{
t − a, t ≤ s,

σ(s) − a, σ(s) ≤ t,
(3.5)

and the solution of system (3.3) is

u(t) = −
∫σ(b)

a

G(t, s)v(s)Δs, t ∈
[
a, σ2(b)

]
T

,

v(t) = −λ
∫ρ(b)

a

G(t, s)h(s)f(u(s), v(s))Δs, t ∈ [a, b]
T
.

(3.6)

Therefore, the solution of problem (1.1) is

u(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs, t ∈

[
a, σ2(b)

]
T

. (3.7)

Lemma 3.1. Green’s function (3.5) is of the following properties:

0 ≤ G(t, s) ≤ min{t − a, σ(s) − a}, (t, s) ∈
[
a, σ2(b)

]
T

× [a, σ(b)]
T
, (3.8)

G(t, s) ≥ 1
4
(σ(s) − a), (t, s) ∈ [ξ, ω]

T
× [a, σ(b)]

T
, (3.9)

G(t, s) ≥ t − a

σ2(b) − a
G(x, s), (t, s) ∈

[
a, σ2(b)

]
T

× [a, σ(b)]
T
, x ∈

[
a, σ2(b)

]
T

, (3.10)

G(t, s) ≥ 1
4
G(x, s), (t, s) ∈ [ξ, ω]

T
× [a, σ(b)]

T
, x ∈

[
a, σ2(b)

]
T

, (3.11)

G(t, s) ≥ σ2(b) − a

4
, (t, s) ∈ [ξ, ω]

T
× [ξ, ω]

T
. (3.12)

Proof. We here only give the proof of (3.10), and the others can be obtained easily. We divide
the proof into the following four cases.

Case 1 (t ≤ s, x ≤ s). We have

G(t, s) = t − a ≥ x − a

σ2(b) − a
(t − a) =

t − a

σ2(b) − a
(x − a) =

t − a

σ2(b) − a
G(x, s). (3.13)

Case 2 (t ≤ s, σ(s) ≤ x). We have

G(t, s) = t − a ≥ σ(s) − a

σ2(b) − a
(t − a) =

t − a

σ2(b) − a
(σ(s) − a) =

t − a

σ2(b) − a
G(x, s). (3.14)
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Case 3 (x ≤ s, σ(s) ≤ t). We have

G(t, s) = σ(s) − a ≥ x − a ≥ t − a

σ2(b) − a
(x − a) =

t − a

σ2(b) − a
G(x, s). (3.15)

Case 4 (σ(s) ≤ t, σ(s) ≤ x). We have

G(t, s) = σ(s) − a ≥ t − a

σ2(b) − a
(σ(s) − a) =

t − a

σ2(b) − a
G(x, s). (3.16)

Define

E =
{
u ∈ C2

Δ

([
a, σ2(b)

])
| u(a) = uΔ(σ(b)) = uΔ2

(a) = uΔ3(
ρ(b)

)
= 0

}
. (3.17)

Lemma 3.2. For u ∈ E, one has

‖u‖∞ ≤ 2
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞
, (3.18)

∥∥∥uΔ
∥∥∥
∞
≤ 2

[
σ2(b) − a

]∥∥∥uΔ2
∥∥∥
∞
, (3.19)

where ‖u‖∞ = max{|u(t)| | t ∈ [a, σ2(b)]
T
}, ‖uΔ‖∞ = max{|uΔ(t)| | t ∈ [a, σ(b)]

T
}, ‖uΔ2‖∞ =

max{|uΔ2
(t)| | t ∈ [a, b]

T
}.

Proof. Firstly, we show that (3.18) holds.
For all t ∈ [a, σ(b)], we have from u(a) = 0 that

|u(t)| =
∣∣∣∣∣u(a) +

∫ t

a

uΔ(s)Δs

∣∣∣∣∣

≤
∫ t

a

∣∣∣uΔ(s)
∣∣∣Δs

≤
∥∥∥uΔ

∥∥∥
∞
(t − a)

≤
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞
.

