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We discuss the behavior at infinity of modified Poisson integral and Green potential on a half-
space of the n-dimensional Euclidean space, which generalizes the growth properties of analytic
functions, harmonic functions and superharmonic functions.

1. Introduction and Main Results

Let R"(n > 2) denote the n-dimensional Euclidean space with points x = (x,
X2, ..., Xn1,Xn) = (X',x,), where ¥ € R*! and x, € R. The boundary and closure of
an open Q of R” are denoted by 0Q and Q, respectively. The upper half-space is the set
H = {x = (¥,x,) € R" : x, > 0}, whose boundary is 0H. We identify R"” with R*"! x R
and R"! with R*! x {0}, writing typical points x,y € R" as x = (¥, x,), v = (v, ya),
where x' = (x1,%2,...,%n-1), ¥V = (Y1, Y2,-..,Yn-1) € R"! and putting x - y = Z}Ll Xjyj =
XY+ XY, x| =X x, |[X|=Vx X

For x e R" and r > 0, let B, (x,r) denote the open ball with center at x and radius r in
R™.

Set

Ey(x) = —loglx| ifa=n=2, 11)
Tk if0<a<n '



2 Abstract and Applied Analysis

Let G4 (x, y) be the green function of order « for H, that is,
Gu(x,y) =Ea(x-y) —Ex(x-y*) x,y€eH, x#y, 0<ac<n, (1.2)

where * denotes reflection in the boundary plane 0H just as y* = (1, Y2, .-, Yn-1,~Yn)-
We define the Poisson kernel P,(x, y') when x € H and y' € 0H by

0Ga(x,y)
oYy,

Xn

Pu(x,y') = (1.3)

J|n—a+2’

- a
Yn=0 |x_y |

where Cy =2(n—a) if 0 < a <nand =2 if a = n = 2. It has the expansion

© )
’ axnlxl (n a+2)/2 Xy
P(x’ Yy ) Z n a+2+k k ] (1.4)

k:O |x||y|

where C n-a+2)/ 2(t‘) is a Gegenbauer polynomial [1]. The series converges for || > |x|. Each

term in the series is a harmonic function of x and vanishes on 0H.
In case a = n = 2, we consider the modified kernel function defined by

E,(x-vy) if |y| <1,
Eym(x-y) = mel/ k 15
m(x=y) En(x—y)+§R<logy— <%>> if |y| > 1. (1.5
Yy

k=1

In case 0 < a < n, we define

Eq(x-y) if [y| <1,
Etx,m X = = = |x| n-a)/2f XY . (16)
ET T B - S (k) vz,
Sy x|y
where m is a nonnegative integer and C{(t) (w = (n — a)/2) is also the Gegenbauer

polynomials. The expression arises from the generating function for Gegenbauer polynomials
(1 2tr+ rZ)f“’ = S cerk, (1.7)
k=0

where |r| <1, |t < 1and w > 0. Each coefficient C/(t) is called the Gegenbauer polynomial of
degree k associated with w, the function Cy (#) is a polynomial of degree k in ¢.
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Then we define the modified Poisson kernel Py, (x, y') and Green function Gy, (x, y)
respectively by

Pa(x,y') if |y <1,
Pom(x,y') = N Coxalx sy XY o (1.8)
GV =\ Ry - 3 St e (XY gy,
=0 |y'| Ixl|y'|
- - - * 1 = = 2
Gam(x,y) = | Bt (=) = Euma (c=y') ifa=n =2, (19)
’ Exmi(x—y) —Egma(x—y*) if0<a<n,

where x,y € H and x # y. We remark that the new kernel P, ,,(x, y') will be of order |y/|-(+™
as |y'| — oo.
Write

Uym(x,v) = IaH Py (x, y')dv (]/’),
(1.10)

