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We study the following fourth-order elliptic equations: Δ2u + aΔu = f(x, u), x ∈ Ω, u =
Δu = 0, x ∈ ∂Ω, where Ω ⊂ R

N is a bounded domain with smooth boundary ∂Ω and f(x, u)
is asymptotically linear with respect to u at infinity. Using an equivalent version of Cerami’s
condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions
for the equations.

1. Introduction and Main Results

In this paper, we will investigate the existence of multiple solutions to the following fourth-
order elliptic boundary value problem:

Δ2u + aΔu = f(x, u), x ∈ Ω,

u = Δu = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, Δ2 is the biharmonic

operator, a < λ1 (λ1 is the first eigenvalue of −Δ in H1
0(Ω)) is a parameter. We assume that

f(x, u) satisfies the following hypotheses.

(f1) f(x, u) ∈ C(Ω × R,R).

(f2) lim|u|→ 0 f(x, u)/u = 0 uniformly for x ∈ Ω.
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(f3) lim|u|→∞ f(x, u)/u = � uniformly for x ∈ Ω, where � ∈ (0,+∞) is a constant, or
� = +∞, and there exists C > 0, q ∈ [2, 2∗) such that

∣
∣f(x, u)

∣
∣ ≤ C

(

1 + |u|q−1
)

, (1.2)

where 2∗ = 2N/(N − 4).

(f4) f(x, u) is odd in u.

(f5) lim|u|→∞(f(x, u)u − 2F(x, u)) = +∞ uniformly for x ∈ Ω, where F(x, u) =
∫u

0 f(x, t)dt.

(f6) f(x, u)/u is nondecreasing with respect to u ≥ 0, for a.e. x ∈ Ω.

Problem (1.1) is usually used to describe some phenomena appeared in different
physical, engineering and other sciences. In recent years, there aremany results for the fourth-
order elliptic equations. In [1], Lazer and McKenna considered the fourth-order problem:

Δ2u + aΔu = d
(

(u + 1)+ − 1
)

, x ∈ Ω,

u = Δu = 0, x ∈ ∂Ω,
(1.3)

where u+ = max{u, 0} and d ∈ R. They pointed out that this type of nonlinearity furnishes a
model to study traveling waves in suspension bridges. They also presented a mathematical
model for the bridge that takes account of the fact that the coupling provided by the stays
connecting the suspension cable to the deck of the road bed is fundamentally nonlinear (see
[1–3]). Since then, more general nonlinear fourth-order elliptic boundary value problems
have been studied. Problem (1.1) and (1.3) have been studied extensively in recent years,
we refer the reader to [4–14].

For problem (1.3), Lazer and McKenna [2] proved the existence of 2k − 1 solutions
whenN = 1 and d > λk(λk − c) (λk is the sequence of the eigenvalues of −Δ inH1

0(Ω)) by the
global bifurcation method. In [4], Tarantello found a negative solution when d > λ1(λ1−c) by
a degree argument. For Problem (1.1), when f(x, u) = bg(x, u), the existence of two or three
nontrivial solutions has been obtained in [5, 6] for g(x, u) under certain conditions by using
variational methods. In [7], positive solutions of problem (1.1) were got when f satisfies
the local superlinearity and sublinearity. When f is asymptotically linear at infinity, the
existence of three nontrivial solutions has been obtained in [8] by using variational method,
and the existence of a nontrivial solution has been obtained in [9] by using the mountain pass
theorem. For more similar problems, we refer to [10–20] and the references therein.

In this paper, we prove a new existence result about a multiple solutions of problem
(1.1) under the assumption that f(x, u) is asymptotically linear with respect to u at infinity.
In this case, the Ambrosetti-Rabinowitz condition ((AR) condition for short) does not hold,
hence it is difficult to verify the classical (PS)c condition. To overcome this difficulty, by using
an equivalent version of Cerami’s condition and the symmetric mountain pass lemma (see
[21]), we obtain the existence of multiple solutions for problem (1.1). To the best of our
knowledge, our main results are new. Before stating the main results, we give some notations.



Journal of Applied Mathematics 3

Set E = H2(Ω)∩H1
0(Ω), then E is a Hilbert space with the following inner product and

the norm:

〈u, v〉E =
∫

Ω
(ΔuΔv − a∇u∇v)dx, ‖u‖E = 〈u, u〉1/2E . (1.4)

The corresponding energy functional of problem (1.1) is defined on E by

I(u) =
1
2

∫

Ω

(

|Δu|2 − a|∇u|2
)

dx −
∫

Ω
F(x, u)dx, (1.5)

where F(x, u) =
∫u

0 f(x, t)dt. From (f1)–(f3), it is easy to see that I ∈ C1(E,R), it is well known
that the weak solutions of problem (1.1) are the critical points of the energy functional I(u).

