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We investigate the generalized Ulam-Hyers stability of the Cauchy functional equation and pose
two open problems in fuzzy Banach space.

1. Introduction and Preliminaries

In 1940, Ulam [1] asked the first question on the stability problem. In 1941, Hyers [2] solved
the problem of Ulam. This result was generalized by Aoki [3] for additive mappings and by
Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias). Let f : E — E' be a mapping from a normed vector space E into a
Banach space E' subject to the inequality:

If(x+y) = fFx) = F < ellxl” + [|ly]I”) (1.1)

for all x,y € E, where € and p are constants with e > 0 and 0 < p < 1. Then, the limit L(x) =
lim,, o, (1/2") f(2"x) exists for all x € Eand L : E — E'is the unique additive mapping which
satisfies

G0 - L) < s

forall x € E. Also, if for each x € E the function f(tx) is continuous in t € R, then L is linear.
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In 1990, Th. M. Rassias [5] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p > 1. In 1991,
Gajda [6] gave an affirmative solution to this question for p > 1. It was shown by Gajda [6], as
well as by Th. M. Rassias and Semrl [7], that one cannot prove a Th. M. Rassias type theorem
when p = 1. Gdvruta [8] proved that the function f(x) = x In|x|, if x #0 and f(0) = 0 satisfies
(1.1) withe =p =1 but

- A —
SUPM 2 SUPM = suplln n-— A(l)l = o0 (13)
x#0 |x| neN n neN

for any additive function A : R — R.]J. M. Rassias [9] replaced the factor |x||” + ||y|P by
[lx|[P*ly||P* for p1,p2 € R with p1 + p2#1 (see also [10, 11]) and has obtained the following
theorem.

Theorem 1.2. Let X be a real normed linear space and Y a real complete normed linear space. Assume
that f : X — Y is an approximately additive mapping for which there exist constants 0 > 0 and
p = p1+p2# 1 such that f satisfies the inequality:

If(x+y) = Fx) = Fw)|| <Ol |y | (1.4)

forall x,y € X. Then, there exists a unique additive mapping L : X — Y satisfying

| f(x) - L(x)| < [ ||P (1.5)

0
|27 =2

forall x € X. If, in addition, f : X — Y is a mapping such that the transformation t — f(tx) is
continuous in t € R for each fixed x € X, then L is an R-linear mapping.

In the case p = 1, we do not have stability [12]. In 1994, a further generalization of
Th. M. Rassias’ Theorem was obtained by Gavruta [13], in which he replaced the bound
e(||lx|I” + lly|IP) by a general control function ¢(x,y). Isac and Th. M. Rassias [14] replaced
the factor ||x||” + [|ly|I by [|x|["* + |ly||"* in Theorem 1.1 and solved stability problem when
p2 <p1<lorl < p, <p,also they asked the question whether such a theorem can be proved
for p, < 1 < p;1. Gdvruta [8] gave a negative answer to this question. Isac and Th. M. Rassias
[15] applied the Ulam-Hyers-Rassias stability theory to prove fixed point theorems and study
some new applications in nonlinear analysis. During the last two decades, a number of papers
and research monographs have been published on various generalizations and applications
of the generalized Ulam-Hyers stability to a number of functional equations and mappings
(see [16—40]). We also refer the readers to the books of Czerwik [41] and Hyers et al. [42].

Th. M. Rassias [43] has obtained the following theorem and posed a problem.

Theorem 1.3. Let E; and E, be two Banach spaces, and let f : Ey — Ej be a mapping such that
f(tx) is continuous in t for each fixed x. Assume that there exist 6 > 0 and p € [0, 1) such that

|f(x+y) = fF) = FI <OUxlP + [y (1.6)
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forall x,y € X. Let k be a positive integer k > 2. Then, there exists a unique linear mapping T :
E{ — E; such that

ko
1f G0 =T < =g IxIPs (k. p) (17)
forall x € X, where
=
s(k,p) =1+ EZmP. (1.8)
m=2

Th. M. Rassias Problem

What is the best possible value of k in Theorem 1.3?

