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The gradient projection algorithm plays an important role in solving constrained convex
minimization problems. In general, the gradient projection algorithm has only weak convergence
in infinite-dimensional Hilbert spaces. Recently, H. K. Xu (2011) provided two modified gradient
projection algorithms which have strong convergence. Motivated by Xu’s work, in the present
paper, we suggest three more simpler variant gradient projection methods so that strong
convergence is guaranteed.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed and convex subset of H. Let
f : H → R be a real-valued convex function. Now we consider the following constrained
convex minimization problem:

min
x∈C

f(x). (1.1)

Assume that (1.1) is consistent; that is, it has a solution and we use S to denote its solution
set. If f is Fréchet differentiable, then x∗ ∈ C solves (1.1) if and only if x∗ ∈ C satisfies the
following optimality condition:

〈∇f(x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (1.2)
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where ∇f denotes the gradient of f . Note that (1.2) can be rewritten as

〈x∗ − (
x∗ − ∇f(x∗)

)
, x − x∗〉 ≥ 0, ∀x ∈ C. (1.3)

This shows that the minimization (1.1) is equivalent to the fixed-point problem:

ProjC
(
x∗ − γ∇f(x∗)

)
= x∗, (1.4)

where γ > 0 is an any constant and ProjC is the nearest point projection from H onto C.
By using this relationship, the gradient-projection algorithm is usually applied to solve the
minimization problem (1.1). This algorithm generates a sequence {xn} through the recursion:

xn+1 = ProjC
(
xn − γn∇f(xn)

)
, n ≥ 0, (1.5)

where the initial guess x0 ∈ C is chosen arbitrarily and {γn} is a sequence of step sizes which
may be chosen in different ways. The gradient-projection algorithm (1.5) is a powerful tool
for solving constrained convex optimization problems and has well been studied in the case
of constant stepsizes γn = γ for all n. The reader can refer to [1–9]. It has recently been applied
to solve split feasibility problems which find applications in image reconstructions and the
intensity modulated radiation therapy (see [10–17]).

It is known [3] that if f has a Lipschitz continuous and strongly monotone gradient,
then the sequence {xn} can be strongly convergent to a minimizer of f in C. If the gradient of
f is only assumed to be Lipschitz continuous, then {xn} can only be weakly convergent if H
is infinite dimensional. This gives naturally rise to a question.

Question 1. How to appropriately modify the gradient projection algorithm so as to have
strong convergence?

For this purpose, recently, Xu [18] first introduced the following modification:

xn+1 = θnh(xn) + (1 − θn)ProjC
(
xn − γn∇f(xn)

)
, n ≥ 0, (1.6)

where the sequences {θn} ⊂ (0, 1) and {γn} ⊂ (0,∞) satisfy the following conditions:

(i) limn→∞θn = 0,
∑∞

n=0 θn = ∞ and
∑∞

n=0 |θn+1 − θn| < ∞;

(ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L and
∑∞

n=0 |γn+1 − γn| < ∞.

Xu [18] proved that the sequence {xn} converges strongly to a minimizer of (1.1).

Remark 1.1. Xu’s modification (1.6) is a convex combination of the gradient-projection
algorithm (1.5) and a self-mapping h(x) which is usually referred as a so-called viscosity
item.
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In [18], Xu presented another modification as follows:

yn = ProjC
(
xn − γn∇f(xn)

)
, n ≥ 0,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = ProjCn∩Qn

x0.

(1.7)

Consequently, Xu [18] proved that Algorithm (1.7) also converges strongly to x∗ which solves
the minimization problem (1.1).

Remark 1.2. Equation (1.7) involved in additional projections which couple the gradient
projection method (1.5)with the so-called CQ method.

It should be pointed out that Xu’s modifications (1.6) and (1.7) are interesting and
provide us with a direction for solving (1.1) in infinite-dimensional Hilbert spaces.

Motivated by Xu’s work, in the present paper, we suggest three variant gradient
projection methods so that strong convergence is guaranteed for solving (1.1) in infinite-
dimensional Hilbert spaces. Our motivations are mainly in the two respects.