Gam(x, ) = fH Gam (%, y)du(y),

where v (resp. p) is a nonnegative measure on 0H (resp. H). Here note that U, (x,v) (resp.
Ga,0(x, u)) is nothing but the general Poisson integral (resp. Green potential).
Let k be a nonnegative Borel measurable function on R” x R", and set

k(y,p) = L k(y, x)du(x),  k(u,x) = L k(y, x)du(y), (1.11)
for a nonnegative measure y on a Borel set E C R". We define a capacity C by
Cx(E) =suppu(R"), ECH, (1.12)

where the supremum is taken over all nonnegative measures y such that S, (the support of
u) is contained in E and k(y, p) <1 for every y € H.
For f <1and 6 <1, we consider the function k, s defined by

Kaps(v,x) = x, y:0Gy(x,y) for x,y € H. (1.13)
56 (Y Ya y y

If p =6 =1, then k, = k1,1 is extended to be continuous on H x H in the extended sense,

where H = H U 0H.
Recently, Siegel-Talvila [2] proved the following result.



4 Abstract and Applied Analysis

Theorem A. Let f be a measurable function on R" satisfying .. (If ¥/ (1 +y')™™) dy' <
0. Then the function v(x) = [z, Pom(x,y') f(y')dy' satisfies
v e CYH)N CO(E>,
Av=0, x€H,

‘ (1.14)
lim v(x) = f(x') nontangentially a-e x' € 0H,

v(x) = o(x} "[x|"™*") as |x| — oo, x € H,

Our first aim is to establish the following theorem.

Theorem 1.1. Let y >0anda+y-n—-2<m < a+y—-n-1.Ifvisanonnegative measure on 0OH
satisfying

1 ,
LH md"(y) < o, (1.15)

then there exists a Borel set E C H with properties:

(1) Ty cp et X [P MU (3, v) = 0;
(2) 3, 27 ma N Cy (i) < oo,

where E; = {x € E : 2 < |x| < 2i*1}.

Theorem 1.2. Lety >6-1landa+y-n—-6-1<m <a+y—n-06.If pisanonnegative measure
on H satisfying

f (1+| |)Y du(y) < oo, (1.16)

then there exists a Borel set F C H with properties:

(1) imyy| - o0 xeH-F x5 | TG (x, ) = 0;
(2) ngl 27i(n—a+ﬂ+6)cka,ﬂ/6 (Fl) <,

where F; = {x € F : 21 < |x| < 2/*1}.

Remark 1.3. If 6=1,then F = E.
Next we generalize Theorem A to the modified a-potentials on H, which is defined by

Ra(x) = Unm(x,v) + Gam(x, ), (1.17)

where 0 < a < n and v (resp. y) is a nonnegative measure on 0H (resp. H) satisfying (1.15)
(resp. (1.16) (6 = 1)). Clearly, Ry(x) is a superharmonic function.
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The following theorem follows readily from Theorems 1.1 and 1.2.

Theorem 1.4. Let R, (x) be defined by (1.17). Then there exists a Borel set E C H satisfying
Theorem 1.1(2) such that

X" F IR, (x) = 0. (1.18)

|| = c0,xe H-E

Remark 1.5. In the case 0 < <1, by using Lemma 2.5 below, we can easily show that Cy,,, =

A? in the notation of [3]. Thus, Theorem 1.1(2) with & = 2 means that E is f-rarefied at infinity
in the sense of [3]. In particular, this condition with a = 2, f = 1(resp. « = 2, = 0) means that
E is minimally thin at infinity (resp. rarefied at infinity) in the sense of [4].

Finally we are concerned with the best possibility of Theorem 1.4 as to the size of the
exceptional set.

Theorem 1.6. Let y > 0, E C H be a Borel set satisfying Theorem 1.1(2) and let R.(x) be defined by
(1.17). Then one can find a nonnegative measure A defined on H satisfying

1
——_dA(y) < oo, (1.19)
IH (1+1yl)"
such that
limsup x; x| PR, (x) = oo, (1.20)
|x| — oo,x€E

where dA(y') = dv(y')(y' € OH) and d\(y) = y.du(y)(y € H).

2. Some Lemmas

Throughout this paper, let M denote various constants independent of the variables in
questions, which may be different from line to line.