Gavruta et al. have given a generalization of [13] and have answered to Th. M. Rassias
problem [44].

In [45], ]. M. Rassias et al. have investigated the generalized Ulam-Hyers “product-
sum” stability of functional equations and have obtained the following theorem.

Theorem 1.4 (see [45]). Let f : E — F be a mapping which satisfies the inequality

£ (max+y) + f(mx = y) =2f (x+y) =2f (x = y) —2(m? = 2) f(x) +2f () |,

< e(IxIRNyIlE + 1l + Nyl

(1.9)

forall x,y € Ewith x L y, where € and p are constants with e,p > Oand eitherm > 1,p <lorm <1,
p > 1withm#0, m# +1,m#v+2, and -1#|m[P~* < 1. Then, the limit lim,,_, ,m~>" f (m"x)
exists forall x € Eand Q : E — F is the unique orthogonally Euler-Lagrange quadratic mapping
such that

€

2p
— x
22 — | (e (1.10)

1£ (o) = Q)| <

forallx € E.

Note that the mixed “product-sum” function was introduced by J. M. Rassias in 2008-
2009 [46-48].

We recall some basic facts concerning fuzzy normed space.

Let X be a real linear space. A function N : X x R — [0, 1] (so-called fuzzy subset) is
said to be a fuzzy norm on X if for all x,y € X and all ¢, t € R,

(N1) N(x,c)=0forc<0;

(N2) x=0ifand only if N(x,c) =1forallc>0;

(N3) N(cx,t) = N(x,t/]|c|) if c £0;

(N4) N(x+y,t)>min{N(x,t), N(y,t)};
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(N5) N(x,-) is a nondecreasing function of R and

tanQON(x,t) =1 (1.11)

The pair (X, N) is called a fuzzy normed linear space. The properties of fuzzy normed vector
spaces and examples of fuzzy norms are given in [49-51].

Let (X, N) be a fuzzy normed space and let {x,} be a sequence in X. Then, {x,} is said
to be convergent if there exists x € X such that lim, .. N(x, — x,t) = 1 for all ¢ > 0. In that
case, x is called the limit of the sequence {x,} and we denote it by lim,,_, ,x, = x.

A sequence {x,} in a fuzzy normed space (X, N) is called Cauchy if, for each ¢ > 0
and 6 > 0, one can find some ng such that

N(xy—x,,6)>1-¢ (1.12)

for all n,m > ny.

It is known that every convergent sequence in a fuzzy normed space is Cauchy. If, in a
fuzzy-normed space, each Cauchy sequence is convergent, then the fuzzy-norm is said to be
complete and the fuzzy normed space is called a fuzzy Banach space.

Stability of Cauchy, Jensen, quadratic, and cubic function equation in fuzzy normed
spaces have first been investigated in [50-53].

In this paper, we give a generalization of the results from [13] and pose two open
problems in fuzzy Banach space. For convenience, we use the following abbreviation for a

given mapping f:

Df(x,y) = f(x+y) = f(x) - f(y)- (1.13)

2. Stability of the Cauchy Functional Equation

Hereafter, unless otherwise stated, we will assume that X is real vector space, (Y, N) is a
complete fuzzy norm space and k is a fixed integer greater than 1.

Theorem 2.1. Let (Z, N') be a fuzzy normed space and ¢ : X x X — Z be a mapping such that,
p(kx, ky) = ap(x,y) for some a with 0 < a < k. Suppose that f : X — Y be mapping such that

N(Df(x,y),t) 2 N'(¢(x,y),t) (2.1)

forall x,y € X and all positive real number t. Then, there is a unique additive mapping T, : X — Y
such that Ty (x) = limy, _, o f (k"x) / k™ and

N (Ti(x) = f(x),t) > M (x, (k= a)t), (2.2)
where M (x,t) == min{N'(¢(x,ix),t) : 1 <i < k}.
Proof. By induction on k, we show that

