
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 789043, 12 pages
doi:10.1155/2012/789043

Research Article
Fixed Point and Weak Convergence Theorems for
(α,β)-Hybrid Mappings in Banach Spaces

Tian-Yuan Kuo,1 Jyh-Chung Jeng,2 Young-Ye Huang,3
and Chung-Chien Hong4

1 Center for General Education, Fooyin University, 151 Jinxue Road, Daliao District,
Kaohsiung 83102, Taiwan

2 Department of Finance, Nan Jeon Institute of Technology, 178 Chaoqin Road, Yenshui District,
Tainan 73746, Taiwan

3 Center for General Education, Southern Taiwan University, 1 Nantai Street,
Yongkang District, Tainan 71005, Taiwan

4 Department of Industrial Management, National Pingtung University of Science and Technology,
1 Shuefu Road, Neopu, Pingtung 91201, Taiwan

Correspondence should be addressed to Chung-Chien Hong, chong@mail.npust.edu.tw

Received 28 September 2011; Accepted 29 November 2011

Academic Editor: Muhammad Aslam Noor

Copyright q 2012 Tian-Yuan Kuo et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We introduce the class of (α, β)-hybrid mappings relative to a Bregman distance Df in a Banach
space, and then we study the fixed point and weak convergence problem for such mappings.

1. Introduction

Let C be a nonempty subset of a Hilbert space H. A mapping T : C → H is said to be

(1.1) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C;

(1.2) nonspreading if 2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2, for all x, y ∈ C, cf. [1, 2];

(1.3) hybrid if 3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2, for all x, y ∈ C, cf. [3].

Recently, Kocourek et al. [4] introduced a new class of nonlinear mappings in a Hilbert
space containing the classes of nonexpansive mappings, nonspreadingmappings, and hybrid
mappings and established some fixed point and ergodic theorems for mappings in this new
class. For α, β ∈ R, they call a mapping T : C → H
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(1.4) (α, β)-hybrid if

α
∥
∥Tx − Ty

∥
∥
2 + (1 − α)

∥
∥x − Ty

∥
∥
2 ≤ β

∥
∥Tx − y

∥
∥
2 +

(

1 − β
)∥
∥x − y

∥
∥
2 (1.1)

for all x, y ∈ C.
Obviously, T is nonexpansive if and only if it is (1, 0)-hybrid; T is nonspreading if and

only if it is (2, 1)-hybrid; T is hybrid if and only if it is (3/2, 1/2)-hybrid.
Motivated by the above works, we extend the concept of (α, β)-hybrid from Hilbert

spaces to Banach spaces. For a nonempty subsetC of a Banach spaceX, a Gâteaux differentia-
ble convex function f : X → (−∞,∞] and α, β ∈ R, a mapping T : C → X is said to be

(1.5) (α, β)-hybrid relative to Df if there are α, β ∈ R such that

αDf

(

Tx, Ty
)

+ (1 − α)Df

(

x, Ty
) ≤ βDf

(

Tx, y
)

+
(

1 − β
)

Df

(

x, y
)

(1.2)

for all x, y ∈ C, where Df is the Bregman distance associated with f . Sections 3 and 4 are
devoted to investigation of the fixed point and weak convergence problem for such type of
mappings, respectively. Our fixed point theorem extends that of [4].

2. Preliminaries

Inwhat follows,Xwill be a real Banach spacewith topological dualX∗, and f : X → (−∞,∞]
will be a convex function. D denotes the domain of f , that is,

D =
{

x ∈ X : f(x) < ∞}

, (2.1)

andD◦ denotes the algebraic interior ofD, that is, the subset ofD consisting of all those points
x ∈ D such that, for any y ∈ X \ {x}, there is z in the open segment (x, y)with [x, z] ⊆ D. The
topological interior ofD, denoted by Int(D), is contained inD◦. f is said to be proper provided
that D/= ∅. f is called lower semicontinuous (l.s.c.) at x ∈ X if f(x) ≤ lim infy→xf(y). f is
strictly convex if

f
(

αx + (1 − α)y
)

< αf(x) + (1 − α)f
(

y
)

(2.2)

for all x, y ∈ X and α ∈ (0, 1).
The function f : X → (−∞,∞] is said to be Gâteaux differentiable at x ∈ X if there is

f ′(x) ∈ X∗ such that

lim
t→ 0

f
(

x + ty
) − f(x)
t

=
〈

y, f ′(x)
〉 (2.3)

for all y ∈ X.
The Bregman distance Df associated with a proper convex function f is the function