(3.20)

Combining this with

∣∣∣u
(
σ2(b)

)∣∣∣ =
∣∣∣u(σ(b)) + μ(σ(b))uΔ(σ(b))

∣∣∣
≤
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞
+
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞

= 2
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞
,

(3.21)

we have ‖u‖∞ ≤ 2[σ2(b) − a]‖uΔ‖∞.
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Secondly, we show that (3.19) holds.
For all t ∈ [a, b], we have from uΔ(σ(b)) = 0 that

∣∣∣uΔ(t)
∣∣∣ =

∣∣∣∣∣−
∫b

t

uΔ2
(s)Δs + uΔ(b)

∣∣∣∣∣

=

∣∣∣∣∣−
∫b

t

uΔ2
(s)Δs + uΔ(σ(b)) − μ(b)uΔ2

(b)

∣∣∣∣∣
≤
∥∥∥uΔ2

∥∥∥
∞
(b − t) +

∥∥∥uΔ2
∥∥∥
∞
μ(b)

≤ 2
[
σ2(b) − a

]∥∥∥uΔ2
∥∥∥
∞
.

(3.22)

Combining this with

∣∣uΔ(σ(b))
∣∣ = 0 ≤ 2

[
σ2(b) − a

]∥∥∥uΔ2
∥∥∥
∞
, (3.23)

we have ‖uΔ‖∞ ≤ 2[σ2(b) − a]‖uΔ2‖∞.

Define

‖u‖E = max
{

‖u‖∞, 2
[
σ2(b) − a

]∥∥∥uΔ
∥∥∥
∞
, 4

[
σ2(b) − a

]2∥∥∥uΔ2
∥∥∥
∞

}

= 4
[
σ2(b) − a

]2∥∥∥uΔ2
∥∥∥
∞
.

(3.24)

Then E is a Banach space under the norm ‖ · ‖E. Set

(Aλu)(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs, t ∈

[
a, σ2(b)

]
T

. (3.25)

Then Aλ : E → E. Since Aλ : C2
Δ([a, σ

2(b)]) → C4
Δ([a, σ

2(b)]) ↪→ C2
Δ([a, σ

2(b)]), we have
that Aλ is completely continuous.

Lemma 3.3. Suppose (H1) and (H2) hold, and u(t) is a solution of problem (1.1), then

u(t) ≥ 0, t ∈
[
a, σ2(b)

]
T

, uΔ2
(t) ≤ 0, t ∈ [a, b]

T
, (3.26)

u(t) > 0, uΔ2
(t) < 0, t ∈ [ξ, ω]

T
, (3.27)

min
t∈[ξ,ω]

T

(
−uΔ2

(t)
)
≥ 1

4

∥∥∥uΔ2
∥∥∥
∞
=

1

16[σ2(b) − a]2
‖u‖E, (3.28)

min
t∈[ξ,ω]

T

u(t) ≥ 1
4
‖u‖∞, (3.29)

min
t∈[ξ,ω]

T

u(t) ≥ m

64[σ2(b) − a]
‖u‖E. (3.30)
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Proof. By λ > 0, (3.7), (3.8) and the fact that h, f are nonnegative functions, (3.26) holds. For
t ∈ [ξ, ω]

T
, from (3.7), (3.26), (3.2) and (3.12), we have

u(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ λf(0, 0)
∫ω

ξ

[∫ω

ξ

G(t, s)G
(
s, j

)
h
(
j
)
Δj

]
Δs

≥ λ
m
[
σ2(b) − a

]2
16

f(0, 0)
∫ω

ξ

h
(
j
)
Δj

> 0,

−uΔ2
(t) = λ

∫ρ(b)

a

G(t, s)h(s)f
(
u(s), uΔ2

(s)
)
Δs

≥ λf(0, 0)
∫ω

ξ

G(t, s)h(s)Δs

≥ λ
σ2(b) − a

4
f(0, 0)

∫ω

ξ

h(s)Δs

> 0

(3.31)

Therefor (3.27) holds.
For all t ∈ [ξ, ω]

T
, for all x ∈ [a, σ2(b)]

T
, from (3.7), (3.11), and (3.12), we have

−uΔ2
(t) = λ

∫ρ(b)

a

G(t, s)h(s)f
(
u(s), uΔ2

(s)
)
Δs

≥ 1
4
λ

∫ρ(b)

a

G(x, s)h(s)f
(
u(s), uΔ2

(s)
)
Δs

=
1
4

[
−uΔ2

(x)
]
,

u(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ 1
4
λ

∫σ(b)

a

[∫ρ(b)

a

G(x, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

=
1
4
u(x),

u(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ σ2(b) − a

4
λ

∫ω

ξ

[∫ρ(b)

a

G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ σ2(b) − a

16
λ

∫ω

ξ

[∫ρ(b)

a

G
(
x, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs
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≥ m
[
σ2(b) − a

]

16

[
−uΔ2

(x)
]

=
m

64[σ2(b) − a]
4
[
σ2(b) − a

]2[−uΔ2
(x)

]
.