Lemma 2.1 (see [5]). Let m be a nonnegative integer and M > 0.
1) Ifl < |y,| < |x|/2, then |Pa,m(x,y’)| < M((xn|x|m—1)/|y1|n+m—a+1)‘
(2) Ifly'| 2 2lx| and |y'| 2 1, then |Pam(x, )| € M((xn ™) /[y "™ *).
n—a+2)/

Lemma 2.2. There exists a positive constant M such that G(x,y) < M((x, Yn)/|x —y|
where 0 <a <n, x =(x1,%2,...,%,) and y = (Y1,Y2,...,Ya) in H.

This can be proved by simple calculation.

Lemma 2.3. Gegenbauer polynomials have the following properties:

(1) [CY(B)] < CY(1) =Tw + k) /(FQw)T(k +1)), [t < 1;
(2) (d/dnCy () = 2wC (1), k>,
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(3) X, Cork = (1-r);
@) [CI 2 (1) = Y2 (1) < (n- ) CUP -, 1<, |FI< 1

Proof. (1) and (2) can be derived from [1]. (3) follows by taking t = 1 in (1.7); (4) follows by
(1), (2) and the Mean Value Theorem for Derivatives. O

Lemma 2.4. For x, y € R"(a = n = 2), one has the following properties:

(1) 18 Zio(* /v | < SR (@5 2 Ixl* ) /1y1*2);

(2) |8 2o (ke met /yky | < 2+ o, x| ™;

(3) IGum(x,y) = Gu(x,y)| < M quzl((kxnyn|x|k_l)/|y|(k+1));

(4) [Grm(x, )| € M I, (ka1 /1yl *Y).

The following lemma can be proved by using Fuglede (see [6], Théorem 7.8).
Lemma 2.5. For any Borel set E in H, one has Chops (E) = Ck (E) and

a,p1

Cho s (E) = inf A(H) <resp. inf A(ﬁ)) if 6 <1 (resp. 6 = 1), (2.1)

where the infimum is taken over all nonnegative measures A\ on H (resp. H) such that kaps(d, x) > 1
for every x € E.

3. Proof of Theorems

Proof of Theorem 1.1. For any &; > 0, there exists R,, > 2 such that

———dv(y') <er. (3.1)
f{y’eaH,ly'|>Rgll (1+]y)’

For fixed x € H and |x| > 2R,,, we write

Uen0) = [ Pan(o)av(@) + | Pl ) (y)

2

o[ Poney) =P + [ Pulo/)av(y)
Gs Gy (3.2)

o[ Pune)av(y)

5

= Uy (x) + Uz (x) + Uz(x) + Uy(x) + Us(x),
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where
Gi={y €dH:|y| <1}, G2={y'eaH:1§|y'|<|2ﬂ},
X ! ! !
G; =Gy = {y’eaH:|2—|§ || <2|x|}, Gs={y' €oH : |y'| > 2|x|}.
First note that
x| a2 ! a-n-2
U7 (x)] < xp( = dv(y'") < Mxy|x| .
2 G
By Lemma 2.1(1), we have
m-1 1 !
U2 (x)| < Mox,|x| ————dv(y')
) |y,|n+m a
< My x| f Iy’l“”_"_m_l%dv(y’)
Gy |y|
a+y-n-2 1 !
< M| x| J‘ —dv(y').
G |]/’|
Write
Ua(x) = U (x) + Uxn(x),
where

U (x) = j Pom(2,y)dv (),

G2N By (0Re;)

Uxn(x) = f Pon(x,y")dv(y').

G2-Bu1(ORe;)
If |x| > 2R,,, then we have

—n—-m-1 _
Uz (x)] < MRE™™ ™ o2,

U (x)] < Merx,|x|*2

from (3.5).
So

U (x)| < Meyoch|x| 7P,

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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We have by Lemma 2.3(3)
sy xn|x|k (n—-a+2)/2 !
U5 (x)| < M . kzéﬁc’“ (L)dv(y')
< Mxn|x|m 21_kc(n ac+2)/2 )j |y;|a+y—n—m -2 Yd ( ,) ( )
k=0 3 | |
< Mepx,|x|* 2,
By Lemma 2.1(2), we obtain
n-m—2 1 -
IU5(.X')| < Mxn|x|mf |yl|a+}’ n—m ZWdV(y') < Melxn|x|tl+)’ n 2‘ (311)
Gs