Df : D × D → [0,∞] defined by

Df

(

y, x
)

= f
(

y
) − f(x) + f◦(x, x − y

)

, (2.4)
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where f◦(x, x − y) = limt→ 0+(f(x + t(x − y)) − f(x))/t. Df(y, x) is finite valued if and only
if x ∈ D◦, compare Proposition 1.1.2 (iv) of [5]. When f is Gâteaux differentiable on D, (2.4)
becomes

Df

(

y, x
)

= f
(

y
) − f(x) − 〈

y − x, f ′(x)
〉

, (2.5)

and then the modulus of total convexity is the function νf : D◦ × [0,∞) → [0,∞] defined by

νf(x, t) = inf
{

Df

(

y, x
)

: y ∈ D,
∥
∥y − x

∥
∥ = t

}

. (2.6)

It is known that

νf(x, ct) ≥ cνf(x, t) (2.7)

for all t ≥ 0 and c ≥ 1, compare Proposition 1.2.2 (ii) of [5]. By definition it follows that

Df

(

y, x
) ≥ νf

(

x,
∥
∥y − x

∥
∥
)

. (2.8)

The modulus of uniform convexity of f is the function δf : [0,∞) → [0,∞] defined
by

δf(t) = inf
{

f(x) + f
(

y
) − 2f

(
x + y

2

)

: x, y ∈ D,
∥
∥x − y

∥
∥ ≥ t

}

. (2.9)

The function f is called uniformly convex if δf(t) > 0 for all t > 0. If f is uniformly
convex then for any ε > 0 there is δ > 0 such that

f

(
x + y

2

)

≤ f(x)
2

+
f
(

y
)

2
− δ (2.10)

for all x, y ∈ D with ‖x − y‖ ≥ ε.
Note that for y ∈ D and x ∈ D◦, we have

f(x) + f
(

y
) − 2f

(
x + y

2

)

= f
(

y
) − f(x) − f

(

x +
((

y − x
)

/2
)) − f(x)

1/2

≤ f
(

y
) − f(x) − f◦(x, y − x

) ≤ Df

(

y, x
)

,

(2.11)

where the first inequality follows from the fact that the function t → (f(x + tz) − f(x))/t is
nondecreasing on (0,∞). Therefore

νf(x, t) ≥ δf(t), (2.12)

whenever x ∈ D◦ and t ≥ 0. For other properties of the Bregman distanceDf , we refer readers
to [5].
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The normalized duality mapping J from X to 2X
∗
is defined by

Jx =
{

x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2
}

(2.13)

for all x ∈ X.
When f(x) = ‖x‖2 in a smooth Banach space, it is known that f ′(x) = 2J(x) for x ∈ X,

compare Corollaries 1.2.7 and 1.4.5 of [6]. Hence we have

Df

(

y, x
)

=
∥
∥y

∥
∥
2 − ‖x‖2 − 〈

y − x, f ′(x)
〉

=
∥
∥y

∥
∥
2 − ‖x‖2 − 2

〈

y − x, Jx
〉

=
∥
∥y

∥
∥
2 + ‖x‖2 − 2

〈

y, Jx
〉

.

(2.14)

Moreover, as the normalized duality mapping J in a Hilbert spaceH is the identity operator,
we have

Df

(

y, x
)

=
∥
∥y

∥
∥
2 + ‖x‖2 − 2

〈

y, x
〉

=
∥
∥y − x

∥
∥
2
. (2.15)

Thus, in case f(x) = ‖x‖2 in a Hilbert space, (1.5) coincides with (1.4). However, in general
they are different as the following example shows.

Example 2.1. Let f(x) = |x| for x ∈ R. f is a continuous convex function with

Df

(

y, x
)

=

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

0, if x > 0, y ≥ 0 or x < 0, y ≤ 0,

−2y, if x ≥ 0, y ≤ 0,

2y, if x ≤ 0, y ≥ 0.

(2.16)

Let C = [0, 1] and define T : C → C by

T(x) =

⎧

⎪⎨

⎪⎩

x, if x ∈ (0, 1],

1
2
, if x = 0.