Reason 1. The solution of the minimization problem (1.1) is not always unique, so
that there may be many solutions to the problem. In that case, a special solution (e.g., the
minimum norm solution) must be found from among candidate solutions. The minimum
norm problem is motivated by the following least squares solution to the constrained linear
inverse problem:

Bx = b,

x ∈ Ω,
(1.8)

where Ω is a nonempty closed convex subset of a real Hilbert spaceH, B is a bounded linear
operator fromH to another real Hilbert spaceH1, B∗ is the adjoint of B, and b is a given point
in H1. The least-squares solution to (1.8) is the least-norm minimizer of the minimization
problem:

min
x∈Ω

‖Bx − b‖. (1.9)

For some related works, please see Solodov and Svaiter [19], Goebel and Kirk [20], and
Martinez-Yanes and Xu [21].

Reason 2. Projection methods are used extensively in a variety of methods in
optimization theory. Apart from theoretical interest, the main advantage of projection
methods, which makes them successful in real-world applications, is computational (see [22–
31]). In this respect, (1.7) is particularly useful. But we observe that (1.7) involves two half-
spaces Cn and Qn. If the sets Cn and Qn are simple enough, then PCn and PQn are easily
executed. But Cn ∩Qn may be complicate, so that the projection PCn∩Qn is not easily executed.
This might seriously affect the efficiency of the method. Hence, it is interesting that one can
relax Cn or Qn from (1.7).
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In the present paper, we suggest the following three methods:

xn+1 = ProjC
(
θnh(x) + (1 − θn)xn − γn∇f(xn)

)
, n ≥ 0,

xn+1 = ProjC
(
I − γ∇f

)
ProjC((1 − θn)xn), n ≥ 0,

(1.10)

yn = ProjC
(
xn − γn∇f(xn)

)
, n ≥ 0,

Cn =
{
z ∈ Cn−1 :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = ProjCnx0.

(1.11)

Wewill show that (1.10) can be used to find the minimum norm solution of the minimization
problem (1.1), and (1.11)which is only involved in Cn also has strong convergence.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T : C → C
is called nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (2.1)

Recall that the (nearest point or metric) projection from H onto C, denoted ProjC, assigns, to
each x ∈ H, the unique point ProjC(x) ∈ C with the property

∥∥x − ProjC(x)
∥∥ = inf

{∥∥x − y
∥∥ : y ∈ C

}
. (2.2)

It is well known that the metric projection ProjC of H onto C has the following basic pro-
perties:

(i) ‖ProjC(x) − ProjC(y)‖ ≤ ‖x − y‖, for all x, y ∈ H;

(ii) 〈x − y,ProjC(x) − ProjC(y)〉 ≥ ‖ProjC(x) − ProjC(y)‖2, for every x, y ∈ H;

(iii) 〈x − ProjC(x), y − ProjC(x)〉 ≤ 0, for all x ∈ H, y ∈ C.

Next we adopt the following notation:

(i) xn → x means that xn converges strongly to x;

(ii) xn ⇀ x means that xn converges weakly to x;

(iii) ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence {xn}.

Lemma 2.1 (see [32] (Demiclosedness Principle)). LetC be a closed and convex subset of a Hilbert
space H, and let T : C → C be a nonexpansive mapping with Fix (T)/= ∅. If {xn} is a sequence in C
weakly converging to x and if {(I − T)xn} converges strongly to y, then

(I − T)x = y. (2.3)

In particular, if y = 0, then x ∈ Fix (T).
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Lemma 2.2 (see [33]). Let C be a closed convex subset of H. Let {xn} be a sequence in H and
x0 ∈ H. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖xn − x0‖ ≤ ∥
∥x0 − ProjC(x0)

∥
∥, ∀n ≥ 0, (2.4)

then xn → ProjC(x0).

Lemma 2.3 (see [34]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, (2.5)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

Lemma 2.4 (see [35]). Let {xn} and {yn} be bounded sequences in a Banach space X, and let {βn}
be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.6)

Suppose

xn+1 =
(
1 − βn

)
yn + βnxn, (2.7)

for all n ≥ 0, and

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (2.8)

Then, limn→∞‖yn − xn‖ = 0.

3. Main Results

In this section, we will state and prove our main results.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let f : C → R be a real-
valued Fréchet differentiable convex function. Assume that the solution set S of (1.1) is nonempty.
Assume that the gradient ∇f is L-Lipschitzian. Let h : C → H be a ρ-contraction with ρ ∈ [0, 1).
Let {xn} be a sequence generated by the following hybrid gradient projection algorithm:

xn+1 = ProjC
(
θnh(xn) + (1 − θn)xn − γn∇f(xn)

)
, n ≥ 0, (3.1)
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where the sequences {θn} ⊂ (0, 1) and {γn} ⊂ (0,∞) satisfy the following conditions:

(i) limn→∞θn = 0,
∑∞

n=0 θn = ∞ and
∑∞

n=0 |θn+1 − θn| < ∞;

(ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L and
∑∞

n=0 |γn+1 − γn| < ∞.