(3.32)

Thus (3.28), (3.29), and (3.30) hold.

At the end of this section, we state a lemma of the upper and lower solution method,
which is needed for some proofs in next section.

Lemma 3.4 (See [17, Theorem 3.3.8]). Let P be a cone with nonempty interior in Banach space E,
and A : P → P a completely continuous and increasing operator. Suppose the following conditions
hold:

(i) there exist x0, y0 ∈ P , such that x0 ≤ Ax0, Ay0 ≤ y0, x0 � y0;

(ii) there exist φ ∈ P and a constant α > 0, such that Ax ≥ α‖Ax‖φ, for all x ∈ P ;

(iii) y0 is in the interior of P , and there exists β > 0, such that φ ≥ βx0.

Then A has at least one fixed point x /= 0 in P .

4. The Main Result

Our main result is the following existence theorem.

Theorem 4.1. Suppose (H1) and (H2) hold, and either (H3) or (H4) holds. Here

(H3) lim(u,w)→ (+∞,−∞)(f(u,w)/u) = +∞;

(H4) lim(u,w)→ (+∞,−∞)(f(u,w)/(−w)) = +∞.

Then there exists λ∗ > 0, such that problem (1.1) has at least one positive solution for λ ∈ (0, λ∗], and
has no positive solution for λ ∈ (λ∗,+∞).

To prove Theorem 4.1, first, we show that problem (1.1) has positive solutions for some
λ small enough.

Theorem 4.2. Suppose (H1) and (H2) hold. Then there exists λ∗ > 0, such that problem (1.1) has
at least one positive solution for λ ∈ (0, λ∗].

Proof. The fixed point of Aλ defined in (3.25) is the solution of problem (1.1), so it will be
enough to find the fixed point of Aλ.

Set

M̃ = max
t∈[a,b]

T

∫ρ(b)

a

G(t, s)h(s)Δs > 0. (4.1)
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Let

λ∗ =
1

M̃f
(
4[σ2(b) − a]2,−1

) . (4.2)

For λ ∈ (0, λ∗], we have

f

(
4
[
σ2(b) − a

]2
,−1

)
≤ 1

M̃λ
. (4.3)

Set

D1 =
{

u ∈ E | ‖u‖E ≤ 4
[
σ2(b) − a

]2}
. (4.4)

If u ∈ D1, then

‖u‖∞ ≤ ‖u‖E ≤ 4
[
σ2(b) − a

]2
,

∥∥∥uΔ2
∥∥∥
∞
=

‖u‖E
4[σ2(b) − a]2

≤ 1. (4.5)

Consequently, for t ∈ [a, b]
T
,

∣∣∣ (Aλu)Δ
2
(t)

∣∣∣ =
∣∣∣∣∣−λ

∫ρ(b)

a

G(t, s)h(s)f
(
u(s), uΔ2

(s)
)
Δs

∣∣∣∣∣
≤ M̃λf

(
‖u‖∞,−

∥∥∥uΔ2
∥∥∥
∞

)

≤ M̃λf

(
4
[
σ2(b) − a

]2
,−1

)

≤ 1.

(4.6)

Then

‖Aλu‖E = 4
[
σ2(b) − a

]2∥∥∥(Aλu)Δ
2
∥∥∥
∞
≤ 4

[
σ2(b) − a

]2
, (4.7)

that is, Aλ : D1 → D1. By the Schauder fixed point theorem, Aλ has at least one fixed point
uλ in E satisfying ‖uλ‖E ≤ 4[σ2(b)−a]2. From Lemma 3.3, uλ is a positive solution of problem
(1.1).

Next, we show that there exist no positive solution for some λ large enough.

Theorem 4.3. Suppose that (H1) and (H2), hold, and either (H3) or (H4) holds. Then problem
(1.1) has no positive solution for λ  1.