(2.17)

If T were (α, β)-hybrid for some α, β ∈ R, then we would have

α‖Tx − T0‖2 + (1 − α)‖x − T0‖2 ≤ β‖Tx − 0‖2 + (

1 − β
)‖x − 0‖2, ∀x ∈ (0, 1]. (2.18)
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Since

(2.18) ⇐⇒ α

∣
∣
∣
∣
x − 1

2

∣
∣
∣
∣

2

+ (1 − α)
∣
∣
∣
∣
x − 1

2

∣
∣
∣
∣

2

≤ β|x|2 + (

1 − β
)|x|2, ∀x ∈ (0, 1]

⇐⇒
∣
∣
∣
∣
x − 1

2

∣
∣
∣
∣

2

≤ |x|2, ∀x ∈ (0, 1]

⇐⇒ 1
4
≤ x, ∀x ∈ (0, 1],

(2.19)

we see that T is not (α, β)-hybrid for any α, β ∈ R. But some simple computations show that
T is (1, 0)-hybrid relative to Df .

A function g : X → (−∞,∞] is said to be subdifferentiable at a point x ∈ X if there
exists a linear functional x∗ ∈ X∗ such that

g
(

y
) − g(x) ≥ 〈

y − x, x∗〉, ∀y ∈ X. (2.20)

We call such x∗ the subgradient of g at x. The set of all subgradients of g at x is denoted
by ∂g(x), and the mapping ∂g : X → 2X

∗
is called the subdifferential of g. For a l.s.c.

convex function f, ∂f is bounded on bounded subsets of Int(D) if and only if f is bounded on
bounded subsets there, compare Proposition 1.1.11 of [5]. A proper convex l.s.c. function f
is Gâteaux differentiable at x ∈ Int(D) if and only if it has a unique subgradient at x; in such
case ∂f(x) = f ′(x), compare Corollary 1.2.7 of [6].

The following lemma will be quoted in the sequel.

Lemma 2.2 (see Proposition 1.1.9 of [5]). If a proper convex function f : X → (−∞,∞] is
Gâteaux differentiable on Int(D) in a Banach space X, then the following statements are equivalent.

(a) The function f is strictly convex on Int(D).

(b) For any two distinct points x, y ∈ Int(D), one has Df(y, x) > 0.

(c) For any two distinct points x, y ∈ Int(D), one has

〈

x − y, f ′(x) − f ′(y
)〉

> 0. (2.21)

Throughout this paper, F(T)will denote the set of all fixed points of a mapping T .

3. Fixed Point Theorems

In this section, we apply Lemma 2.2 to study the fixed point problem for mappings satisfying
(1.5).

Theorem 3.1. Let X be a reflexive Banach space and let f : X → (−∞,∞] be a l.s.c. strictly convex
function so that it is Gâteaux differentiable on Int(D) and is bounded on bounded subsets of Int(D).
Suppose C ⊆ Int(D) is a nonempty closed convex subset ofX and T : C → C is (α, β)-hybrid relative
to Df . Then the following two statements are equivalent.
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(a) There is a point x ∈ C such that {Tnx}n∈N
is bounded.

(b) F(T)/= ∅.

Proof. If F(T)/= ∅, then {Tnv}n∈N
= {v} is bounded for any v ∈ F(T). Now assume that

{Tnx}n∈N
is bounded for some x ∈ C, and for any n ∈ N, let Sn(x) = (1/n)

∑n−1
k=0T

kx. Then
{Snx}n∈N

is bounded, and so, in view of X being reflexive, it has a subsequence {Snix}i∈N
so

that Snix converges weakly to some v ∈ C as ni → ∞. Since T is (α, β)-hybrid relative to Df ,
we have, for any y ∈ C and k ∈ N ∪ {0},

0 ≤ βDf

(

Tk+1x, y
)

+
(

1 − β
)

Df

(

Tkx, y
)

−
[

αDf

(

Tk+1x, Ty
)

+ (1 − α)Df

(

Tkx, Ty
)]

.