N(f(kx) = kf(x),t) > Mi(x,t) := min{N'(¢(x,ix),t) : 1 <i < k} (2.3)
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for all x € X and all positive real number t. Letting y = x in (2.1), we get
N(f(2x)-2f(x),t) > N'(p(x,x),t). (2.4)

So we get (2.3) for k = 2.
Assume that (2.3) holds for k with k > 2. Letting y = kx in (2.1), we get

N(f((k+1)x) = f(x) = f(kx),t) > N'(p(x, kx),t). (2.5)

for all x € X. By using (2.3) and (2.5), we get (2.3) for k + 1 and this completes the induction
argument. Replacing x by k"x in (2.3), we get

N(f(k™1x) = kf (k"x), 1) 2 Mi(k"x, £). (2.6)
Thus
f(k™x) o f(k"x) ot t
N< Jen+l N k7 kn+1> > My (x' ﬁ) (2.7)

for all x € X and all positive real number ¢. Hence,

1 . 1 .., &a
N<kn+1 (k +1x> a k_mf(k x)'.zkl”r1 t>

> N<limkll+1f< 1+1x> _ %f(klx>,§1k‘i t> 08
> min gj {N<ki1+1f<ki+lx> — %f(k’X>, kbﬁl ) }
> Mk(x, t)

Let € > 0 and 6 > 0 be given. Since lim;_, . M(x,t) = 1, there is some f; > 0 such that
My (x,t9) > 1—e. Since 3,52, (a" /k™)ty < oo, there is some ng € N such that 3 (a'/k')ty < k6
for all n > m > ny. It follows that

N( k:” f(k"+1x) - kim f(k"‘x),6>

1 . 1 Loal (2.9)
> N(k"+1 (k?H x) - k_mf(kmx)’ZWt(J)

> Mi(x,t)) >1-¢€

for all x € X and all nonnegative integers n and m with n > m > ng. Therefore, the sequence
{(1/k™) f(k"x)} is a Cauchy sequence in (Y, N) for all x € X. Since (Y, N) is complete, the
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sequence {(1/k")f(k™x)} converges in Y for all x € X. So one can define the mapping Tk :
X — Yby

Ti(x) = lim kl £(k"x) (2.10)

for all x € X. Now, we show that T is an additive mapping. It follows from (2.1) and (2.10)
that

Df(k"x, k"
N(DTy(x,y),t) = th(%,Q

k"x, k"
> lim N’<w,t>

(2.11)

= lim N’ ((p(x,y), %t)

n—oo

=1

for all x,y € X and all positive real number t. Therefore, the mapping T is additive.
Moreover, if we put m = 0 in (2.8), we observe that

N<k3+1 (k1) - f(x),%k‘f—;t> > My (x, b). 2.12)
Therefore,
1 n+1 _ t
N( ot (k™1x) - f (x),t> > My <x, NI ki+1)>' (2.13)

It follows from (2.13), for large enough 7, that

kn+1 kn+1
N (Te(x) - f(x),1) > min{N<f(knTx) - f(x),t>,N<Tk(x) - %t) }

o m ¢ (2.14)

> My (x, (k — a)t).

Now, we show that Ty is unique. Let T" be another additive mapping from X into Y, which
satisfies the required inequality. Then, for each x € X and ¢ > 0, we have

N(Ti(x) = T'(x),t) > min{ N (Tx(x) - f(x),t), N(f(x) = T'(x),t)}
> Mg (x, (k —a)t).

(2.15)
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So,

Ti(k"x) T'(k"x)
e

= N(Te(k"x) - T'(K"x), k"t)

N(Ti(x) - T'(x),t) = N<

(2.16)
> Me(K"x, (k — a)k"t)

> Mk<x, (k —cx)%t).

Hence, the right-hand side of the above inequality tends to 1 as n — oo. It follows that
Ti(x) =T'(x) for all x € X. O

Theorem 2.2. Let (Z, N') be a fuzzy normed space and, @ : X x X — Z be a mapping such that
O(k~'x, k™ly) = al®(x, y) for some a with a > k. Suppose that f : X — Y be mapping such that

N(Df(x,y),t) > N'(®(x,y),t) (2.17)

forall x,y € X and all positive real number t. Then, there is a unique additive mapping T : X — Y
such that Ty (x) = lim, _, k™ f (x/k") and

N(Te(x) = f(x),£) > M (x, (a - k)t), (2.18)

where My (x,t) := min{N'(D(x,ix),t) : 1 <i<k}.