Proof. Suppose uλ ∈ E is a solution to problem (1.1) for some λ > 0. We divide our discussions
into two cases.
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Case 1 ((H1), (H2) and (H3) hold). By (H3), for a fixedM1 > 0, there isH > 0 such that

f(u,w) ≥ M1u, u ≥ mH

64[σ2(b) − a]
, w ≤ −H

16[σ2(b) − a]2
. (4.8)

If u ∈ E with ‖uλ‖E ≥ H, then from (3.30) and (3.28), we have

min
t∈[ξ,ω]

T

uλ(t) ≥ m

64[σ2(b) − a]
‖un‖E ≥ mH

64[σ2(b) − a]
,

min
t∈[ξ,ω]

T

(
−uΔ2

λ (t)
)
≥ 1

4

∥∥∥uΔ2

λ

∥∥∥
∞
=

‖uλ‖E
16[σ2(b) − a]2

≥ H

16[σ2(b) − a]2
.

(4.9)

Further by (4.8),

f
(
uλ(t), uΔ2

λ (t)
)
≥ M1uλ(t), t ∈ [ξ, ω]

T
. (4.10)

If u ∈ E with ‖uλ‖E < H, then from (3.27), there is

f
(
uλ(t), uΔ2

λ (t)
)
≥ M2uλ(t), t ∈ [ξ, ω]

T
(4.11)

with

M2 = min
t∈[ξ,ω]

T

f
(
uλ(t), uΔ2

λ (t)
)

uλ(t)
> 0. (4.12)

Set M̂ = min{M1,M2}, we have from (4.10) and (4.11) that

f
(
uλ(t), uΔ2

λ (t)
)
≥ M̂uλ(t), t ∈ [ξ, ω]

T
. (4.13)

Combining this with (3.7), (4.13), (3.29), (3.12), and (3.2), we have for t ∈ [ξ, ω]
T
,

uλ(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
uλ

(
j
)
, uΔ2

λ

(
j
))

Δj

]
Δs

≥ λM̂

∫σ(b)

a

[∫ω

ξ

G(t, s)G
(
s, j

)
h
(
j
)
uλ

(
j
)
Δj

]
Δs

≥ λM̂‖uλ‖∞
4

∫ω

ξ

[∫ω

ξ

G(t, s)G
(
s, j

)
h
(
j
)
Δj

]
Δs

≥ λ
M̂m

[
σ2(b) − a

]2
64

‖uλ‖∞
∫ω

ξ

h
(
j
)
Δj.

(4.14)



12 Abstract and Applied Analysis

If we choose λ such that

λ
M̂m

[
σ2(b) − a

]2
64

∫ω

ξ

h
(
j
)
Δj > 1, (4.15)

then

uλ(t) > ‖uλ‖∞, t ∈ [ξ, ω]
T
, (4.16)

which is a contradiction.

Case 2 ((H1), (H2), and (H4) hold). Similar to Case 1, by (H4), there is also an M̂, such that

f
(
uλ(t), uΔ2

λ (t)
)
≥ M̂

(
−uΔ2

λ (t)
)
, t ∈ [ξ, ω]

T
. (4.17)

Thus for t ∈ [ξ, ω]
T
, we have from (3.7), (4.17), (3.28), and (3.12) that

−uΔ2

λ (t) = λ

∫ρ(b)

a

G(t, s)h(s)f
(
uλ(s), uΔ2

λ (s)
)
Δs

≥ λM̂

∫ω

ξ

G(t, s)h(s)
(
−uΔ2

λ (s)
)
Δs

≥ λ
M̂

[
σ2(b) − a

]

16

∥∥∥uΔ2

λ

∥∥∥
∞

∫ω

ξ

h(s)Δs.

(4.18)

If we take λ such that

λ
M̂

[
σ2(b) − a

]

16

∫ω

ξ

h(s)Δs > 1, (4.19)

then

−uΔ2

λ (t) >
∥∥∥uΔ2

λ

∥∥∥
∞
, t ∈ [ξ, ω]

T
, (4.20)

which is a contradiction.

Therefore, problem (1.1) has no positive solution for λ  1.

Define the set B = {λ > 0 : problem (1.1) has at least one positive solution in E}.