Then the sequence {xn} generated by (3.1) converges to a minimizer x̂ of (1.1) which is the unique
solution of the following variational inequality:

x̂ ∈ S, 〈(I − h)x̂, x − x̂〉 ≥ 0, x ∈ S. (3.2)

Proof. Take any x∗ ∈ S. Since x∗ ∈ C solves the minimization problem (1.1) if and only if x∗

solves the fixed-point equation, x∗ = ProjC(I − γ∇f)x∗ for any fixed positive number γ . So,
we have x∗ = ProjC(I − γn∇f)x∗ for all n ≥ 0. It can be rewritten as

x∗ = ProjC

(
θnx

∗ + (1 − θn)
(
x∗ − γn

1 − θn
∇f(x∗)

))
, n ≥ 0. (3.3)

From condition (ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L, there exist two constants a
and b such that 0 < a ≤ γn ≤ b < 2/L for sufficiently large n; without loss of generality, we
can assume 0 < a ≤ γn ≤ b < 2/L for all n. Since limn→∞θn = 0, without loss of generality,
we can assume that 0 < θn < 1 − bL/2 for all n ≥ 0. So, 0 < lim infn→∞(γn/(1 − θn)) ≤
lim supn→∞(γn/(1 − θn)) < 2/L. Hence, I − (γn/(1 − θn))∇f is nonexpansive.

From (3.1), we get

‖xn+1 − x∗‖ =
∥∥ProjC

(
θnh(xn) + (1 − θn)xn − γn∇f(xn)

) − ProjC
(
I − γn∇f

)
x∗∥∥

=
∥∥∥∥ProjC

(
θnh(xn) + (1 − θn)

(
xn −

γn
1 − θn

∇f(xn)
))

−ProjC
(
θnx

∗ + (1 − θn)
(
x∗ − γn

1 − θn
∇f(x∗)

))∥∥∥∥

≤ θn‖h(xn) − x∗‖ + (1 − θn)

×
∥∥∥∥

(
I − γn

1 − θn
∇f

)
xn −

(
I − γn

1 − θn
∇f

)
x∗
∥∥∥∥

≤ θn‖h(xn) − h(x∗)‖ + θn‖h(x∗) − x∗‖ + (1 − θn)‖xn − x∗‖
≤ θnρ‖xn − x∗‖ + θn‖h(x∗) − x∗‖ + (1 − θn)‖xn − x∗‖
=
(
1 − (

1 − ρ
)
θn
)‖xn − x∗‖ + θn‖h(x∗) − x∗‖

≤ max
{
‖xn − x∗‖, 1

1 − ρ
‖h(x∗) − x∗‖

}
.

(3.4)

Thus, we deduce by induction that

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, 1

1 − ρ
‖h(x∗) − x∗‖

}
. (3.5)
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This indicates that the sequence {xn} is bounded and so are the sequences {h(xn)} and
{∇f(xn)}. Then, we can chose a constant M > 0 such that

sup
n≥0

{‖h(xn)‖ + ‖xn‖ +
∥
∥∇f(xn)

∥
∥} ≤ M. (3.6)

Next, we estimate ‖xn+1 − xn‖. By (3.1), we have

‖xn+1 − xn‖ =
∥∥ProjC

(
θnh(xn) + (1 − θn)xn − γn∇f(xn)

)

−ProjC
(
θn−1h(xn−1) + (1 − θn−1)xn−1 − γn−1∇f(xn−1)

)∥∥

≤ ∥∥((1 − θn)xn − γn∇f(xn)
) − (

(1 − θn−1)xn−1 − γn−1∇f(xn−1)
)∥∥

+ ‖θnh(xn) − θn−1h(xn−1)‖

=
∥∥∥∥(1 − θn)

(
I − γn

1 − θn
∇f

)
xn − (1 − θn)