Our main results are stated as follows.

Theorem 1.1. Assume that f(x, u) satisfies assumptions (f1)–(f4), and Λk is given by (2.8). Then
the following hold.

(i) If � ∈ (Λk,+∞) is not an eigenvalue of problem (2.4), then problem (1.1) has at least k
pairs of nontrivial solutions in E.

(ii) Suppose that (f5) is satisfied, then the conclusion of (i) holds even if � is an eigenvalue of
problem (2.4).

(iii) If � = +∞, and (f6) holds, then problem (1.1) has infinitely many nontrivial solutions in
E.

2. Preliminaries

In this section, we give some preliminary results whichwill be used to prove ourmain results.
Throughout this paper, we will denote by |Ω| the Lebesgue measure of Ω, Bρ = {u ∈

E : ‖u‖E < ρ}. C will denote various positive constants, → (respectively⇀) denotes strong
(respectively weak) convergence. om(1) denote om(1) → 0 as m → ∞. Ls(Ω), (1 ≤ s < +∞)
denote Lebesgue spaces, the norm Ls is denoted by | · |s for 1 ≤ s < +∞. The dual space of a
Banach space E will be denoted by E−1.

First, we recall an equivalent version of Cerami’s condition as follows (see [22]).

Definition 2.1. Let E be a Banach space. I ∈ C1(E,R) is said to satisfy condition (C) at level
c ∈ R ((C)c for short), if the following fact is true: any sequence {um} ⊂ E, which satisfies

I(um) −→ c, (1 + ‖um‖E)‖I ′(um)‖E−1 −→ 0, (m −→ ∞) (2.1)

possesses a convergent subsequence in E.

Next, we will state an abstract symmetric mountain pass lemma. For this purpose, we
should first introduce the definition of genus (see [23–25]).
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Definition 2.2. Let E be a real Banach space and A a subset of E. A is said to be symmetric if
u ∈ A implies −u ∈ A. For a closed symmetric set A which does not contain the origin, we
define a genus γ(A) of A by the smallest integer k such that there exists an odd continuous
mapping from A to R

k \ {0}. If there does not exist such a k, we define γ(A) = ∞. Moreover,
we set γ(∅) = 0.

Let E be an infinite dimensional real Banach space, I ∈ C1(E,R), Â0 = {u ∈ E :
I(u) ≥ 0}, Γ∗ = {h(0) = 0, h is an odd homeomorphism of E and h(B1) ⊂ Â0}, Γm =
{K ⊂ E : K is compact, symmetric with respect to the origin, and for any h ∈ Γ∗,
there holds γ(K∩ h(∂B1)) ≥ m}. If Γm /= ∅, define

bm = inf
K⊂Γm

max
u∈K

I(u). (2.2)

Now, we recall an abstract symmetric mountain pass lemma, which can be found in
[26, 27].

Lemma 2.3. Let e1, e2, . . . , em, . . . be linearly independent in E, and Ei = span{e1, e2, . . . , ei}, i =
1, 2, . . . , m, . . .. Suppose that I ∈ C1(E,R) satisfies I(0) = 0, I(−u) = I(u), and (C)c condition for
c ≥ 0. Furthermore, there exists ρ > 0, α > 0 such that I(u) > 0 in Bρ \ {0} and I(u)|∂Bρ

≥ α. Then,

if Em ∩ Â0 is bounded, then Γm /= ∅ and bm ≥ α > 0 is a critical value of I. Moreover, if Em+i ∩ Â0 is
bounded for all i = 1, . . . r, and

bm+1 = · · · = bm+r = b, (2.3)

then γ(Kb) ≥ r, where Kb = {u ∈ E : I(u) = b, I ′(u) = 0}. If Em ∩ Â0 is bounded for all m, then
I(u) possesses infinitely many critical values.