(3.1)

Rewrite αDf(Tk+1x, Ty) + (1 − α)Df(Tkx, Ty) as

αDf

(

Tk+1x, Ty
)

+ (1 − α)Df

(

Tkx, Ty
)

= α
[

f
(

Tk+1x
)

− f
(

Ty
) −

〈

Tk+1x − Ty, f ′(Ty
)〉]

+ (1 − α)
[

f
(

Tkx
)

− f
(

Ty
) −

〈

Tkx − Ty, f ′(Ty
)〉]

= αf
(

Tk+1x
)

+ (1 − α)f
(

Tkx
)

− f
(

Ty
)

−
〈

α
(

Tk+1x − Ty
)

+ (1 − α)
(

Tkx − Ty
)

, f ′(Ty
)〉

= αf
(

Tk+1x
)

+ (1 − α)f
(

Tkx
)

− f
(

Ty
)

−
〈

αTk+1x + (1 − α)Tkx − Ty, f ′(Ty
)〉

.

(3.2)

Similarly, we also have

βDf

(

Tk+1x, y
)

+
(

1 − β
)

Df

(

Tkx, y
)

= βf
(

Tk+1x
)

+
(

1 − β
)

f
(

Tkx
)

− f
(

y
) −

〈

βTk+1x +
(

1 − β
)

Tkx − y, f ′(y
)〉

.

(3.3)

Consequently, we obtain from (3.1) that

0 ≤ (

β − α
)[

f
(

Tk+1x
)

− f
(

Tkx
)]

+
[

f
(

Ty
) − f

(

y
)]

+
〈

Tkx + α
(

Tk+1x − Tkx
)

− Ty, f ′(Ty
)〉 −

〈

Tkx + β
(

Tk+1x − Tkx
)

− y, f ′(y
)〉

.

(3.4)
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Summing up these inequalities with respect to k = 0, 1, . . . , n − 1, we get

0 ≤ (

β − α
)[

f(Tnx) − f(x)
]

+ n
[

f
(

Ty
) − f

(

y
)]

+
〈

nSnx + α(Tnx − x) − nTy, f ′(Ty
)〉 − 〈

nSnx + β(Tnx − x) − ny, f ′(y
)〉

.
(3.5)

Dividing the above inequality by n, we have

0 ≤ β − α

n

[

f(Tnx) − f(x)
]

+ f
(

Ty
) − f

(

y
)

+
〈

Snx +
α

n
(Tnx − x) − Ty, f ′(Ty

)
〉

−
〈

Snx +
β

n
(Tnx − x) − y, f ′(y

)
〉

.

(3.6)

Replacing n by ni and letting ni → ∞, we obtain from the fact that {f(Tnx)}n∈N
is bounded

that

0 ≤ f
(

Ty
) − f

(

y
)

+
〈

v − Ty, f ′(Ty
)〉 − 〈

v − y, f ′(y
)〉

. (3.7)

Putting y = v in (3.7), we get

0 ≤ f(Tv) − f(v) +
〈

v − Tv, f ′(Tv)
〉

, (3.8)

that is,

0 ≤ −Df(v, Tv), (3.9)

from which follows that Df(v, Tv) = 0. Therefore Tv = v by Lemma 2.2.

Since the function f(x) = ‖x‖2 in a Hilbert space H satisfies all the requirements of
Theorem 3.1, the corollary below follows immediately.

Corollary 3.2 (see [4]). Let C be a nonempty closed convex subset of Hilbert space H and Suppose
T : C → C is (α, β)-hybrid. Then the following two statements are equivalent.

(a) There exists x ∈ C such that {Tn(x)}n∈N
is bounded.

(b) T has a fixed point.

We now show that the fixed point set F(T) is closed and convex under the assumptions
of Theorem 3.1.

A mapping T : C → X is said to be quasi-nonexpansive with respect to Df if F(T)/= ∅
and Df(v, Tx) ≤ Df(v, x) for all x ∈ C and all v ∈ F(T).

The following lemma is shown in Huang et al. [7].

Lemma 3.3. Let f : X → (−∞,∞] be a proper strictly convex function on a Banach space X so that
it is Gâteaux differentiable on Int(D), and let C ⊆ Int(D) be a nonempty closed convex subset of X. If
T : C → C is quasi-nonexpansive with respect to Df , then F(T) is a closed convex subset.
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Proposition 3.4. Let f : X → (−∞,∞] be a proper strictly convex function on a reflexive Banach
space X so that it is Gâteaux differentiable on Int(D) and is bounded on bounded subsets of Int(D),
and let C ⊆ Int(D) be a nonempty closed convex subset of X. Suppose T : C → C is (α, β)-hybrid
relative toDf and has a point x0 ∈ C such that {Tn(x0)}n∈N

is bounded. Then T is quasi-nonexpansive
with respect to Df , and therefore F(T) is a nonempty closed convex subset of C.