(
I − γn

1 − θn
∇f

)
xn−1

+(θn−1 − θn)xn−1 +
(
γn−1 − γn

)∇f(xn−1)
∥∥∥∥

+ ‖θn(h(xn) − h(xn−1)) + (θn − θn−1)h(xn−1)‖

≤ (1 − θn)
∥∥∥∥

(
I − γn

1 − θn
∇f

)
xn −

(
I − γn

1 − θn
∇f

)
xn−1

∥∥∥∥ + |θn − θn−1|‖xn−1‖

+
∣∣γn − γn−1

∣∣∥∥∇f(xn−1)
∥∥ + θn‖h(xn) − h(xn−1)‖ + |θn − θn−1|‖h(xn−1)‖

≤ (
1 − (

1 − ρ
)
θn
)‖xn − xn−1‖ + |θn − θn−1|(‖h(xn−1)‖ + ‖xn−1‖)

+
∣∣γn − γn−1

∣
∣
∥
∥∇f(xn−1)

∥
∥

≤ (
1 − (

1 − ρ
)
θn
)‖xn − xn−1‖ +

(∣∣γn − γn−1
∣∣ + |θn − θn−1|

)
M.

(3.7)

Then, we can combine the last inequality and Lemma 2.3 to conclude that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

Now we show that the weak limit set ωw(xn) ⊂ S. Choose any x̃ ∈ ωw(xn). Then there
must exist a subsequence {xnj} of {xn} such that xnj ⇀ x̃. At the same time, the real number
sequence {γnj} is bounded. Thus, there exists a subsequence {γnji

} of {γnj} which converges
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to γ . Without loss of generality, we may assume that γnj → γ . Note that 0 < lim infn→∞γn ≤
lim supn→∞γn < 2/L. So, γ ∈ (0, 2/L). That is, γnj → γ ∈ (0, 2/L) as j → ∞. Next, we only
need to show that x̃ ∈ S. First, from (3.8) we have that ‖xnj+1 − xnj‖ → 0. Then, we have

∥
∥
∥xnj − ProjC

(
I − γ∇f

)
xnj

∥
∥
∥

≤
∥
∥
∥xnj − xnj+1

∥
∥
∥ +

∥
∥
∥xnj+1 − ProjC

(
I − γnj∇f

)
xnj

∥
∥
∥

+
∥
∥
∥ProjC

(
I − γnj∇f

)
xnj − ProjC

(
I − γ∇f

)
xnj

∥
∥
∥

=
∥
∥
∥ProjC

(
θnj h

(
xnj

)
+
(
1 − θnj

)
xnj − γnj∇f

(
xnj

))

−ProjC
(
I − γnj∇f

)
xnj

∥
∥∥

+
∥∥∥ProjC

(
I − γnj∇f

)
xnj − ProjC

(
I − γ∇f

)
xnj

∥∥∥ +
∥∥∥xnj − xnj+1

∥∥∥

≤ θnj

(∥∥∥h
(
xnj

)∥∥∥ +
∥∥∥xnj

∥∥∥
)
+
∣∣∣γnj − γ

∣∣∣
∥∥∥∇f

(
xnj

)∥∥∥ +
∥∥∥xnj − xnj+1

∥∥∥

−→ 0.

(3.9)

Since γ ∈ (0, 2/L), ProjC(I − γ∇f) is nonexpansive. It then follows from Lemma 2.1 (demi-
closedness principle) that x̃ ∈ Fix (ProjC(I − γ∇f)). Hence, x̃ ∈ S because of S = Fix (ProjC(I −
γ∇f)). So, ωw(xn) ⊂ S.

Finally, we prove that xn → x̂, where x̂ is the unique solution of the VI (3.2). First, we
show that lim supn→∞〈(I − h)x̂, xn − x̂〉 ≥ 0. Observe that there exists a subsequence {xnj} of
{xn} satisfying

lim sup
n→∞

〈(I − h)x̂, xn − x̂〉 = lim
j→∞

〈(I − h)x̂, xnj − x̂〉. (3.10)

Since {xnj} is bounded, there exists a subsequence {xnji
} of {xnj} such that xnji

⇀ x̃. Without
loss of generality, we assume that xnj ⇀ x̃. Then, we obtain

lim sup
n→∞

〈(I − h)x̂, xn − x̂〉 = lim
j→∞

〈(I − h)x̂, xnj − x̂〉 = 〈(I − h)x̂, x̃ − x̂〉 ≥ 0. (3.11)

By using the property (ii) of ProjC, we have

‖xn+1 − x̂‖2

=
∥∥ProjC

(
θnh(xn) + (1 − θn)xn − γn∇f(xn)