Note that U4(x) = xfl J. ¢, kap1(y', x)dv(y'). In view of (1.15), we can find a sequence
{ai} of positive numbers such that lim; _, ,a; = oo and X7, a;b; < oo, where

b; = j ——dv(y'). 3.12
{y'eoH 21 <y’ <2142} |]/'|Y ( )

Consider the sets

Ei = {x € H:2 < |x] < 2, x, Uy (x) > a; 27 atprD) } (3.13)

fori=1,2,....If u is a nonnegative measure on H such that S, C E; and kup,1(y', u) < 1 for
y' € 0H, then we have

f dp < a2imefr+) Jx;”u4(x)dy(X)
H

< Maizi(n*a+ﬂ7)’+1) J‘ A . ka,ﬂ,l (yl, /l)dv(y,)
{y’eaH:21‘1<|y’|<2“2] (314)

< Maizi(n—a+ﬂ—y+1) J‘ dV(y,)
{y'€OH:2 <[y’ |<2i42)

< Mzi(n—a+ﬁ+1)aibi
so that

Ck, ., (Ei) < M2Ima++ D g, (3.15)
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which yields

Zz_i(n_a+ﬂ+1)cka,ﬁ,l (El) < oo. (316)
i1

Setting E = |J%; E;, we see that Theorem 1.1(2) is satisfied and

limsup x, [x[" P71 U, (x) < lim sup2!**##r+1lg-1 = . (3.17)

|x| — 0o,xe H-E i— o0

Combining (3.4) and (3.9)-(3.17), Theorem 1.1(1) holds.
Then we complete the proof of Theorem 1.1. O

Proof of Theorem 1.2. For any &, > 0, there exists R,, > 2 such that

5
Yn
—d#(y) < €. (3.18)
f[yeH,|y|ZR;z} (1+]y])’

For fixed x € H and |x| > 2R,,, we write
Gam (%, 1) = fH Ga(x,y)du(y) + fH Ga(x,y)dp(y)

[ 1Gun(x,9) = Calx, 1) + [ Gum (o 0)e(v)

+ fH Ga(x,y)du(y) +I [Gam (x,y) = Ga(x,y)]du(y) (3.19)

Hsg

[ Gan(x)auty)

= Vi(x) + Va(x) + V3 (x) + Vi(x) + V5(x) + Vs(x) + V7(x),
where

Hi=jyeH:|y| 2R, Ix—ylslzﬂ},

Hy={yeH: |y|2RSZ,%|<|x—y|§3|x|},

—~— —

H; =

——

yGH:|y|ZR€2,

x —-y| <3|xl}, (3.20)
Hy={yeH:|y[2Re,

x —-y|>3|x]},
Hs=He{lye H:1< |y| <R,},
H;={yeH:|y|<1}.
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We distinguish the following two cases.
Case 1. 0 <a<mn.
Note that

Vi) = [ g (0 2)dA ), (321)

where d\(y) = ySdu(y).
By the lower semicontinuity of k, (v, x), then we can prove the following fact in the
same way as U4 (x) in the proof of Theorem 1.1:

lim x| POV (x) = 0, (3.22)

|x| = c0,xe H-F

where F = U2, F;, Fi= {x € F:2/ <|x| <2} and 3,2, 271ma 0 Cy . (F;) < 0.
Moreover, by Lemma 2.2

Vol < My [ au(y)
H |x—y|

d—e + 3.23
< Mx,|x| ZIH ly|"°" y|y du(y) (3.23)

< Mezxn|x|a+y—n—6—1.