Proof. In view of Theorem 3.1, F(T)/= ∅. Now, for any v ∈ F(T) and any y ∈ C, as T is (α, β)-
hybrid relative to Df , we have

Df

(

v, Ty
)

= αDf

(

v, Ty
)

+ (1 − α)Df

(

v, Ty
)

= αDf

(

Tv, Ty
)

+ (1 − α)Df

(

v, Ty
)

≤ βDf

(

Tv, y
)

+
(

1 − β
)

Df

(

v, y
)

= βDf

(

v, y
)

+
(

1 − β
)

Df

(

v, y
)

= Df

(

v, y
)

,

(3.10)

so T is quasi-nonexpansive with respect to Df , and hence F(T) is a nonempty closed convex
subset of C by Lemma 3.3.

For the remainder of this section, we establish a common fixed point theorem for a
commutative family of (α, β)-hybrid mappings relative to Df .

Lemma 3.5. Let X be a reflexive Banach space and let f : X → (−∞,∞] be a l.s.c. strictly
convex function so that it is Gâteaux differentiable on Int(D) and is bounded on bounded subsets of
Int(D). Suppose C ⊆ Int(D) is a nonempty bounded closed convex subset of X and {T1, T2, . . . , TN}
is a commutative finite family of (α, β)-hybrid mappings relative to Df from C into itself. Then
{T1, T2, . . . , TN} has a common fixed point.

Proof. We prove this lemma by induction with respect to N. To begin with, we deal with the
case that N = 2. By Proposition 3.4, we see that F(T1) and F(T2) are nonempty bounded
closed convex subsets of X. Moreover, F(T1) is T2-invariant. Indeed, for any v ∈ F(T1),
it follows from T1T2 = T2T1 that T1T2v = T2T1v = T2v, which shows that T2v ∈ F(T1).
Consequently, the restriction of T2 to F(T1) is (α, β)-hybrid relative to Df , and so by
Theorem 3.1, T2 has a fixed point u ∈ F(T1), that is, u ∈ F(T1) ∩ F(T2).

By induction hypothesis, assume that for some n ≥ 2, E = ∩n
k=1F(Tk) is nonempty. Then

E is a nonempty closed convex subset of X, and the restriction of Tn+1 to E is a (α, β)-hybrid
mapping relative to Df from E into itself. By Theorem 3.1, Tn+1 has a fixed point in X. This
shows that E ∩ F(Tn+1)/= ∅, that is, ∩n+1

k=1F(Tk)/= ∅, completing the proof.

Here we would like to remark that in the above lemma, the assumption f is bounded
on bounded subsets of Int(D) can be dropped by checking the proof of Theorem 3.1 and
noting that we have assumed C is bounded.

Theorem 3.6. Let X be a reflexive Banach space and let f : X → (−∞,∞] be a l.s.c. strictly convex
function so that it is Gâteaux differentiable on Int(D). Suppose C ⊆ Int(D) is a nonempty bounded
closed convex subset of X and {Ti}i∈I is a commutative family of (α, β)-hybrid mappings relative to
Df from C into itself. Then {Ti}i∈I has a common fixed point.
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Proof. Since C is a nonempty bounded closed convex subset of the reflexive Banach space X,
it is weakly compact. By Proposition 3.4, each F(Ti) is a nonempty weakly compact subset of
C. Therefore, the conclusion follows once we note that {F(Ti)}i∈I has the finite intersection
property by Lemma 3.5.

4. Weak Convergence Theorems

In this section, we discuss the demiclosedness and the weak convergence problem of (α, β)-
hybrid mappings relative to Df . We denote the weak convergence and strong convergence
of a sequence {xn} to v in a Banach space X by xn ⇀ v and xn → v, respectively. For a
nonempty closed convex subset C of a Banach space X, a mapping T : C → X is demiclosed
if for any sequence {xn} in C with xn ⇀ v and xn − Txn → 0, one has Tv = v.

The following Opial-like inequality for the Bregman distance is proved in [7]. For the
Opial’s inequality we refer readers to Lemma 1 of [8].