) − ProjC
(
θnx̂ + (1 − θn)x̂ − γn∇f(x̂)

)∥∥2
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≤ 〈θn(h(xn) − x̂) + (1 − θn)
((

I − γn
1 − θn

∇f

)
xn −

(
I − γn

1 − θn
∇f

)
x̂

)
, xn+1 − x̂〉

≤ θn〈h(xn) − h(x̂), xn+1 − x̂〉 + θn〈h(x̂) − x̂, xn+1 − x̂〉

+ (1 − θn)
∥
∥
∥
∥

(
I − γn

1 − θn
∇f

)
xn −

(
I − γn

1 − θn
∇f

)
x̂

∥
∥
∥
∥‖xn+1 − x̂‖

≤ θnρ‖xn − x̂‖‖xn+1 − x̂‖ + θn〈h(x̂) − x̂, xn+1 − x̂〉 + (1 − θn)‖xn − x̂‖‖xn+1 − x̂‖

=
(
1 − (

1 − ρ
)
θn
)‖xn − x̂‖‖xn+1 − x̂‖ + θn〈h(x∗) − x̂, xn+1 − x̂〉

≤ 1 − (
1 − ρ

)
θn

2
‖xn − x̂‖2 + 1

2
‖xn+1 − x̂‖2 + θn〈h(x̂) − x̂, xn+1 − x̂〉.

(3.12)

It follows that

‖xn+1 − x̂‖2 ≤ (
1 − (

1 − ρ
)
θn
)‖xn − x̂‖2

+
(
1 − ρ

)
θn

{
2

1 − ρ
〈h(x̂) − x̂, xn+1 − x̂〉

}
.

(3.13)

From Lemma 2.3, (3.11), and (3.13), we deduce that xn → x̂. This completes the proof.

From Theorem 3.1, we obtain immediately the following theorem.

Theorem 3.2. Let C be a closed convex subset of a real Hilbert space H. Let f : C → R be a
real-valued Fréchet differentiable convex function. Assume S/= ∅. Assume that the gradient ∇f is L-
Lipschitzian. Let {xn} be a sequence generated by the following hybrid gradient projection algorithm:

xn+1 = ProjC
(
(1 − θn)xn − γn∇f(xn)

)
, n ≥ 0, (3.14)

where the sequences {θn} ⊂ (0, 1) and {γn} ⊂ (0,∞) satisfy the following conditions:

(i) limn→∞θn = 0,
∑∞

n=0 θn = ∞ and
∑∞

n=0 |θn+1 − θn| < ∞;

(ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L and
∑∞

n=0 |γn+1 − γn| < ∞.

Then the sequence {xn} generated by (3.14) converges to a minimizer x̂ of (1.1)which is the minimum
norm element in S.

Proof. In Theorem 3.1, we note that h is a non-self mapping from C to the whole space H.
Hence, if we chose h(x) ≡ 0 for all x ∈ C, then Algorithm (3.1) reduces to (3.14). And
sequence xn converges strongly to x̂ = ProjS(0) which is obviously the minimum norm
element in S. The proof is completed.

Next, we suggest another simple algorithm for dropping the assumption∑∞
n=0 |θn+1 − θn| < ∞.



10 Abstract and Applied Analysis

Theorem 3.3. Let C be a closed convex subset of a real Hilbert space H. Let f : C → R be a
real-valued Fréchet differentiable convex function. Assume S/= ∅. Assume that the gradient ∇f is L-
Lipschitzian. Let {xn} be a sequence generated by the following hybrid gradient projection algorithm:

xn+1 = ProjC
(
I − γ∇f

)
ProjC((1 − θn)xn), n ≥ 0, (3.15)

where γ ∈ (0, 2/L) is a constant and the sequences {θn} ⊂ (0, 1) satisfy the following conditions:

(1) limn→∞θn = 0;

(2)
∑∞

n=0 θn = ∞.

Then the sequence {xn} generated by (3.15) converges to a minimizer x̂ of (1.1)which is the minimum
norm element in S.

Proof. Claim 1. The sequence {xn} is bounded.
Take x∗ ∈ S. Then we have

‖xn+1 − x∗‖ =
∥∥ProjC

(
I − γ∇f

)
ProjC((1 − θn)xn) − ProjC

(
I − γ∇f

)
x∗∥∥

≤ ‖(1 − θn)xn − x∗‖
≤ (1 − θn)‖xn − x∗‖ + θn‖x∗‖
≤ max{‖xn − x∗‖, ‖x∗‖}.