Note that Ci(t) = 1. By (3) and (4) in Lemma 2.3, we take t = x - y/|x[|ly|, * = x -
y*/|x|ly*| in Lemma 2.3(4) and obtain

|x|k (n u+2)/2 XnYn
v@is [ 3B am- a2 duy
H i |y x|y )
- n-a wry-n-m-5 Y3 (3.24)
< M 12 gl [y )
< Mgzxn|x|a+y7n7671'
Similarly, we have by (3) and (4) in Lemma 2.3
|x|k n-a+2)/2
V()| < T 2(n - a)Cl R (1)
Hy k= m+1|y| |x || |
(3.25)

© o
n-a a+y—-n-m—06— yn

< Maxlx™ > —c< +2Vz(l)f |y |0 L ()
k:m+12k ! Hy |y|Y

< Mgzxn|x|a+y—n—6—1 .
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By Lemma 2.2, we get
m-1 Yn
[V5(x)| < Mox,|x]| —————du(y)
Hs |x -y
< Mxn|x|a_n_2_[ y|* ny du(y) 3.26
Hy | | (3.26)

< MRL a2,

[V (x)| € May|x|" 2,

Similar to the estimate of V3(x), we obtain

m |x|k (n-a+2)/2 nyn
Vel [ 3ol S d(y)
iy x|y
I (n- nem-6 Yo 3.27
< Mxnzcl(crilu+2)/2(1)xk_1R::n_kJ‘ |y|u+y n-m 6y_nrd#<y) ( )
k=1 Hs |y
< MRa+y n-6— 1x |x|m_1

Combining (3.22)—(3.27), we see that Theorem 1.2(1) holds. Then we prove Case 1.
Case2.a=n=2.
Since the estimates of Vi (x), Va(x), V5(x) and V;(x) are similar to those of Case 1, we
omit them. (3.22), (3.23), and (3.26) still hold in Case 2.
Moreover, by Lemma 2.4(3), we find

2 kx, n|x|k_1
[V3(x)| < M Z|y|7dﬂ(]/)
y

Hj k=1
e —_ y (3.28)
< MXn|x| 1Z4k 1 f |y|Y | |)/ ‘I/l(y)
k=1
< Mgzxn|xly_6_1-
By Lemma 2.4(4), we have
kxn n|x|
Vi(x)| < M - = Rt 4 )
Hy = m+1 ]/
(3.29)

m—6—1 y
< MXn|x| Z Zk 1 J‘ |Y | 1|1y (y)
k=m+1

< Mfzxnlxlr_ﬁ_l'
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Similar to the estimate of V3(x), we have
[Ve(x)] < MRL® ey x| (3.30)

Combining (3.22), (3.23), (3.26) and (3.28)—(3.30), we see that Theorem 1.2(1) holds. Then we
prove Case 2.
Hence we complete the proof of Theorem 1.2. O

Proof of Theorem 1.6. We prove the case 0 < a < n, because the case a« = n = 2 can be proved
similarly. Further, we only need prove

lim sup xil_ﬂ|x|"_“+ﬂ_y+lka()u,x) = 0. (3.31)

|x] — c0,x€E

By Lemma 2.5, for each i we can find \; on H such that A (ﬁ) < Cr,y (Ei)+1and kyp1(Ai, x) >

1 on E;. Denote by A, the restriction of \; to the set {y € H : 21! < |y| < 212}
Set A = 33, q;27{(m-aFr*D ) where {a;} is a sequence of positive numbers such that
lim;_, xa; = co but Z;fl ai2‘i("‘”‘+ﬁ+1) {Ckaﬁ/1 (E,) + 1} < 0. Then

1 e . 1
T = Sz e [ s i)
fy e - F A

(3.32)
< Mzaiz—i(n—a+ﬂ—y+1) {Cka,p,l (E;) + 1} < 0.
i=1
If x € E;, then
ku,ﬂ,l (./\;, x) >1- ’[ . . ka,ﬂ,l (y/ x)d)‘i (]/)
[yeH:|y|<2i-")n(yeHiy|>21) (3.33)
>1- M2t ey (B + 1),
We also have
X Pl P (L, x) =[x g 51 (A, ) > aikapr (A X), (3.34)
which implies that
lim sup x, * x| ke, (A, x) = oo. (3.35)

|x| — oo0,x€E

Thus A satisfies all the conditions in the Theorem 1.6. O
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