Let us consider the eigenvalue problem:

Δ2u + aΔu = Λu, x ∈ Ω,

u = Δu = 0, x ∈ ∂Ω.
(2.4)

Set

Φ(u) =
∫

Ω

(

|Δu|2 − a|∇u|2
)

dx, Ψ(u) =
∫

Ω
|u|2dx. (2.5)

For a < λ1, Φ(u) and Ψ(u) are well defined. Furthermore, Φ(u),Ψ(u) ∈ C1(E,R), and a real
value Λ is an eigenvalue of problem (2.4) if and only if there exists u ∈ E \ {0} such that
Φ′(u) = ΛΨ′(u). At this point, let us set

N = {u ∈ E : Ψ(u) = 1}. (2.6)

Then N/= ∅ and N is a C1 manifold in E. It follows from the standard Lagrange multiples
arguments that eigenvalues of (2.4) correspond to critical values of Φ|N, and Φ satisfies the
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(PS) condition on N. Thus a sequence of critical values of Φ|N comes from the Ljusternik-
Schnirelmann critical point theory on C1 manifolds. For any k ∈ N, set

Γk =
{

A ⊂ N : A is compact, symmetric and γ(A) ≥ k
}

. (2.7)

Then values:

Λk := inf
A∈Γk

max
u∈A

Φ(u) (2.8)

are critical values and hence are eigenvalues of problem (2.4). Moreover, 0 < Λ1 < Λ2 ≤ Λ3 ≤
· · · ≤ Λk ≤ · · · → +∞.

We prove some properties of functional I(u) in the following lemma.

Lemma 2.4. For the functional I(u) defined by (1.5), if assumptions (f1) and (f6) hold, and for any
{um} ⊂ E with 〈I ′(um), um〉 → 0 as m → ∞, then there is a subsequence, still denoted by {um},
such that

I(tum) ≤ 1 + t2

2m
+ I(um) (2.9)

holds for all t > 0, m ∈ N+.

Proof. This lemma is essentially due to [27, 28]. For the sake of completeness, we prove it
here.

By 〈I ′(um), um〉 → 0 as m → ∞, for a suitable subsequence, we may assume that

− 1
m

<
〈

I ′(um), um

〉

= ‖um‖2E −
∫

Ω
f(x, um)umdx <

1
m
, ∀m. (2.10)

We claim that for any t > 0 and m ∈ N+,

I(tum) <
t2

2m
+
∫

Ω

(
1
2
f(x, um)um − F(x, um)

)

dx. (2.11)

Indeed, for any t > 0, at fixed x ∈ Ω andm ∈ N+, we set

h(t) =
t2

2
f(x, um)um − F(x, tum), (2.12)

then

h′(t) = tf(x, um)um − f(x, tum)um

= tum

(

f(x, um) − 1
t
f(x, tum)

) { ≥ 0, 0 < t ≤ 1,

≤ 0, t ≥ 1,
by
(

f6
)

,
(2.13)
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hence

h(t) ≤ h(1) ∀t > 0. (2.14)

Therefore,

I(tum) =
t2

2
‖um‖2E −

∫

Ω
F(x, tum)dx

≤ t2

2

(
1
m

+
∫

Ω
f(x, um)umdx

)

−
∫

Ω
F(x, tum)dx by (2.10)

≤ t2

2m
+
∫

Ω

(

t2

2
f(x, um)um − F(x, tum)

)

dx

≤ t2

2m
+
∫

Ω

(
1
2
f(x, um)um − F(x, um)

)

dx by (2.14)

(2.15)

and our claim (2.11) is proved.
On the other hand,

I(um) =
1
2
‖um‖2E −

∫

Ω
F(x, um)dx

≥ 1
2

(

− 1
m

+
∫

Ω
f(x, um)umdx

)

−
∫

Ω
F(x, um)dx,

(2.16)

that is,

∫

Ω

(
1
2
f(x, um)um − F(x, um)

)

dx ≤ 1
2m

+ I(um). (2.17)

Combining (2.11) and (2.17)we have that

I(tum) ≤ 1 + t2

2m
+ I(um), ∀t > 0, m ∈ N+. (2.18)

The proof is completed.

3. Proof of the Main Results

We begin with the following lemma.

Lemma 3.1. Let c ≥ 0. Assume that f(x, u) satisfies assumptions (f1)–(f3). Then the following
hold.

(i) I(u) satisfies (C)c condition if � < +∞ in assumption (f3), and � is not an eigenvalue of
problem (2.4).
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(ii) If � < +∞ is an eigenvalue of problem (2.4) and (f5) holds, then I(u) satisfies (C)c con-
dition.

(iii) If � = +∞, and (f6) holds, then I(u) satisfies (C)c condition.