Lemma 4.1. Suppose f : X → (−∞,∞] is a proper strictly convex function so that it is Gâteaux
differentiable on Int(D) in a Banach space X and {xn}n∈N

is a sequence in D such that xn ⇀ v for
some v ∈ Int(D). Then

lim inf
n→∞

Df(xn, v) < lim inf
n→∞

Df

(

xn, y
)

, ∀y ∈ Int(D) with y /=v. (4.1)

Proposition 4.2. Suppose f : X → (−∞,∞] is a strictly convex function so that it is Gâteaux
differentiable on Int(D) and is bounded on bounded subsets of Int(D) in a Banach space X, and
suppose C is a closed convex subset of Int(D). If T : C → X is (α, β)-hybrid relative toDf , then T is
demiclosed.

Proof. Let {xn} be any sequence in C with xn ⇀ v and xn − Txn → 0. We have to show that
Tv = v. Since f is bounded, by Proposition 1.1.11 of [5] there exists a constant M > 0 such
that

max
{

sup
{∥
∥f ′(xn)

∥
∥ : n ∈ N

}

,
∥
∥f ′(Tv)

∥
∥,

∥
∥f ′(v)

∥
∥
} ≤ M. (4.2)

Note that, for α ∈ R,

αDf(Txn, Tv) + (1 − α)Df(xn, Tv) = α
[

f(Txn) − f(Tv) − 〈

Txn − Tv, f ′(Tv)
〉]

+ (1 − α)
[

f(xn) − f(Tv) − 〈

xn − Tv, f ′(Tv)
〉]

= α
[

f(Txn) − f(Tv) + f(Tv) − f(xn)
]

− 〈

Txn − Tv − xn + Tv, f ′(Tv)
〉

+ f(xn) − f(Tv) − 〈

xn − Tv, f ′(Tv)
〉

= α
[

f(Txn) − f(xn) −
〈

Txn − xn, f
′(Tv)

〉]

+Df(xn, Tv).
(4.3)
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Similarly, for β ∈ R, we have

βDf(Txn, v) +
(

1 − β
)

Df(xn, v) = β
[

f(Txn) − f(xn) −
〈

Txn − xn, f
′(v)

〉]

+Df(xn, v). (4.4)

Thus we obtain from the (α, β)-hybrid of T that

α
[

f(Txn) − f(xn) −
〈

Txn − xn, f
′(Tv)

〉]

+Df(xn, Tv)

≤ β
[

f(Txn) − f(xn) −
〈

Txn − xn, f
′(v)

〉]

+Df(xn, v),
(4.5)

which implies that

Df(xn, Tv) ≤ Df(xn, v) +
(

α − β
)(

f(xn) − f(Txn)
)

+
〈

Txn − xn, αf
′(Tv) − βf ′(v)

〉

≤ Df(xn, v) +
(

α − β
)〈

xn − Txn, f
′(xn)

〉

+
〈

Txn − xn, αf
′(Tv) − βf ′(v)

〉

≤ Df(xn, v) + 3M
(|α| + ∣

∣β
∣
∣
)‖xn − Txn‖.

(4.6)

Consequently, if Tv /=v, then Lemma 4.1 implies that

lim inf
n→∞

Df(xn, v) < lim inf
n→∞

Df(xn, Tv)

= lim inf
n→∞

[

Df(xn, v) + 3M
(|α| + ∣

∣β
∣
∣
)‖xn − Txn‖

]

= lim inf
n→∞

Df(xn, v),

(4.7)

a contradiction. This completes the proof.

A mapping T : C → C is said to be asymptotically regular if, for any x ∈ C, the
sequence {Tn+1x − Tnx} tends to zero as n → ∞.

Theorem 4.3. Suppose the following conditions hold.

(4.3.1) f : X → (−∞,∞] is l.s.c. uniformly convex function so that it is Gâteaux differentiable
on Int(D) and is bounded on bounded subsets of Int(D) in a reflexive Banach space X.

(4.3.2) C ⊆ Int(D) is a closed convex subset of X.

(4.3.3) T : C → C is (α, β)-hybrid relative to Df and is asymptotically regular with a bounded
sequence {Tnx0}n∈N

for some x0 ∈ C.

(4.3.4) The mapping x → f ′(x) for x ∈ X is weak-to-weak∗ continuous.