(3.16)

By induction,

‖xn − x∗‖ ≤ max{‖x0 − x∗‖, ‖x∗‖}. (3.17)

Claim 2. ‖xn − ProjC(I − γ∇f)xn‖ → 0 and ωw(xn) ⊂ S.
By the similar argument as that in [18, page 366], we can write

ProjC
(
I − γ∇f

)
=
(
1 − β

)
I + βT, (3.18)

where T is nonexpansive and β = (2 + γL)/4 ⊂ (0, 1). Then we can rewrite (3.15) as

xn+1 =
[(
1 − β

)
I + βT

]
ProjC((1 − θn)xn)

=
(
1 − β

)
xn + βTProjC((1 − θn)xn) +

(
1 − β

)(
ProjC((1 − θn)xn) − xn

)

=
(
1 − β

)
xn + βyn,

(3.19)

where

yn = T ProjC((1 − θn)xn) +
1 − β

β

(
ProjC((1 − θn)xn) − xn

)
. (3.20)
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It follows that

∥
∥yn+1 − yn

∥
∥

=
∥
∥
∥
∥T ProjC((1 − θn+1)xn+1) +

1 − β

β

(
ProjC((1 − θn+1)xn+1) − xn+1

)

−T ProjC((1 − θn)xn) −
1 − β

β

(
ProjC((1 − θn)xn) − xn

)
∥
∥
∥
∥

≤ ∥
∥T ProjC((1 − θn+1)xn+1) − T ProjC((1 − θn)xn)

∥
∥

+
1 − β

β

∥
∥ProjC((1 − θn+1)xn+1) − xn+1

∥
∥

+
1 − β

β

∥
∥ProjC((1 − θn)xn) − xn

∥
∥

≤ ‖xn+1 − xn‖ + θn+1
β

‖xn+1‖ + θn
β
‖xn‖.

(3.21)

So,

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (3.22)

This together with Lemma 2.4 implies that

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.23)

Thus,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − β

)∥∥yn − xn

∥∥ = 0. (3.24)

Note that

∥∥xn − ProjC
(
I − γ∇f

)
xn

∥∥

≤ ‖xn − xn+1‖ +
∥∥xn+1 − ProjC

(
I − γ∇f

)
xn

∥∥

= ‖xn − xn+1‖ +
∥∥ProjC

(
I − γ∇f

)
ProjC((1 − θn)xn) − ProjC

(
I − γ∇f

)
xn

∥∥

≤ ‖xn − xn+1‖ + θn‖xn‖.

(3.25)

Therefore,

lim
n→∞

∥∥xn − ProjC
(
I − γ∇f

)
xn

∥∥ = 0. (3.26)

Now repeating the proof of Theorem 3.1, we conclude that ωw(xn) ⊂ S.
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Claim 3. lim supn→∞〈x̂, xn − x̂〉 ≥ 0 where x̂ is the minimum norm element in S.
Observe that there exists a subsequence {xnj} of {xn} satisfying

lim sup
n→∞

〈x̂, xn − x̂〉 = lim
j→∞

〈
x̂, xnj − x̂

〉
. (3.27)

Since {xnj} is bounded, there exists a subsequence {xnji
} of {xnj} such that xnji

⇀ x̃ ∈ S.
Without loss of generality, we assume that xnj ⇀ x̃ ∈ S. Then, we obtain

lim sup
n→∞

〈x̂, xn − x̂〉 = lim
j→∞

〈
x̂, xnj − x̂

〉
= 〈x̂, x̃ − x̂〉 ≥ 0. (3.28)

Claim 4. xn → x̂. From (3.15), we have

‖xn+1 − x̂‖2 = ∥∥ProjC
(
I − γ∇f

)
ProjC((1 − θn)xn) − ProjC

(
I − γ∇f

)
x̂
∥∥2

≤ ‖(1 − θn)xn − x̂‖2

= ‖(1 − θn)(xn − x̂) − θnx̂‖2

= (1 − θn)
2‖xn − x̂‖2 − 2θn(1 − θn)〈x̂, xn − x̂〉 + θ2

n‖x̂‖2

≤ (1 − θn)‖xn − x̂‖2 + θn
{
−2(1 − θn)〈x̂, xn − x̂〉 + θn‖x̂‖2

}
.