Proof. Suppose that {um} ⊂ E is a (C)c sequence, that is, as m → ∞, we have

I(um) −→ c ≥ 0, (3.1)

(1 + ‖um‖E)
∥
∥I ′(um)

∥
∥
E−1 −→ 0, in E−1. (3.2)

It is easy to see that (3.2) implies that as m → ∞, there hold

‖um‖2E −
∫

Ω
f(x, um)umdx = om(1), (3.3)

∫

Ω

(

ΔumΔϕ − a∇um∇ϕ
)

dx −
∫

Ω
f(x, um)ϕdx = om(1), ∀ϕ ∈ E. (3.4)

By Sobolev compact embedding, to show that I(u) satisfies (C)c condition, it suffices to show
the boundedness of (C)c sequence in E for each case.

(i) Suppose that 0 < � < +∞ and � is not an eigenvalue of problem (2.4). Arguing by
contradiction, we suppose that there exists a subsequence, still denoted by {um}, such that as
m → ∞, there holds ‖um‖E → +∞. Define

pm(x) =

⎧

⎪⎪⎨

⎪⎪
⎩

f(x, um(x))
um(x)

, um(x)/= 0,

0, um(x) = 0.

(3.5)

Then from assumptions (f1)–(f3), there exists M > 0 such that

0 ≤ pm(x) ≤ M. (3.6)

Let

wm =
um

‖um‖E . (3.7)

Obviously, wm is bounded in E. Going if necessary to a subsequence, we can assume that

wm ⇀ w, weakly in E,

wm −→ w, a.e. in Ω,

wm −→ w, strongly in Ls(Ω), ∀s ∈ [2, 2∗).

(3.8)
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It is easy to show that w/≡ 0. In fact, if w ≡ 0, then from (3.3), (3.6), (3.8) and the definitions
of pm and wm, asm → ∞, we have

1 = ‖wm‖2E =
∫

Ω
pm(x)|wm|2dx + om(1) ≤ M

∫

Ω
|wm|2dx + om(1) −→ 0, (3.9)

which is a contradiction.
From (3.6), there exists h(x) ∈ L∞(Ω) with 0 ≤ h(x) ≤ M such that, up to a subse-

quence, as m → ∞, there holds

pm(x) ⇀ h(x), weakly∗ in L∞(Ω). (3.10)

Then from (3.8) it follows that

pm(x)wm ⇀ h(x)w weakly in L2(Ω),
∫

Ω
pm(x)|wm|2dx −→

∫

Ω
h(x)|w|2dx.

(3.11)

On the other hand, from (3.3), (3.4), (3.5), and (3.7), we have

∫

Ω

(

ΔwmΔϕ − a∇wm∇ϕ
)

dx =
∫

Ω
pm(x)wmϕdx + om(1), ∀ϕ ∈ E. (3.12)

∫

Ω

(

|Δwm|2 − a|∇wm|2
)

dx =
∫

Ω
pm(x)|wm|2dx + om(1). (3.13)

It follows from (3.11)–(3.13) that

‖wm‖2E =
∫

Ω
h(x)|w|2dx + om(1),

∫

Ω

(

ΔwmΔϕ−a∇wm∇ϕ
)

dx=
∫

Ω
h(x)wϕdx+om(1), ∀ϕ ∈ E.

(3.14)

Therefore (3.14) implies that w satisfies

∫

Ω

(

ΔwΔϕ − a∇w∇ϕ
)

dx =
∫

Ω
h(x)wϕdx, ∀ϕ ∈ E. (3.15)

Let

Ω0 = {x ∈ Ω : w(x) = 0},
Ω+ = {x ∈ Ω : w(x) > 0},
Ω− = {x ∈ Ω : w(x) < 0}.

(3.16)
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Then um(x) → +∞ as m → ∞ if x ∈ Ω+, and um(x) → −∞ as m → ∞ if x ∈ Ω−. From
assumption (f3), h(x) ≡ � for all x ∈ Ω+ ∪Ω−. Thus (3.15) implies that w satisfies

∫

Ω0

(

ΔwΔϕ−a∇w∇ϕ−h(x)wϕ
)

dx+
∫

Ω+∪Ω−

(

ΔwΔϕ−a∇w∇ϕ−h(x)wϕ
)

dx=0, ∀ϕ ∈ E.

(3.17)

Therefore

∫

Ω

(

ΔwΔϕ − a∇w∇ϕ
)

dx = �

∫

Ω
wϕdx, ∀ϕ ∈ E. (3.18)

This means that � is an eigenvalue of problem (2.4), which contradicts our assumption, so
{um} is bounded in E.