Then for any x ∈ C, {Tnx}n∈N
is weakly convergent to an element v ∈ F(T).
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Proof. Let v ∈ F(T) and x ∈ C. If {Tnx}n∈N
is not bounded, then there is a subsequence

{Tnix}i∈N
such that ‖v − Tnix‖ ≥ 1 for all i ∈ N and ‖v − Tnix‖ → ∞ as i → ∞. From (4.3.3),

for any n ∈ N ∪ {0} we have

Df

(

v, Tn+1x
)

= αDf

(

Tv, Tn+1x
)

+ (1 − α)Df

(

v, Tn+1x
)

≤ βDf(Tv, Tnx) +
(

1 − β
)

Df(v, Tnx) = Df(v, Tnx)

≤ Df(v, x),

(4.8)

which in conjunction with (2.7), (2.8), and (2.12) implies that

Df(v, x) ≥ Df(v, Tnix) ≥ νf(Tnix, ‖v − Tnix‖)
≥ ‖v − Tnix‖νf(Tnix, 1)

≥ ‖v − Tnix‖δf(1) −→ ∞, as i −→ ∞,

(4.9)

a contradiction. Therefore, for any x ∈ X, {Tnx}n∈N
is bounded, and so it has a subsequence

{Tnjx}j∈N
which is weakly convergent to w for some w ∈ C. As Tnjx − Tnj+1x → 0, it follows

from the demiclosedness of T thatw ∈ F(T). It remains to show that Tnx ⇀ w as n → ∞. Let
{Tnkx}k∈N

be any subsequence of {Tnx}n∈N
so that Tnkx ⇀ u for some u ∈ C. Then u ∈ F(T).

Since both of {Df(w, Tnx)}n∈N
and {Df(u, Tnx)}n∈N

are decreasing, we have

lim
n→∞

[

Df(w, Tnx) −Df(u, Tnx)
]

= lim
n→∞

[

f(w) − f(u) − 〈

w − u, f ′(Tnx)
〉]

= a (4.10)

for some a ∈ R. Particularly, from (4.3.4) we obtain

a = lim
nj →∞

[

f(w) − f(u) − 〈

w − u, f ′(Tnjx)
〉]

= f(w) − f(u) − 〈

w − u, f ′(w)
〉

,

a = lim
nk →∞

[

f(w) − f(u) − 〈

w − u, f ′(Tnkx)
〉]

= f(w) − f(u) − 〈

w − u, f ′(u)
〉

.
(4.11)

Consequently, 〈w − u, f ′(w) − f ′(u)〉 = 0, and hence w = u by the strict convexity of f . This
shows that Tnx ⇀ w for some w ∈ F(T).

5. Conclusion

In this paper, we have introduced the Bregman distance Df and a new class of mappings,
(α, β)-hybrid mappings relative to Df in Banach spaces. We also have given and proved
a necessary and sufficient condition for the existence of fixed points of the introduced
mappings and some properties of the mappings. In fact, our result properly extends the
Kocourek-Takahashi-Yao fixed point theorems for (α, β)-hybrid mappings in Hilbert spaces
in 2010 [4]. Since the Kocourek-Takahashi-Yao fixed point theorems can be applied to study
the nonexpansive mappings, the nonspreading mappings, and the hybrid mappings, our
theorems in this paper are also good for these famous mappings in the field of fixed point
theory.
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According to [7], the fixed point theorems in this paper can be expected to discuss
in a wider class of mappings, called point-dependent (α, β)-hybrid mappings relative to
Df in Banach spaces. In a point-dependent (α, β)-hybrid mapping, the α and the β are not
constant again but two functions from a nonempty subset of a Banach space to real numbers.
Therefore, inequality (1.4) for point-dependent (α, β)-hybrid mappings becomes

α
(

y
)∥
∥Tx − Ty

∥
∥
2 +

(

1 − α
(

y
))∥
∥x − Ty

∥
∥
2 ≤ β

(

y
)∥
∥Tx − y

∥
∥
2 +

(

1 − β
(

y
))∥
∥x − y

∥
∥
2 (5.1)

for all x, y ∈ C.
In addition, Noor [9–11] provides algorithms to search the fixed points of nonexpan-

sive mappings and then combines the result with general variational inequalities to study
applied mathematical problems. We are motivated by that and expect to develop algorithms
from the theorems of this paper to approach the fixed points of the introduced mappings.
Through the combination of the fixed point theorems and the corresponding algorithms, the
introduced mappings of this paper would be able to be applied to more fields of applied
mathematics.
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