Proof. Similarly to the proof of Theorem 2.1, we have
N(f(kx)—kf(x),t) > Mi(x,t) (2.19)
for all x € X and all positive real number t. Replacing x by x/k"*! in (2.19), we get
x x X

Thus,

N(k"f(%) - k"*ﬁ(%),k"f) > My (x, a"1t) (2.21)
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for all x € X and all positive real number ¢. Hence,

N<k””f<kf+1) -kmf<kim>,§£l t> > N<§nk"“f<kil> —kf<%)§ak1 f>

> minQ{N(ki“f(kil) - klf(%), ;1 t>}

> Mk(x/ t)

(2.22)

Let € > 0 and 6 > 0 be given. Since lim;_, ., M (x,t) = 1, there is some t; > 0 such that
My (x, ty) > 1—e. Since 3%, (k™ /a™)ty < o, there is some ng € N such that 3’ (ki/ai)ty < ab
for all n > m > ny. It follows from (2.22) that

N () -k (),0) ZN<kn+1f(%>_kmf<k1m),i="m;;to)

> Mi(x,tp) >1-€

(2.23)

for all x € X and all nonnegative integers n and m with n > m > ny. Therefore, the sequence
(k" f(x/k")} is a Cauchy sequence in (Y, N) for all x € X. Since (Y, N) is complete, the
sequence {k" f(x/k")} converges in Y for all x € X. So one can define the mapping T : X —
Y by

Te(x) = lim k" f<%> (2.24)
for all x € X. The rest of the proof is similar to the proof of Theorem 2.1 O

Theorem 2.3. Let X be a normed space, let (Z, N') be a fuzzy normed space, and let ¢ : [0,00) —
[0, 00) be a function such that

(1) ¢(ts) = g)p(s),
(2) ¢(t) <tforallt>1.
Suppose that a mapping f : X — Y satisfies the inequality:

N(Df (x,y),) 2 N'((¢ (=) + ¢ (|l ])) 70, ) (2.25)

for all x,y € X and all positive real number t, where zo is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y satisfying Ti(x) := im,, _, o (f (k""x) / k") and

k—-w(k
N (Ti(x) - f(x),£) > N' <qf(||x||>zo,%qf))t> (2.26)

forall x € X, where or(¢) = max{1+ ¢ (i) : 1 <i < k}. Moreover, Ty =T, for all k > 2.
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Proof. Let
o(x,y) = (¢dlxl) + ¢ (lyl))zo (2.27)
for all x, € X. So,
p(kx, ky) = g (k)p(x,y). (2.28)

where ¢(k) < k. By using Theorem 2.1, we can get (2.26). Now, we show that Ty = Tp. It
follows from (1) that ¢(k™) = (¢(k))". Replacing x by 2"x in (2.26), we get

k-¢(k
N(Te@") - f2"),8) > N' <<p(||2"x||>zO, - Z’qf) ) t> (229)

for all x € X. So we have

f(2"x) ) k — g (k) >
N<T x) - ) >N x|)zo, ———=—=2"t 2.30
k(x) - w(llxl)zo o (9)g @) (2.30)
Using (2) and passing the limit n — oo in (2.30), we get Ty = T». O

Theorem 2.4. Let X be a normed space, let (Z, N') be a fuzzy normed space, and let ¢ : [0,00) —
[0, 00) be a function such that

(1) gts) = (D) (s),

(2) @(t) >tforallt>1.
Suppose that a mapping f : X — Y satisfies the inequality:

N(Df(x,y),t) > N'((g(lxl) + ¢ (|l¥]))z0.t) (2.31)

for all x,y € X and all positive real number t, where zo is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y satisfying Ti(x) := limy, k" f (x/k™) and

N(Ti(®) - f(x),8) 2 N' <<p<||x||>zO, vl —k t> 232)
o ()
forall x € X, where
ok () =max{1+¢(i):1<i<k}. (2.33)

Moreover, Ty, =Ty forall k > 2.