Theorem 4.4. One has

λ ∈ B =⇒ λ ∈ B, ∀λ ∈
(
0, λ

]
. (4.21)
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Proof. Let λ∗ be defined as Theorem 4.2. For λ ≤ λ∗, the result holds from Theorem 4.2. So, we
discuss the case that λ > λ∗.

For λ ∈ (0, λ], three cases will be discussed.

(1) λ ∈ (0, λ∗];

(2) λ ∈ (λ∗, λ);

(3) λ = λ.

Cases (1) and (3) are clear from Theorem 4.2 and the assumption λ ∈ B, respectively. Now,
we deal with Case (2).

Define

D2 =
{
u ∈ E | u(t) ≥ 0, t ∈

[
a, σ2(b)

]
, uΔ2

(t) ≤ 0, t ∈ [a, b]
}
. (4.22)

Then D2 is a cone with nonempty interior in E. For λ ∈ (λ∗, λ), let Aλ be defined as (3.25).
Then Aλ : D2 → D2 and Aλ is an increasing operator from (H2). Set u∗ and u as positive
solutions of problem (1.1) at λ∗ and λ, respectively. Then

(Aλu∗)(t) > (Aλ∗u∗)(t) = u∗(t),

(Aλu)(t) <
(
Aλu

)
(t) = u(t).

(4.23)

So u is an upper solution of the operator Aλ and u∗ is a lower solution. If u∗ ≤ u, then there
exists a positive solution u satisfying u∗(t) ≤ u(t) ≤ u(t) for t ∈ [a, σ2(b)]

T
by the upper and

lower solution method. If u∗ � u, we verify the conditions of Lemma 3.4.
Clearly, the condition (i) in Lemma 3.4 holds for u∗ = x0, u = y0.
For all u ∈ D2, for all t, z ∈ [a, σ2(b)]

T
, x ∈ [ξ, ω]

T
, we have from (3.10), (3.12), (3.11),

and (3.2) that

(Aλu)(t) = λ

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ λ
t − a

σ2(b) − a

∫σ(b)

a

[∫ρ(b)

a

G(x, s)G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ λ
t − a

4

∫ω

ξ

[∫ρ(b)

a

G
(
s, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ λ
t − a

4

∫ω

ξ

[∫ρ(b)

a

1
4
G
(
z, j

)
h
(
j
)
f
(
u
(
j
)
, uΔ2(

j
))

Δj

]
Δs

≥ m

16
(t − a)

[
−(Aλu)Δ

2
(z)

]
.

(4.24)
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Then

Aλu ≥ m

16

∥∥∥(Aλu)Δ
2
∥∥∥
∞
(t − a) =

m

64[σ2(b) − a]2
‖Aλu‖E(t − a), (4.25)

and the condition (ii) of Lemma 3.4 is satisfied for φ = t − a, α = m/64[σ2(b) − a]2 > 0.
From (3.26) and (3.27), we have that u is in the interior of D2. From (3.8), there is

u∗(t) = λ∗

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
u∗
(
j
)
, uΔ2

∗
(
j
))

Δj

]
Δs

≤ λ∗(t − a)
∫σ(b)

a

[∫ρ(b)

a
G
(
s, j

)
h
(
j
)
f
(
u∗
(
j
)
, uΔ2

∗
(
j
))

Δj

]
Δs

≤ λ∗(t − a)

[∫σ(b)

a

(s − a)Δs

][∫ρ(b)

a

h
(
j
)
f
(
u∗
(
j
)
, uΔ2

∗
(
j
))

Δj

]
.

(4.26)

This implies φ(t) = t − a ≥ βu∗(t), t ∈ [a, σ2(b)]
T
for

β =

{
λ∗

[∫σ(b)

a

(s − a)Δs

][∫ρ(b)

a

h
(
j
)
f
(
u∗
(
j
)
, uΔ2

∗
(
j
))

Δj

]}−1
> 0, (4.27)

and the condition (iii) of Lemma 3.4 is satisfied.
By Lemmas 3.4 and 3.3, we get a positive solution uλ in D2 ∈ E. That is, λ ∈ B.

Now, we give the proof of Theorem 4.1.

Proof of Theorem 4.1. From Theorems 4.2 and 4.3, B /= ∅ is bounded. Thus, we can define λ∗ =
supB. Firstly, we show that λ∗ ∈ B.