(3.29)

It is obvious that lim supn→∞(−2(1−θn)〈x̂, xn−x̂〉+θn‖x̂‖2) ≤ 0. Thenwe can apply Lemma 2.3
to the last inequality to conclude that xn → x̂. The proof is completed.

Next, we suggest another algorithm with the additional projections applied to the
gradient projection algorithm. We show that this algorithm has strong convergence.

Theorem 3.4. Let C be a closed convex subset of a real Hilbert space H. Let f : C → R be a
real-valued Fréchet differentiable convex function. Assume S/= ∅. Assume that the gradient ∇f is
L-Lipschitzian. Let x0 ∈ H. For C1 = C and x1 = ProjC1

x0, define a sequence {xn} of C as follows:

yn = ProjC
(
xn − γn∇f(xn)

)
, n ≥ 0,

Cn =
{
z ∈ Cn−1 :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = ProjCnx0.

(3.30)

where the sequence {γn} ⊂ (0,∞) satisfies the condition 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L.
Then the sequence {xn} generated by (3.30) converges to x̂ = ProjS(x0).
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Proof. It is obvious that Cn is convex. For any x∗ ∈ S, we have

∥
∥yn − x∗∥∥ =

∥
∥ProjC

(
xn − γn∇f(xn)

) − ProjC
(
x∗ − γn∇f(x∗)

)∥∥

≤ ‖xn − x∗‖.
(3.31)

This implies that x∗ ∈ Cn. Hence, S ⊂ Cn. From xn+1 = ProjCnx0, we have

〈x0 − xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Cn. (3.32)

Since S ⊂ Cn, we have

〈x0 − xn+1, xn+1 − u〉 ≥ 0, ∀u ∈ S. (3.33)

So, for u ∈ S, we have

0 ≤ 〈x0 − xn+1, xn+1 − u〉

= 〈x0 − xn+1, xn+1 − x0 + x0 − u〉

= − ‖x0 − xn+1‖2 + 〈x0 − xn+1, x0 − u〉

≤ − ‖x0 − xn+1‖2 + ‖x0 − xn+1‖‖x0 − u‖.

(3.34)

Hence,

‖x0 − xn+1‖ ≤ ‖x0 − u‖, ∀u ∈ S. (3.35)

This implies that {xn} is bounded.
From xn = ProjCn−1x0 and xn+1 = ProjCnx0 ∈ Cn ⊂ Cn−1, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (3.36)

Hence,

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= − ‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉

≤ − ‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(3.37)

and therefore

‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (3.38)
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This implies that

lim
n→∞

‖xn − x0‖ exists. (3.39)

From (3.36) and (3.39), we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2

−→ 0.

(3.40)

By the fact xn+1 ∈ Cn, we get

∥∥yn − xn+1
∥∥ ≤ ‖xn − xn+1‖ −→ 0. (3.41)

Therefore, from (3.40) and (3.41), we deduce

lim
n→∞

∥∥xn − yn

∥∥ = lim
n→∞

∥∥xn − ProjC
(
I − γn∇f

)
xn

∥∥ = 0. (3.42)

Now (3.42) and Lemma 2.1 guarantee that every weak limit point of {xn} is a fixed point of
ProjC(I − γn∇f). That is, ωw(xn) ⊂ Fix (ProjC(I − γn∇f)) = S. At the same time, if we choose
u = ProjS(x0) in (3.35), we have

‖x0 − xn+1‖ ≤ ∥∥x0 − ProjS(x0)
∥∥. (3.43)

This fact and Lemma 2.2 ensure the strong convergence of {xn} to ProjS(x0). This completes
the proof.

Now we give some remarks on our variant gradient projection methods.

Remark 3.5. Under the same control parameters, the gradient projection methods (3.1) and
(1.6) are all strong convergent. However, (3.1) seems to have more advantage than (1.6) as h
is a non-self-mapping.

Remark 3.6. The gradient projection method (3.14) is similar to (1.5) by using (1 − θn)xn

instead of xn. But (3.1) has strong convergence, and especially (3.1) converges strongly to
the minimum norm element of S.

Remark 3.7. The advantage of the gradient projection method (3.15) is that it has strong
convergence under some weaker assumptions on parameter θn.

Remark 3.8. The gradient projection method (3.30) is simpler than (1.7).
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