Proof. Let

D(x,y) = (¢lxl) + ¢ ([lyll))zo (2.34)
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for all x, y € X. So, we have

(I><k_1x, k‘ly) = qr(k‘1>d)(x, v), (2.35)
where ¢ (k) = ¢(k)"' < k7' It follows from (1) that ¢ (k™) = (¢(k))™. By using

Theorem 2.2, we can get (2.32). Now, we show that Ty = T,. Replacing x by x/2" in (2.32), we
get

, (k) -k
N<Tk<2£"> —f(%),t) 2N <"’<“<%)”>Z°’ qjok((p) t> ' (2:36)
for all x € X. So we have

nel X , pk) -k
N(Te) -2 (5) 1) = N <w<||x||>zO,Wt>. (237)

Using (2) and passing the limit n — oo in (2.37), we get Ty = T». O
Theorem 2.5. Let X be a normed space, let p be a nonnegative real number such that p# 1, and let

H : [0,00) x [0,00) — [0, 0) be a homogeneous function of degree p. Suppose that (Z, N') be a
fuzzy normed space and let f : X — Y be mapping such that

N(Df(x,y),t) > N'(H(llx, |

y|)zo,t) (2.38)

forall x,y € X and all positive real number t, where zq is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y such that

N (Te(x) - f(x),£) > Mi(x, Ik? - klf), (2.39)

where My (x,t) :== min{N'(||x||PH(1,i)zo,t) : 1 <i< k}.
Proof. The proof follows from Theorems 2.1 and 2.2. O

For the particular cases H (x,y) = 0(xP+y?), H(x,y) = x"y°, H(x, y) = X"y +x"**+y"™**(r+s =
p), and H(x,y) = min{x”, y?}, we have the following corollaries.

Corollary 2.6. Let X be a normed space, let p be a nonnegative real number such that p # 1. Suppose
that (Z, N') be a fuzzy normed space and f : X — Y be mapping such that

N(Df(x,y),t) = N'((Ix|I” + ||¥]|")6,t) (2.40)

for all x,y € X and all positive real number t, where 0 is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y such that

N (Ti(x) - f(x),t) > N’<||x||”6, %t) (2.41)
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Corollary 2.7. Let X be a normed space, 1, s be non-negative real numbers such that p :=r + s#1.
Suppose that (Z, N') be a fuzzy normed space and f : X — Y be mapping such that

N(Df(x,y),t) = N'(llx["[ly|I°6,t) (2.42)

forall x,y € X and all positive real number t, where 0 is a fixed vector of Z. Then there exists a unique
additive mapping Ty : X — Y such that

N1 - 00,0 > N'(Iive, =L, (2.43)

Corollary 2.8. Let X be a normed space, and let r, s be nonnegative real numbers such that p :=
r + s # 1. Suppose that (Z, N'") be a fuzzy normed space and let f : X — Y be mapping such that

N(Df (x,y),£) = N'(OlxII"[[y[|° + OllxI" + 0|y ]| £ (2.44)

forall x,y € X and all positive real number t, where O is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y such that

kP —k
NI = £, 1) > N' (P, e s gt ) (2.45)

Corollary 2.9. Let X be a normed space, let p be a nonnegative real number such that p # 1. Suppose
that (Z, N') be a fuzzy normed space and let f : X — Y be mapping such that

N(Df (x,y),t) > N'(min{[|x|/", [|y]|"}6,t) (2.46)

forall x,y € X and all positive real number t, where O is a fixed vector of Z. Then, there exists a
unique additive mapping Ty : X — Y such that

N (Ti(x) = f(x),) = N'([lx["6, [K” ~ k|t). (2.47)

Problem 1. Whether Theorem 2.5 and/or such Corollaries can be proved for p = 1?

Problem 2. What is the best possible value of k in Corollaries 2.6 and 2.7?
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