Choose a sequence {λn}∞n=1, λn ∈ B (n = 1, 2, . . .) which belongs to a compact
subinterval in (0,∞), and λn → λ∗(n → ∞). Then there exists N1 > 0, for n ≥ N1,

λn >
λ∗

2
. (4.28)

Let un ∈ E satisfy

Aλnun = un. (4.29)

If {un}∞n=1 is uniformly bounded, then there exists u∗ such that un → u∗ (n → ∞) and

un = Aλnun −→ Aλ∗u
∗ (n −→ ∞). (4.30)
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Consequently,

u∗ = Aλ∗u
∗. (4.31)

By Lemma 3.3, u∗ is a positive solution of problem (1.1), and λ∗ ∈ B.
Next, we will prove that {un}∞n=1 is uniformly bounded and the discussions will be

divided into two cases.

Case 1 ((H1), (H2), and (H3) hold). From (H3), there exists H1 > 0,

f(u,w) ≥ M1u, for u ≥ mH1

64[σ2(b) − a]
, −w ≥ H1

16[σ2(b) − a]2
, (4.32)

where M1 > 0 satisfies

M1
[
σ2(b) − a

]2
mλ∗

128

∫ω

ξ

h
(
j
)
Δj > 1. (4.33)

Suppose on the contrary that {un}∞n=1 is unbounded. Then

‖un‖E −→ ∞, n −→ ∞, (4.34)

which implies that there exists N2 > 0, ‖un‖E ≥ H1 for n ≥ N2. From (3.30) and (3.28), we
have

min
t∈[ξ,ω]

T

un(t) ≥ m

64[σ2(b) − a]
‖un‖E ≥ mH1

64[σ2(b) − a]
,

min
t∈[ξ,ω]

T

(
−uΔ2

n (t)
)
≥ 1

16[σ2(b) − a]2
‖un‖E ≥ H1

16[σ2(b) − a]2
.

(4.35)

Subsequently, for t ∈ [ξ, ω]
T
, n ≥ max{N1,N2},

un(t) = λn

∫σ(b)

a

[∫ρ(b)

a

G(t, s)G
(
s, j

)
h
(
j
)
f
(
un

(
j
)
, uΔ2

n

(
j
))

Δj

]
Δs

≥ λnM1

∫σ(b)

a

[∫ω

ξ

G(t, s)G
(
s, j

)
h
(
j
)
un

(
j
)
Δj

]
Δs

≥ λnM1

4
‖un‖∞

∫ω

ξ

[∫ω

ξ

G(t, s)G
(
s, j

)
h
(
j
)
Δj

]
Δs

≥ M1
[
σ2(b) − a

]2
mλ∗

128
‖un‖∞

∫ω

ξ

h
(
j
)
Δj

> ‖un‖∞

(4.36)

by (4.32), (3.29), (3.12), (4.28), (3.2), and (4.33). This is a contradiction.
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Case 2 ((H1), (H2), and (H4) hold). From (H4), there exists H2 > 0,

f(u,w) ≥ M2(−w), for u ≥ mH2

64[σ2(b) − a]
, −w ≥ H2

16[σ2(b) − a]2
, (4.37)

where M2 > 0 satisfies

M2
[
σ2(b) − a

]
λ∗

32

∫ω

ξ

h(s)Δs > 1. (4.38)

Suppose on the contrary that {un}∞n=1 is unbounded. Then similar to Case 1, there existsN3 > 0
such that ‖un‖E ≥ H2 for n ≥ N3. Thus for t ∈ [ξ, ω]

T
, n ≥ max{N1,N3}, we have

−uΔ2

n (t) = λn

∫ρ(b)

a

G(t, s)h(s)f
(
un(s), uΔ2

n (s)
)
Δs

≥ λnM2

∫ω

ξ

G(t, s)h(s)
(
−uΔ2

n (s)
)
Δs

>
M2

4
λ∗

2

∥∥∥uΔ2

n

∥∥∥
∞
σ2(b) − a

4

∫ω

ξ

h(s)Δs

>
∥∥∥uΔ2

n

∥∥∥
∞

(4.39)

by (4.37), (3.28), (3.12), (4.28) and (4.38). This is also a contradiction.

According to the definition of λ∗ and B, and Theorem 4.4, we complete the proof.
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