(ii) Suppose � ∈ (0,+∞) is an eigenvalue of problem (2.4), we need the additional
assumption (f5).

From assumption (f5), there exists T0 > 0 such that

f(x, u)u − 2F(x, u) ≥ 0, ∀|u| ≥ T0, x ∈ Ω, (3.19)

and there exists C0 = C0(T0) > 0 such that

∫

{|um|≤T0}

(

f(x, um)um − 2F(x, um)
)

dx ≥ −C0. (3.20)

Furthermore, under assumptions (f1)–(f3), there exists M > 0 such that

∣
∣f(x, u)

∣
∣ ≤ M|u|, |F(x, u)| ≤ M

2
|u|2, ∀x ∈ Ω. (3.21)

LetK = (2c+C0)(2MS)N/2, whereM > 0 is given by (3.21), S > 0 is the best Sobolev constant
such that

(∫

Ω
|u|2∗dx

)2/2∗

≤ S

∫

Ω

(

|Δu|2 − a|∇u|2
)

dx, ∀u ∈ E. (3.22)

From assumption (f5), there exists T = T(K) > T0 > 0 such that

f(x, u)u − 2F(x, u) ≥ K, ∀|u| ≥ T, x ∈ Ω. (3.23)

For the above T > 0 and each m ≥ 1, set

Am = {x ∈ Ω : |um(x)| ≥ T}, Bm = {x ∈ Ω : |um(x)| ≤ T}. (3.24)
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From estimates (3.20), (3.1), (3.3), and (3.23), we get

2c + om(1) =
∫

Ω

(

f(x, um)um − 2F(x, um)
)

dx

≥
∫

Am

(

f(x, um)um − 2F(x, um)
)

dx − C0

≥ K|Am| − C0,

(3.25)

where |Am| denotes the measure of Am.
On the other hand, for any fixed r > 2, from (3.1) and (3.3), we have

(
1
2
− 1
r

)

‖um‖2E −
∫

Ω

(

F(x, um) − 1
r
f(x, um)um

)

dx = c + om(1). (3.26)

Since Ω is bounded and f ∈ C(Ω × R,R), there exists a constant C = C(Ω, f, T) such that

∣
∣
∣
∣
∣

∫

Bm

(

F(x, um) − 1
r
f(x, um)um

)

dx

∣
∣
∣
∣
∣
≤ C, ∀x ∈ Ω. (3.27)

Then, from (3.21)–(3.26), Hölder inequality and Sobolev inequality, we have

c + om(1) ≥
(
1
2
− 1
r

)

‖um‖2E − C −
∫

Am

(

F(x, um) − 1
r
f(x, um)um

)

dx

≥
(
1
2
− 1
r

)

‖um‖2E − C −
∫

Am

(
1
2
f(x, um)um − 1

r
f(x, um)um

)

dx

=
(
1
2
− 1
r

)

‖um‖2E − C −
(
1
2
− 1
r

)∫

Am

f(x, um)umdx

≥
(
1
2
− 1
r

)

‖um‖2E − C −
(
1
2
− 1
r

)

M

∫

Am

|um|2dx

≥
(
1
2
− 1
r

)

‖um‖2E − C −
(
1
2
− 1
r

)

M|um|22∗ |Am|2/N

≥
(
1
2
− 1
r

)

‖um‖2E − C −
(
1
2
− 1
r

)

MS‖um‖2E
(∣
∣
∣
∣

2c + C0

K

∣
∣
∣
∣
+ om(1)

)2/N

≥ 1
2

(
1
2
− 1
r

)

‖um‖2E − C −
(
1
2
− 1
r

)

MS‖um‖2E · om(1),

(3.28)

that is, {um} is bounded in E.
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(iii) Finally, we prove the case � = +∞. Here the subcritical condition (1.2) is assumer
as usual, but to make use of Lemma 2.4, (f6) is required in this case. Set

tm =
2
√
c

‖um‖E
, wm = tmum =

2
√
cum

‖um‖E
. (3.29)

Then ‖wm‖E = 2
√
c and {wm} is bounded in E. Hence, up to a subsequence, we may assume

that: there exists w ∈ E such that (3.8) also holds in this case. If ‖um‖E → +∞, we claim that

w(x)/≡ 0. (3.30)

In fact, if w(x) ≡ 0 in Ω, then (3.29) and (3.8) imply that
∫

Ω
F(x,wm)dx −→ 0, I(wm) = 4c + om(1). (3.31)

However, applying Lemma 2.4 with t = 2
√
c/‖um ‖E, we have

I(wm) ≤ 1 + t2

2m
+ I(um) −→ c, (m −→ ∞), (3.32)

which contradicts (3.31), thus (3.30) holds.
On the other hand, similar to case (i), (3.13) holds. Let Ω̃ = Ω \ {x ∈ Ω : w(x) = 0}.

Then |Ω̃| > 0 by (3.30). From assumptions (f3) and (f4), pm(x) ≥ 0 and pm(x) → +∞ as
m → ∞ in Ω̃, where pm(x) is defined by (3.5). Hence, from (3.8) and (3.13), we have

4c = lim inf
m→∞

‖wm‖2E = lim inf
m→∞

∫

Ω
pm(x)|wm|2dx

≥ lim inf
m→∞

∫

Ω̃
pm(x)|wm|2dx

≥
∫

Ω̃
lim inf
m→∞

pm(x)|wm|2dx = +∞,

(3.33)

which is a contradiction, thus ‖um‖E � +∞, that is, up to a subsequence, {um} is bounded in
E.

Proof of Theorem 1.1. The proof of this theorem is divided in two steps.

Step 1. There exists ρ > 0, α > 0 such that I(u) > 0 in Bρ(0) and I(u)|∂Bρ
≥ α.

In fact, in each case, assumptions (f1)–(f3) imply that for any ε > 0, there exists Cε > 0
such that, for all u ∈ R, there holds

∣
∣f(x, u)

∣
∣ ≤ ε|u| + Cε|u|q−1, |F(x, u)| ≤ ε|u|2 + Cε|u|q, (3.34)

where q is the same as that in (1.2), from which, it is easy to see that there exists ρ > 0,α > 0
such that I(u) > 0 in Bρ(0) and I(u)|∂Bρ ≥ α.
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Step 2. By the SymmetricMountain Pass Lemma 2.3, to prove Theorem 1.1, it suffices to prove
that for any k ≥ 1, there exists a k-dimensional subspace Ek of E and Rk > 0 such that

I(u) ≤ 0, ∀u ∈ Ek \ BRk . (3.35)

First, we prove (3.35) in the case � ∈ (Λk,+∞). Since � > Λk, there is ε > 0 such that �−ε > Λk.
By the definition of Λk, there exists a k-dimensional subspace Ek of E such that, for the above
ε > 0, there holds

sup
u∈Ek\{0}

Ψ(u)
Φ(u)

≤ Λk +
ε

2
< l − ε

2
, (3.36)

that is,

sup
u∈Ek\{0}

Φ(u)
Ψ(u)

>
1

� − ε/2
. (3.37)

By assumption (f3), we have

lim
|u|→+∞

F(x, u)

|u|2
=

�

2
. (3.38)

Then, for the above ε > 0, there exists M > 0 large enough such that

F(x, u)

|u|2
>

1
2

(

� − ε

4

)

, ∀|u| > M. (3.39)

Therefore, if u ∈ Ek with ‖u‖E = R, by (3.39) and (3.37), we obtain

I(u) =
1
2
R2 −

∫

Ω
F(x, u)dx

≤ 1
2
R2 −

∫

|u|>M
F(x, u)dx − C(M,Ω)

≤ 1
2
R2 − 1

2

(

� − ε

4

)
∫

Ω
|u|2dx − C(M,Ω)

=
R2

2

(

1 −
(

� − ε

4

)
∫

Ω

( |u|
R

)2

dx

)

− C(M,Ω)

≤ R2

2

(

1 − � − ε/4
� − ε/2

)

− C(M,Ω)

< 0,

(3.40)

if R ≥ Rk and Rk > 0 large enough.
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If � = +∞, similar to (3.37), for any k ≥ 1, there exists Ek ⊂ E such that

sup
u∈Ek\{0}

Φ(u)
Ψ(u)

>
1

Λk + 1/2
, (3.41)

similar to (3.39), from assumption (f3) with � = +∞ it follows that there exists Mk > 0 such
that

2F(x, u)

|u|2
> Λk + 1, ∀|u| > Mk. (3.42)

Then, if u ∈ Ek with ‖u‖E = R, we have

I(u) ≤ R2

2

(

1 − Λk + 1
Λk + 1/2

)

− C(Mk, k,Ω) < 0, (3.43)

if R ≥ Rk and Rk > 0 large enough. This completes the proof of Theorem 1.1.
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